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An important role of hadron resonances for determining the characteristics of hadron gases 
is argued. A kinetic theory model of hadron gas is developed. A classical, nonquantum, dis- 
tribution function of a resonance is defined with the help of the protile function being an 
analogue of the mass shell delta function of stable particles. The Boltzmann equation is 
generalized to include the resonance decay and resonance formation processes. To determine 
the unknown profile function, the transition rates are assumed to satisfy the bilateral nor- 
malization or the detailed balance condition. The profile function is expressed through the 
resonance formation cross section and the decay width. The H-theorem is proved, and it is 
shown that the form of the equilibrium distribution function of a resonance coincides with 
that of a stable particle. Macroscopic equilibrium characteristics are studied. Significance of 
the resonance mass smearing effect is demonstrated. 0 1986 Academic Press, Inc. 

I. INTRODUCTION 

Considering hadron gases, one finds that the standard kinetic theory, see, e.g., 
[ 11, developed for the description of atomic gases is far inadequate for studying 
hadrons. The majority of hadrons are unstable. The lifetime of hadron resonances is 
so short that the decay width is comparable to the particle mass. The resonances 
are abundantly produced in hadron-hadron collisions, see, e.g., [2]. Thus, to 
describe a hadron gas, the resonances have to be taken into account. However, for 
the inclusion of unstable particles, the Boltzmann equation has to be modified. 

According to the current understanding of a hadron structure, hadrons are built 
of quarks and gluons. So, the transport theory of hadrons should be constructed on 
the basis of quantum chromodynamics. However, it is not possible to realize this 
program now because of the unsolved problems of QCD concerning the hadron 
structure and the inter-hadron forces. In the absence of underlying microscopic 
dynamics one can develop phenomenological models based on physical arguments. 
In this paper we present such an attempt. We consider a minimal modification of 
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the standard classical (non-quantum) kinetic theory [ 1 ] keeping in mind all 
limitations of this theory like the absence of two-particle correlations, etc. In our 
model, besides binary collisions, we take into account two-particle resonance 
decays and time-reversed processes, i.e., resonance formation. Then, we explicitly 
include the effect of resonance mass smearing. 

There are other characteristics features of hadrons which are still outside our dis- 
cussion. Of particular importance is, in our opinion, the fact that many hadrons 
may be produced in hadron collisions. Binary collisions dominate at relatively low 
incident energies only. The inclusion of such processes is difficult and resembles the 
problems found in attempts to develop the transport theory of dense atomic gases, 
see, e.g., [ 11. 

The non-trivial equilibrium properties of a hadron gas have been widely dis- 
cussed in numerous papers by R. Hagedron and collaborators [3,4]. The Gibbs 
statistical mechanics and the idea of statistical bootstrap have been used in their 
considerations. The most important, in our opinion, of Hagedorn’s results is the 
prediction of limiting hadron temperature contemporarily interpreted as a tem- 
perature of phase transition to quark-gluon plasma [4]. Because this experimen- 
tally confirmed temperature is close to the pion mass, the average incident energy of 
hadron collisions in the gas in equilibrium does not exceed some hundreds of MeV. 
In this incident energy region binary collisions dominate, which makes our con- 
siderations (limited to decays, resonance formation, and binary collisions) 
applicable for the description of hadron gas close to equilibrium. Anyhow our dis- 
cussion is adequate for dilute gases, where one can neglect the collisions with more 
than two particles in an initial state. 

Our paper is organized as follows. In Section II we define the classical dis- 
tribution function of resonance and some macroscopical quantities. The Boltzmann 
equation is generalized in Section III. In Section IV the H-theorem is proved and an 
equilibrium state is considered. The equilibrium characteristics of a hadron gas are 
discussed in Section V. In Section VI we conclude our considerations. 

II. THE DISTRIBUTION FUNCTION OF A RESONANCE 

In our consideration we follow the textbook “Relativistic Kinetic Theory” by 
de Groot, van Leeuwen, and van Weert [S]. Because the energy, E, and momen- 
tum, p, of a resonance are not connected by the mass relation 

E2-p2=m2 (c=k=k=l) 

the four-dimensional, relativistic formalism is a more natural framework for study- 
ing hadron gases than the three-dimensional non-relativistic one. 

The Lorentz invariant phase-space element of a stable particle d3p/E is not ade- 
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quate for a resonance since the energy and momentum have to be independent 
(quasi-independent) variables. However, 

3 = 2&p& p2 -m’) O(E), 

where p* E p”p,, p E pw = (E, p). The above expression suggests the form of a 
resonance phase space element 

PP A(P2)? (2) 

where the function A, later on called the profile function, describes the mass smear- 
ing of a resonance. We demand d to be a Lorentz scalar. 

The profile function is assumed to depend on p2 while it is independent of any 
gas characteristics. In particular, we assume that a particle lifetime does not depend 
on the gas density. In general it is not true because the density of final states of a 
decay process can be significantly different in vacuum and in a dense gas at low 
temperature. For example, due to the Pauli quenching, the lifetime of the N* 
resonance decaying into a pion and a nucleon can be much longer in nuclear matter 
than in vacuum. We conclude as follows. Assuming that the profile function 
depends on p2 only, we limit our considerations to classical gases. The form of the 
A(p2) function will be discussed in the next section, where the connection with 
experimentally measurable quantities will be established. 

We define the distribution function so that 

f(p, x) d3x tip 4PW x-(t, x) (3) 

gives an average number of resonances being at a moment of time t in the space 
element d3x with the four-momentum between p and p + d4p. The above definition 
will be more obvious if we write down the particle four-flow vector 

N’(~=~~P~P~) PWP,~), (4) 

which is an analogue of a stable particle four-flow 

The definition (3) plays a crucial role in our considerations and lets us employ the 
standard scheme of the kinetic theory for studying hadron resonances. 

Dealing with decaying particles, we are forced to consider a mixture of many 
sorts of particles. Thus, we denote byfi(x, p) the distribution function of an ith sort 
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of particles. The energy-momentum tensor and the entropy four-flow are the follow- 
ing 

d”jT is the phase-space element of a stable particle (1) or a resonance (2). 

III. THE KINETIC EQUATIONS 

Let us consider the mixture of N” and N” sorts of stable and unstable particles, 
respectively. Assuming that a resonance decays into two stable particles, one finds 
the following set of kinetic equations: 

pp qJi(P, x) = c; + y, i = 1, 2,..., N (64 

and 

p@ a,&( p, x) = C; + D,“, j = 1, 2 ,..., N”, (6b) 

where Ci is the standard collision terms describing the binary interactions, see, e.g., 
[S]. When a resonance is involved in a collision, the phase-space element (1) has to 
replaced by (2). 

’ [.fi(pit X)fk(Pk, XI Wik-‘(Pi, PkI P)-J;(P, X) Wi’ik(PIPi, Pk)], 

where Wi+ ik (piI pi, pk) is the transition rate for the decay of the resonance of a jth 
sort having four-momentum p, into two particles of ith and kth sorts with momenta 
pi and Pk. wk+j (pi, pk 1 p,) iS the transition rate Of the inverse process Of resonance 
formation. 
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Let us rewrite Eq. (6b) in the non-covariant, more familiar form 

= z+ ,f f 1 d’p, d’p, 
r=l k=l 

fi(Pi, X)fk(Pk, XI 
W’k-j(Pi, PklP)-f.tp, x) wj”k(P 1 Pi, Pk) 

EE, E, 
J 1 EE,E, ’ 

(7) 

where V z p/E. Recalling a physical interpretation of the distribution function, one 
finds from (7) the following connection of the transition rates with the measurable 
quantities 

(2n)3 wik*j(Pi, PkIPj)&p,djtp2) E,=daik+j 

lvievkI EiEjEk 
J J J 

and 

veik(PJIPi, Pk)d3P~d3pk=J~j+ik 

E,E,E, ’ 
3 

(8) 

(9) 

where aik +j is the cross section of jth resonance formation, IV; - VkI is the relative 
velocity of particles with four-momenta pi and pk, and rj+ik is the partial decay 
width. The presence of a (27~)~ coefficient in formula (8) is related to the fact that 
the phase-space elements present in the kinetic equations are not divided by (27~)~ 
while in the units which are used fi equals unity. Thus, the (27~)~ coefficients are 
absorbed by the transition rates. 

Since a four-momentum is conserved in any reaction, one can write 

widik(PjI Pi, Pk)=a(PjIPiPk) 6’4’(Pj-Pi-Pk)v (10) 

W’k+j(Pit PkIPj)=a(PiPkIPj)6’4’(pj-pi-Pk)’ (11) 

Substituting (10) and (11) in (8) and (9), we determine the coefficients a. For the 
decay process the decay products are assumed to be isotropically distributed in the 
center-of-mass of decaying particle. In this way we arrive at the formulae 

wik*j(Pi? PklPJ)=(2~,k3~~~~~l 6(4’(pj-P;-Pk), 
J 

w”ik(PjI Pi, Pk)= 

M,rj-ik 

L, d(4’(P, - Pi- Pkh 
rk 

(12) 

(13) 
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where Fik is the Lorentz invariant flux factor 

Fik=EiEkIVi-Vkl =((pipk)2-pp?p;)1'2=j((Mj?- m;-m~)2-4m;m~)1/2, 

M,' = (pi + pk)* = p,". 

Lik is the Lorentz invariant two-particle phase-space 

(pj-pj-pk)=$ ((MiZ-m:-m:)*-4mTm:)“*. 

J 

L and F are related by the formula Lik = (4x/M;) Fik. 
Let us discuss how to determine the profile function. If we assume that the trans- 

ition rates satisfy the detailed balance condition 

one gets 

1 LikFik dk+j 
~J(PJv’~M,T”‘k. (14) 

Below we will discuss the above formula. But now we show another way leading to 
Eq. (14). We assume that the transition rates satisfy the bilateral normalization con- 
ditions 

c/%,dj(&) W*-j(Pi,PkI~j)=CId4p/dj(pi) Wj’ik(pjlPi,Pk) 

i i 

and 

(15) 

(16) 

The above expressions related to unitarity of the S-matrix are briefly discussed in 
the Appendix. 

Putting (12) and (13) in (15) and (16) one finds the equations 

and 
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Because the first equation has to be satisfied for any i, k pairs while the second one 
for any j, we get the relation 

Fik@+j Mj Aj(p;) rj- ik 
Lik 

which is equivalent to Eq. (14). In this approach formula (14) provides the detailed 
balance condition. Thus, the detailed balance appeared to be a consequence of the 
bilateral normalization conditions (15) and (16), the four-momentum conservation, 
and the assumption of the isotropic distribution of decay products in the center-of- 
mass of the decaying particle. 

As the profile function characterizes a resonance but not a decay channel, for- 
mula (14) should give the same result for different i, k pairs. We cannot rigorously 
prove that the profile function described by (14) is unique. However, we present 
simplified argumentation and then we show that the independence of i, k indexes is 
realized for the BreittWigner form of the cross section. 

One expects the relation 

(17) 

where &’ is the transition matrix of the indicated process. The above relation is 
strictly correct when the interaction is invariant under time inversion which is the 
case, at least approximately, for strong interactions. If the decay width can be fac- 
torized as 

rj-ik 
= IA? j-tikl2 L,, (18) 

we get from Eq. (17) the condition 

Fikaik-j p+iklLik 
FI, = ri + I~IL,~ ’ 

which makes formula (14) independent of i, k indexes. However, the factorization 
(18) is totally justified for narrow resonances only. 

A resonance formation is usually described by the Breit-Wigner cross section, 
see, e.g., [6]: 

ik+j- It r 
a ik “5 

-p*2(fi-mj)2+q/4’ 

where p *2 =F2,/S is the CM momentum square, @ is the CM energy, and rj, 
rj+ ik are the total and partial decay widths, respectively. li;ii is the average 
resonance mass. Substituting the above formula in (14), we find 

A’(+l’ 1 
271 A4, (M, - fizj), + q4 (19) 
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Thus, uniqueness of the profile function for the Breit-Wigner cross section has been 
demonstrated. 

Considerations similar to those leading to formula (14) may be repeated for 
binary collisions. In this case the profile function is expressed through the cross sec- 
tions of reaction c1+ b --f resonance + c and the inverse one. Because the protile 
function arising from the binary collisions and the three-particle reactions 
(resonance formation and decay) has to be the same one we can get the relations 
between the cross sections of the different processes, where the resonance is 
involved. 

IV. H-THEOREM AND AN EQUILIBRIUM STATE 

The entropy production 2 is 

29 = av, = 11 d4pk in fk ‘~ga,f~ 
k 

Assuming that the distribution functions satisfy the kinetic equations (6), &!a,fk 
can be replaced by the collision terms of the right side of Eq. (6). If we assume that 
the transition rates for binary collisions and those of three-particle interactions 
satisfy the bilateral normalization conditions, we can consider separately the 
entropy production resulting from the binary collisions and the three-particle reac- 
tions. Anyhow it should be stressed that such an assumption is stronger than that 
arising from unitarity of the S-matrix, see the Appendix. 

With the help of the bilateral normalization conditions one finds 

ju=ju.+i~k~~~d4p,d’(p:) 
I 3 . 

.{[K-hlK-l]&f,Wj-ik(pjjpi,pk) 

+[K~‘+InK-l]fifkwk-qpi,pk IPj) 19 
where #u is the entropy production due to the binary reactions, see, e.g., [S]: 

K Ifi(pi)fk(pk) 

&rJPj) . 

The operations leading to the above formula are quite analogous to those described 
in Ref. [S]. It is seen that 

and the entropy production vanishes when 

fi(Pi)fk(Pk) =fi(Pj) for pi + pk = pj. (20) 
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Equilibrium, defined as a maximum entropy state, is reached when the distribution 
functions satisfy the functional relation (20). Standard considerations, see, e.g., 
Ref. [S], provide the Jiittner equilibrium function, i.e., a relativistic analogue of the 
Maxwell-Boltzmann distribution 

P - U”P” 
f;W=&j+xp 7 T ( 1 (21) 

where g is the number of internal degrees of freedom of a jth sort of particles, p is 
the chemical potential, T is the temperature of the system, and uy is the four- 
velocity of the system as a whole. Thus, the form of the equilibrium distribution 
functions of stable and unstable particles is the same. 

At the end of this section let us observe that the decay and formation processes 
provide an additional contribution to the entropy production. So, the presence of 
resonances in a system accelerates its equilibration and consequently makes the 
relaxation time shorter. 

V. MACROSCOPIC CHARACTERISTICS OF THE HADRON GAS 

IN EQUILIBRIUM 

In this section we consider macroscopic characteristics like density and internal 
energy of the gas. We focus our attention on the resonance component of the gas. 
For simplicity we assume that particles do not carry any conserved charges. Thus, 
the numbers of particles are unlimited and the chemical potentials of all types of 
particles are equal to zero. 

Using formulae (4) and (5) one finds the density and the internal energy density 
of a jth sort of resonance: 

r$= d4pLl’(p2)Ef;“(p), 
s 

ej = 
s 

&p A’( p2) JF*j-;y p). 

(22) 

The equilibrium distribution function (21) in the rest frame of the system 
(u’=(1,0,0,0))for~=Oandg=l is 

1 -e-E/T, fi”‘(P) = @)3 (23) 

In formulae (22) we change the variables 
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where M* = E* - p*. Putting (23) in (22) and integrating with respect to momenta, 
we get 

nj = 

ej = 

where K1 and K, are the so-called MacDonald functions [7]. In the parentheses 
under the integrals (24) one recognizes the density and internal energy density of 
stable particles, see, e.g., [S]. The resonance characteristics are those of stable par- 
ticles averaged over the mass. One may wonder what is the normalization of the 
profile function. The explicit calculation shows that for the Breit-Wigner form (19) 

s dA4M A(M) = 1. 

However, in this case the lower limit of the above integral has to be shifted to 
minus infinity. This operation is correct for the resonances with &?$>r. Indeed the 
Breit-Wigner formula is of physical meaning for “narrow” resonances only. 

Substituting the Breit-Wigner profile function (19) in formulae (24), we obtain 

nj=-$ Trj OcI dM 
I 

M2 
0 (M- iv,,,* + q;2/4 K2 r ’ 0 

ej=i T2rj O” dM 
i 

M2 
47c3 0 (M-flj)*+~‘/4 

,3K”(E) +EK (“)1 
* T T ’ T ’ 

Since the above integrals cannot be calculated analytically, let us consider two 
limits. 

For &lj$rj and T+>f; the functions M2Kz and M2[3K2 + (M/T) K,], respec- 
tively, taken at M= Mj, can be transferred from the integrals. Elementary 
integration provides the results 

ej=$ T2nj[3K2(@//T) + (Mj/T) K,(Hj/T)]. 

(25) 

As would be expected, we have recovered the formulae for stable particles. It should 
be stressed that this result is not quite trivial as the procedure of determining the 
profile function is not trivial. 

Instability should strongly manifest itself at rj $ T. Because we are interested in 
the qualitative effects of the mass smearing we use the Breit-Wigner formula for the 
“wide” resonance which is not quite correct. See the comment at the end of this sec- 
tion. We assume that rj is of the order of li;ii which additionally provides i@j$ T. 
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Under such conditions we can put the function [(M- a,), + G/4] ~ ’ taken at 
M = 0 in front of the integrals. Then 

3 TV, 
n5aq?+q4’ 

3 TVj 
(26) 

ejgz;;Iq?:+q4. 

We have used the equality [7] 

I 

co 

X a-‘Kv(~)dx=20L-2r 
0 

(y) r(y), 

where T(z) is the Euler gamma function and Re a > IRe vi. Let us compare for- 
mulae (26) with analogous expressions for stable particles (formulae (25) for 
li;ri $ T): 

n;tp)3’2 e-wr[ 1 +!c], 
e? E 3 3/2 I ( ) 271 

iTjeCMJr [ 1 +:-Z-l. 

(27) 

We see that the concentration of the resonances of average mass A highly exceeds 
the concentration of stable particles with mass H, 

It is a well-known experimental fact [2] that in hadronhadron collisions at high 
energy there is an abundant resonance production as compared to pion yield. This 
abundance seems to decrease with incident energy. For many authors a big yield of 
relatively massive resonances was a crucial argument against thermodynamical 
approaches to particle production in hadron collisions since it was asserted that the 
generation of massive particles was exponentially suppressed according to formula 
(27). As shown, formula (27) can highly underestimate the resonance yield which 
seems to invalidate the above argumentation. 

From formulae (26) one can find the energy per particle for a “wide” resonance 
at low temperature 

The above expression resembles the one for massless particles. It shows how impor- 
tant the effect of mass smearing can be. 

At the end of this section a comment is in order. Our results concerning “wide” 
resonances are based on the Breit-Wigner profile function (19). There is a common 
consensus that the energy distribution of the resonance should be of the Breit- 
Wigner form near a maximum of the mass distribution. The problem of the dis- 
tribution “tails,” which are important for the validity of formulae (26), is cumber- 
some. There are rigorous arguments that the “tails” should deviate from the 
Breit-Wigner form while it is not clear how to modify them. For extensive dis- 
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cussion of the problem related to a non-exponential character of the decay law, see 
the review [S]. In the context of hadron resonances the problem of mass dis- 
tribution has been discussed in Ref. [9]. 

We conclude this section as follows. While formulae (26) may be invalid due to 
uncertainties of the BreittWigner distribution “tails,” the qualitative results of this 
section seem to be correct. 

VI. CONCLUDING REMARKS 

Let us discuss the assumptions leading to our kinetic theory model of hadron gas. 
The first important assumption occurs in the distribution function definition (3). 
Namely, we assume that the profile function is position-independent. As it has been 
argued in this way, quantum effects have been neglected. In the other case it would 
not be possible to determine the prolile function with the help of formula (14). 
Since the profile function present in (3) is not specified, no other assumptions are 
made at this step of model formulation. Then, the kinetic equations have been con- 
sidered and the collision terms have been defined. We have assumed that the profile 
function can be extracted from the transition rates in a way analogous to the 
extraction of the delta functions 6( p* - m2) for stable particles with mass m. The 
precise meaning of this operation is stated in formulae (8) and (9), where the 
transition rates are connected with the experimentally measurable quantities. Later 
on, no assumptions characteristic for our model are made. 

The results of Section V are more or less obvious. Macroscopic characteristics of 
resonances are those of stable particles averaged over mass. Anyhow there are two 
important ingredients of formulae (24). It has been shown that the equilibrium 
functions of resonances coincide with those of stable particles. On the other hand, 
the profile function, i.e., the weight function in (24), has been uniquely determined. 

We conclude as follows. The approach based on the distribution function 
definition (3) and the notion of profile function provides a self-consistent formalism 
very similar to the standard one and compatible with physical intuition concerning 
unstable particles. 

APPENDIX 

Unitarity of the S operator provides two equalities 

; I<PlSl~)12=C I(Plsb>12= 1. 
a 

From Eq. (Al) we get the bilateral normalization condition 

(Al) 

642) 



60 STANIsLAWMRdWCZYkSKI 

Let us decompose the complete set of states tl into states with definite number, N, of 
particles 

{a> = c bN>. 
N 

We rewrite Eq. (A2) in the form 

For determining the profile function and proving the H-theorem we have used the 
assumption that 

~~I(P~~laN~t2-~(aN~~~~~~2)=o~ (A3) 

which is stronger than Eq. (A2) arising from unitarity of the S-matrix. It is seen, 
however, that Eq. (A3) is strictly correct for interactions invariant under time inver- 
sion which is the case (at least approximately) for strong interactions. 
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Nore added in proof The problems considered in this paper have been recently further studied (K. G. 
Denisenko and St. MrQwczyfiski, submitted to Phys. Rev. C). It has been shown that for equilibrium 
systems the concept of profile function follows from the S-matrix formulation of statistical mechanics by 
Dashen, Ma, and Berstein (Whys. Rev. 187 (1969), 345). Then, the equilibrium characteristics of the 
hadron gas of nucleons, pions, and deltas have been discussed. The finiteness of the delta decay width 
has been taken into account by means of realistic profile function. 
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