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Starting with the lagrangian density of the Walecka model of nuclear matter, a set of
coupled relativistic transport equations for nucleons, antinucleons, scalar and vector mesons
is derived in a systematic way by means of the contour Green {unction technique. The mean
field and the collision terms in the equations are discussed in detail. In both cases the spin
degrees of freedom are fully taken into account. i 1994 Academic Press, Inc.

1. INTRODUCTION

The success of kinetic models in describing heavy-ion collisions at intermediate
energies, see, €.g., the review articles [1], has stimulated systematic studies of the
transport equations which form the theoretical basis of these models. The main goal
of such studies is to derive transport equations starting from a microscopic model
of hadron-hadron interactions. One obvious candidate for such a model is the one
proposed by Walecka [2, 3], where nucleon fields interact with scalar and vector
meson fields. Since the model is formulated in terms of quantum field theory
(QFT), it is fully relativistic and quantum mechanical. However, there are also
important disadvantages of this model: It is in practice impossible to go beyond the
mean-field approximation because large values of the coupling constants render a
perturbative expansion meaningless [4]. While the vector field corresponds to the
omega meson, there is no stable or quasistable particle among known mesons
corresponding to the scalar field. Finally, it does not explicitly describe the pion
degrees of freedom and their coupling to the A-resonance (although this can be
remedied by adding appropriate terms to the Lagrangian). In spite of these draw-
backs, the model is widely discussed in the literature, and it is very instructive, in
our opinion, to start the study of hadron-matter transport equations with the
Walecka model. The description of nucleons by Dirac spinor fields coupled to
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mesonic fields in this model introduces many of the difficulties encountered with the
transport equations for gauge theories (see [5-7] for QED and {8] for QCD),
without, however, the essential complications due to gauge invariance in the latter
case. In this sense the hadronic transport equations to be discussed in this paper
can be also used as a formal testing ground for the more ambitious program of
deriving a transport theory of quarks and gluons.

The problem of deriving relativistic nuclear transport equations has been
addressed in several papers, see [9-19]. While the papers [9-13] dealt only with
the equations in the mean-field (Viasov) limit, the collision terms of the equations
have been considered in [14-19]. However, none of the existing studies contains a
fully systematic derivation. In Section 13 we critically discuss the papers [9-19]
and compare them with the more rigorous analysis presented here.

Our method is based on the Green function technique [20] and extends previous
work [21], where it was used to derive transport equations of self-interacting scalar
fields. As will be shown below, the appearance of spin degrees of freedom seriously
complicates the whole approach. The form of the transport equations is found
directly from the Dyson-Schwinger equations on the basis of very general
arguments, but in order to obtain explicit expressions for the self-energies which
enter the equations we have to refer to a perturbative expansion. Therefore, we
formally treat the Walecka model as perturbative; i.e., smallness of the coupling
constants is assumed. While collision terms of the Boltzmann—Nordheim—Uehling-
Uhlenbeck type have repeatedly been written for this model (see, e.g., [1, 11, 12,
14, 15, 17] and references therein), our analysis shows that it will not be easy to
justify this form outside the framework of low-order perturbation theory.

In addition to nucleons, we also derive transport equations for the scalar and
vector mesons, treating them as real and not only as effective particles. We believe
that our considerations can be generalized to more realistic models of hadronic
matter.

The concrete formulation of the problem discussed in this paper is given at the
end of Section 3 after the introduction the formal objects of our considerations, in
particular the contour Green functions which play a central role in the method. In
Section 2 we briefly present the Walecka model and collect some useful formulae.
The exact equations of motion for the Green functions, the Dyson-Schwinger
equations, are considered in Section4. In Section 5 we introduce the essential
approximation on the way to bringing them into the form of transport equations,
namely that of quasihomogeneity of the system. Section 6 is devoted to a study of
the limit of noninteracting fields which will form the basis of the following pertur-
bative expansion in powers of the coupling constant. In Sections 7 and 8 we discuss
two alternative approximations (the so-called pairing approximation and the lowest
order of the perturbative expansion) which give rise to explicit expressions for the
self-energies in the mean-field limit. The perturbative expansion is carried in
Section 9 to the next order to derive the lowest order contribution to the collision
terms. In Section 10 we extract from the Green functions the distribution functions
of (anti-)nucleons, scalar and vector mesons, and in Section 11 the final set of
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transport equations satisfied by these distribution functions is written. The paper is
rounded off with a general discussion of the whole derivation procedure and a
critical assessment of the existing literature in Sections 12 and 13, respectively.
Several specific questions are considered in the appendices.

Throughout the article we use natural units where #=c = 1. The signature of the
metric tensor is (+, —, —, —). As far as possible we keep the convention of
Bjorken and Drell [22].

2. PRELIMINARIES

Let us begin with writing down the lagrangian density of nucleon (i), neutral
scalar (¢), and vector (V#) mesonic fields as proposed by Walecka [2]:

- o 7
L=30 8,0~ MPY +5 (26 8,9~ m24)
1 1 - .

3 FUFu 45 mV, V4 g byd— g v 0V, 1)

where
FH¥ =0V =o'V,
M, m,, and m, are the masses of the nucleons, scalar and vector mesons,

respectively; g, and g, are the respective coupling constants.
The Lagrangian (2.1) leads to the field equations,

[iauyu_M]'//="_gs(/’¢+gvy”¢’V;u (223)
[ +ml] V' =g 7Y, (2.2b)
[0*+ml]l¢ =gy, (2.2¢)

where 8* = 0% d,,.. In addition to Eqs. (2.2), the lagrangian density (2.1) provides the
condition of transversality of the vector field, i.e.,

oV, =0. (2.3)

Due to the invariance of the Lagrangian (2.1) under global U(1) transformations
of the nucleon field, there is a conserved baryon current which reads

Jh=ury. (24)

Let us also write the energy-momentum tensor of the system:

| R 1 _— | -
T“V='2"//}’" oY *3 Veor 6”V,—Z¢6“ 6‘¢+—2- g (g WWé —g Yy Y V,). (2.5)
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As in [21], we have subtracted a full divergence term to obtain the energy-momen-
tum tensor in the most convenient form for our purposes. The fields from Eq. (2.5)
are assumed to satisfy Egs. (2.2).

The system is quantized by postulating the commutation relations [22, 23] for
the nucleon field,

{lllz(l’ X), ‘[’7}((# Y)} = 51/1‘5‘3]("_ Y),
W) ()} = (W lx) ¥l =0;
for the vector field,
[FOi(t’ x)’ Vj(t’ y)] = —iéijé(3)(x —Y),

[Fﬂi([’ x)s FOj(t9 )')] = [Vi(t’ X), Vj(r’ y)] :Oa
and for the (real) scalar fields

[4(1, %), $(1, y)] = —idP(x —y),
[(t. x), ¢, ¥) 1= [(1, x), d(t, y)]=0.
The dots denote here the time derivatives.

Let us also introduce the singular operators (spectral functions) 4(x, y), Z(x, y),
and “(x, y), defined by

WalX) dp(¥)} = i%4(x, p) (2.6a)
for the nucleon field,
V() V()] =i2%(x, y) (2.6b)
for the vector field, and
Lo(x). d(p)] =i, (x, ») (2.6¢)

for the scalar field. For non-interacting fields the operators 4(x, y), @(x, y), and
&(x, y) are c-number functions, and [22]

gzﬁ(x’ y) = (lal;f’}Ju + M)a/i yM(x, y)’ (273.)

1
(5, ) = (£ 47 #4.02) 90 (27b)

A4
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where
. d4k - th{x —y) N 2 2
il y)= | g 23U =) O ko) — O ko))
3
=J. (2:)3k20) (7 — ettt e, (2.7¢)

with £ = (w, k) and o = (m>+k?)""%.

3. GREEN FUNCTIONS

The central role in our considerations is played by the contour Green functions
defined as

iGplx, ) = (T Pyl 3)) (3.1a)
for the nucleon field,
iD,(x,y) = (TV () VA3)) = VDV ) (3.1b)
for the vector field, and
P 4(x, 1) E (THx) $(1)D — (B(x))<P(¥) (3.1c)

for the scalar field; { --- ) denotes the ensemble average at time ¢, (usually iden-
tified with —oo); T is the time-ordering operation along the directed contour
shown in Fig. |. The parameter ¢,,, is shifted to +oc in the calculations. In (3.1)
the time arguments are complex with an infinitesimal positive or negative imaginary
part, which locates them on the upper or on the lower branch of the contour. The
ordering operation is defined as

def

TA(x) B(y) = O(xq, yo) A(x) B(y) + 6150, o) B(y) A(x),

where @(x,, y,) equals one if x, succeeds y, on the contour, and it equals zero
when x, precedes y,. The plus sign applies to bosonic operators 4 and B, while the
minus sign applies for fermionic ones. In the case of the bosonic Green functions,
the contributions from classical expectation values have been subtracted in order to
concentrate on the field fluctuations around the classical values.

X;f
¢

Fic. 1. The contour along the time axis used for the evaluation of operator expectation values.

-
T
f0

max



6 MROWCZYNSKI AND HEINZ

In addition to the functions (3.1), we use four other types of functions with real
time arguments;

iG(x, ¥) = (Pa(x) da(y)), (3.22)
iD7(x, ) S (V) V(1)) = V)<V, (3.2b)
i47 (x, 1) S (B(x) $(3)> — ()P, (3.2¢)
iG5(x y) S = (hy(2) ¥alx)), (3.3a)
iD5(x. 1) E V() Valx)> = V)V, (3.3b)
i4<(x, ) £ <P(3) $(x)) — <) Y1), (3.3¢)
iGSy(x 1) S CTYL) B a0, (3.4a)
D4, (x, ¥) £ CTV(x) V(1)) = <V x)D V00, (3.4b)

i4°0x, 1) S CT9(x) $(3)> — {B(x)D (H(3)), (34c)
iGey(x, ) E (T Y da(3), (3.52)
iD2 (%, ¥) Z (TV,(x) V(3)D = V)<V D (3.5b)

i4%(x, y) 2 (T9(x) $(3)) — <P 2P (3.5¢)

where 7° (T“) prescribes (anti-)chronological time ordering:
. def
T“A(x) B(y) = O(xq—y,) A(x) B(y) £ O(yo— xo) B(y) A(x),
def
T°A(x) B(y) = O(y,— xo) A(x) B(y) £ O(xo— yo) B(y) A(x).
Again the plus sign is for bosonic operators, and the minus sign for fermionic ones.

The functions (3.2)-(3.5) are related to the one defined by Egs. (3.1) in the
following manner:

A(x, y)=4d(x, y) for x4, yo from the upper branch, (3.6)
A%4x, y)=A(x, y) for x4, yo from the lower branch, (3.7)
47 (x,y)=A(x, y) for x, from the upper branch and
¥o from the lower one, (3.8)
4=(x, y)=4d(x, y) for x, from the lower branch and

¥, from the upper one. (3.9)

There are analogous relations for the nucleon and vector field Green functions.
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The four functions (3.6)-(3.9) are often summarized [24] by a 2 x2 matrix
representation 4, where i, j=1 corresponds to a time argument on the upper
branch, and i, /=2, to a time argument on the lower branch of the contour:

4, 4, (A“ a4~
A(x, y) = = .
() (Az. 4,,) " \a< a4

One further finds the identities, which we write down only for the scalar field
Green functions,

4(x, y)=O(xg—yo) 47 (x, y) + Oy — x0) 47 (x, y}, (3.10)

4%, p)=O(yo— x0) 47 (x, y) + O(xo— yo) 4=(x, y). (3.11)

One also easily proves that iG>(x, y)y°, iD;(x, y), and i4>(x, y} are hermitian
(e.g., (iD;(x,y))' =iD}(x,y)), and that

(iG°(x, y) y°) " =G (x, ¥) ¥", (3.12)

with similar relations for iDj(x,y) and i4°(x,y). Here t denotes hermitian

conjugation, i.e., complex conjugation with an exchange of the Green function

arguments and indices.
Because of the relations (2.6), there are also the identities

G7(x,y)—G=(x, y) =<{9(x, ¥)D, (3.13a)
D7 (x,y)—D=(x,y)=<Z(x, ¥)), (3.13b)
47(x, y) =47 (x y) = {L(x, »)) (3.13¢)

For the (real) scalar and vector fields the Green functions have the specific property

D;(x,y)=D;(y, x); (3.14a)
47 (x, y)=A4<(y, x). (3.14b)

Furthermore, (2.3} implies transversality of the vector field Green functions D<:

6;‘D‘ﬁ(x,y)=0=6;05(x,y)‘ (3.15)

Let us now discuss the physical content of these Green functions. The time-
ordered Green function G‘(x, y) describes the propagation of a disturbance in
which a single nucleon is added to the many-particle system at space-time point y
and is later removed at space-time point x. An antinucleon (hole) disturbance is
propagated backward in time. The meaning of G%(x, y) is analogous but nucleons
are propagated backward in time and antinucleons (holes) forward. In the zero
density limit G“(x, y) coincides with the nucleon Feynman propagator [22].



8 MROWCZYNSKI AND HEINZ

The physical interpretation of the functions G 2(x, y) becomes more transparent
when one considers their Wigner transforms:

GZ(X, p) défjd“ue”"“Gz(XwL%u,X—%u). (3.16)

One then finds that the baryon current (2.4) averaged over the ensemble can be
expressed as

Tr(y*G < (X, p)), (3.17)

d4
G =-[ 5k

where the trace is taken over spinor indices. Further, one can express the nucleon
contribution to the ensemble-averaged energy-momentum tensor (2.5) of non-inter-
acting fields as

H

(yiG = (X, p)). (3.18a)

v
Ty = - 22 G
From Eqgs. (3.17) and (3.18a) one sees that iG =(X, p) corresponds to the density of
nucleons and antinucleons with four-momentum p in a space-time point X, and
consequently, it is the quantum analog of the classical distribution function. This
interpretation is supported by the fact that iG<(X, p) is hermitian’; however, it is
not positive definite, and a probabilistic interpretation is only approximately valid.
One should also observe that, in contrast to the classical distribution functions,
iIG<(X,p) can be nonzero for off-shell four-momenta. The interpretation of
iIG” (X, p) is similar to that of iG <(X, p), since these functions differ only by the
field commutator, cf. Egs. (3.2) and (3.3). As will be shown in Section 10, the
positive energy part of iG=(X, p) corresponds to the nucleon distribution function,
while the positive energy part of iG” (X, p) corresponds to the nucleon distribution
function minus one. Further, the negative energy part of iG~ (X, p) provides the
antinucleon distribution function, and the negative energy part of iG~=(X, p)
provides the antinucleon distribution function minus one.

Let us also write down the vector and scalar field contributions to the energy-
momentum tensor (2.5) of noninteracting fields:

php ‘1D<"(Xp)+ VX)) 3" 3¢V, (X)>, (3.18b)

d4
reay= - 5k

, d*p < 1 = %
T (X)>=f 2n) prpid (X,P)‘Z (H(X)) " <P(X)). (3.18¢)

! The hermitian conjugation of 4(x, y) is defined as a complex conjugation of A with a transposition
of indices (a, b) and arguments (x, y). Consequently, the hermitian conjugation of the Wigner trans-
formed A_(X, p) demands the complex conjugation and the transposition of indices (g, ) (but no
change in the sign of p).
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After these preliminaries we are in a position to explain the objective of our
considerations. Starting from the Lagrange equations (2.2) we will derive equations
of motion for the Green functions G2, D3, and 4 2. These equations will then be
converted into transport equations for the distribution functions. Our goal will be
realized in several steps: First we write the exact equations for the contour Green
functions (3.1). These equations give us the equations for G2, D2, and 4%,
which are then subjected to a systematic expansion in gradients, i.e, assuming
quasihomogeneity of the system. The self-energies, which enter these equations, are
found by means of the so-called pairing approximation and the perturbative expan-
sion. We introduce the distribution functions which are defined only for on-shell
momenta. The distribution functions of nucleons and vector mesons are matrices in
spin space, and their structure is discussed in detail. Having the self-energies in an
explicit form, we finally write down a set of transport equations for the distribution
functions.

4. GrReeN FuNcTION EQUATIONS OF MOTION

From Egs. (2.2) and the definitions (3.1} one finds the equations of motion for
the contour Green functions:

([l'}' : a\' - M] G(x’ y))a[i = 5z[f (SM)(X, ,V)
+ | a(Ex ) G 1) (4.1a)
C
(G, [ =i, 7= M1)y=0,58"Ax, y)
+ [ d*(Gle, X) £ 9))ap (4.2a)
.
[0+ mi]1 D" (x, y)= (g‘“' + # o% ‘32) 0 (x, y)
—[ d*x P*,(x, X') D*(x', y), (4.1b)
C
1
(024 m2] D*(x, ¥) = (g 0l a_:) 59, 1)
—j d*x’ D*(x, x') P,"(x', y), (4.2b)
.

[22+m2] A(x, )= —0(x, y)+ [ d*x I(x, ¥) A(x, ), (41c)
C

[22+m2] Ax, )= =8 (x, y) + | d*¥ A(x, ) [I(x', ), (420)
. C
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where the integration over x; is performed along the contour. The function
8™(x, y) is defined on the contour as

3Mx —y) for x,, ¥, from the upper branch,
3x, y)=4<0 for x,, y, from the different branches,
—0"(x—y) for x,, v, from the lower branch.

The self-energies X'(x, x'), P(x, x'), and II(x, x’) are defined as
j( A%’ Z (3, X) G, 1) S+ g TWL(x) $(x) (1))
—igu i CTU,() V() Fy(2)), (43a)
J P, x) DV, 3) 2 ig (KT ox) Pigp6) V(3

= W) YW () >V (), (4.3b)

def

[ e x) 45, 3) E —ig (T Ylx) 630
— DDA BUD) (43¢)

Due to conservation of the nucleon current, the vector field self-energy must obey
the transversality conditions

@ P (x, y) =37 P"(x,y)=0.
Because the Green functions of the free fields satisfy the equations
([l'}) . ax - M] GO(x’ .V))a[i = 61[} (S'“(.’C, }'),
1
[02+m?2] D& (x,y)= (g‘” + 3 fide 6;) 5(x, y),

[33+mZ] do(x, y)= —3x, p),
one can rewrite Eqgs. (4.1) in symbolic operator notation as
G,'G=1+2G, GG, '=1+GZX,
D;'D=1-PD, DD;'=1—-DP
Ag'A=1—M4, 445 '=1—4IT
and recover the familiar form of the Dyson-Schwinger equations:
G=G,+ Gy 2G, (4.4a)
D=Dy,— D,PD, (4.4b)
A=4y,—A,114. (4.4c)
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Let us express the self-energies as
Z(x, y)=Zur (x) 8Ax, )+ Z7(x, ) O(x0, ¥o) + 2 <(x, ¥) O po, Xo), (4.5a)
P(x, ¥)=Pue(x) 39(x, ¥) + P7(x, ) O(xo, yo) + P=(x, y) O(yo, Xo), (4.5b)
(x, y)= My e (x) 6'x, y)+ T 7 (x, ) Olxg, o) + 1T <(x, 3) O( ¥y, X;). (4.5¢)

As we shall see later, Xyg, Pyg, and /Ty describe mean-field effects while X<,
PZ, and 172 give rise to the collision terms in the transport equations. Therefore,
we call X yr, Pur, and 1Ty, the mean-field self-energies and 22, P2, and 7 %, the
collisional self-energies.

It is also convenient to introduce the retarded (+) and advanced (—) Green
functions,

G*(x,7) E +(G(x,y)— G=(x, 1)) O(£ X, F yo): (4.6a)
D(x,y) E £(D>(x,y)— D=(x, ) O(£ X0 F yo), (4.6b)
A4 (1) S £(47(x, y) = 4<(x, ¥)) O(£x0F o), (4.6¢)

and the retarded and advanced self-energies £*, P, and /7% in an analogous way.
With their help Eqgs. (4.1) and (4.2) give

(["}' . ax— M—ZMF(x)] Gz(xs y))ozﬁ
= f d*x(Z2(x, x)VG (X, )+ Z7(x, X)) G2(X', ¥))up, (4.7a)

(G2(x, p)[—id, 7y — M~ Zye(3)Dap
= J d*x'(G3(x, x) X (x,y)+ Gt (x,x) Z2(x', Yap (4.8a)

([O2+m+ Pyp(x)] D3 (x, y))*”
= -j d*'(PE(x, x') D~ (x', )+ P*(x, x') DZ(x, y))*,  (4.7b)

(D2 (x, p)[0} +m}+ Pur(¥) D™

= — [ @*¥(D(x, ') P(x, y) + D*(x, x') PE(X', )™, (48b)
[0 +ml— Myp(x)]1 43(x, p)

= j AU [ITR(x, x') 47 (X', p) + T (x, ¥') 42(x', »)], (4.7¢)
[0} +m2—Mye (1)) 43(x, y)

- j dXTAZ(x, XYV~ (X, p) + 4% (x, x') TE(X, )], (4.8¢)

where all time integrations run from —oc to + co.
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Let us also write the equations satisfied by the functions G*, D*, and 4%, which
we will need in Section 10,

([iy- 0= M = Zne ()] G=(x, 1))

= 3,50 (x ~y) + f A (E*(x, ') G (X', ). (4.9a)
(G*(x, Y[ —i0, 7= M= Zpp(¥)Dap

=8, 0@ =)+ [ d*V(GH(x, X') T, 7)) (4.10a)
(L% +m}+ Pyp(x)] D*(x, y))*

1
= (g““ +— " 6:.) §W(x—y) —f d*X'(PE(x, x') D*(x', v))*, (4.9b)
¥

2
(]

(D*(x, IO+ m2+ Py () )™

1
= (g t ot a:'.) §9(x—y)— [ d*¥(D*(x, x) P*(x, 1)), (4.10b)

v

(o2 +ml—Myr(x)] 4% (x, )

— 6 W(x—y) +f d*x T (x, x') 41 (X, ), (4.9¢)
(324 m] —Mye(y)] 4% (x, y)

= 6=y + [ dx A% (x x) T (Y, p) (4.10¢)

While in Eqgs. (4.7), (4.8) a coupling between the > and < Green functions is
obvious, Egs. (4.9), (4.10) for the retarded and advanced functions appear to close
among themselves. Indeed, it was shown in [25] that the retarded self-energies can
be expressed in terms of retarded propagators only, so that this superficial

appearance is also proved in detail.
It should be stressed that Eqgs. (4.7)-(4.10) are exact, and all of them together are

equivalent to the field equations of motion.

5. TOWARDS TRANSPORT EQUATIONS

The transport equations are derived under the assumption that the Green func-
tions and the self-energies depend only weakly on the sum of their arguments and
that they are significantly different from zero only when the difference of their
arguments is close to zero. To express these properties it is convenient to define a
new set of variables as

AX,u)=A(X+1u, X—5u).
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For homogeneous systems, translational invariance dictates that the dependence on
X = (x+ y)/2 drops out entirely, and A(x, y) depends only on u = x— y. For weakly
inhomogeneous, or quasihomogeneous systems, the Green functions and self-
energies are assumed to vary slowly with X. We additionally assume that the Green
functions and self-energies are strongly peaked near v =0. With these assumptions,
which are discussed in Section 12, where we analyse the whole procedure of
deriving kinetic equations, one can, in particular, approximate A(X + u, u) as

¢
MX+ u, u)= A(X, u)+u“mA(X, u). (5.1)
We will now convert Eqgs. (4.7), (4.8) into transport equations by implementing
the above approximation and performing the Wigner transformation (3.16) for all
Green functions and self-energies. This is done using the following set of translation
rules which can be easily derived:

jd“x' (x, x') g(x', ) — f(X, p) g(X, p)

i [0f(X.p) dg(X,p) (X p) 5g‘X’P)], (52)

2L o,  ox” ax*  op,
| Oh(X) dg(X,
h(x) g(x, y)— h(X) g(X, p) =3 7;—’ %—pﬂ (53)
| 0h(X) Og(X,
H(») gl ) — HX) g(X, p) +5 3;—} %—”3 (5.4)
2% f(x. y)— (—ip" + 10") (X, p), (5.5)
ouf(x, y)— (ip* + 3 0) f(X, p). (5.6)

Here X =(x+y)/2, 0*=48/0X,, and the functions f(x, y) and g(x, y) satisfy the
assumptions discussed above.
Applying the formulae (5.2)-(5.6) to Egs. (4.7), (4.8), we obtain

(l:(p” +:,’2.-5u) =M —2ye(X) +%5MZMF(X) 5,‘,‘:' G2(X, p))aﬂ

= (Z2X.p) G (X, p)+ 4 (X, ) G2 (X, Py (572)
(6= xn [ (ra=52) =M= Eue01= 5822, Zue) )

= (GF(X,p) £ (X.p)+ G (X, p) EZ(X, P (582)
([l & —ip*d,—p*+ml+ PMF(X)~%5‘,PMF(X) 6;} DZ(X, p))*e

4
= —(P2(X,p) D (X,p)+ P* (X, p) D2(X, p))*, (5.7b)
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. T n
(D20 |58+ 8= p* i+ P (04580, P ])

= —(D¥(X,p) P (X.p)+D*(X,p) P*(X, p))", (58b)
LU , ,- .
3000, = e ()45 0, e () 0 | 43X p)

=IT%(X,p) 47 (X, p)+ T * (X, p) 4%(X, p), (5.7¢)

1 .
S 0 = e (¥) =3 0, e () 2 | 4% (K, p)

=A2(X,p) (X, p)+ 4% (X, p) T2(X, p). (5.8¢)

On the right-hand sides of Egs. (5.7), (5.8) we have neglected gradient terms like
those from Eq. (5.2). This approximation is discussed in Section 12,

Due to Eq.(3.15), the vector field Green functions DZ(X, p) satisfy the
conditions

(30" —ip") DE(X, p)=0=(30"+ip") D (X, p). (5.9)

There are also analogous transversality conditions for the vector field self-energies.
Let us now take the sum and the difference of Eqs. (5.7) and (5.8). Then, one
obtains

> i " = z
[puy“v G<(X’ P)] +§ {},ls (7“G<(X, p)} - [ZMF(X)’ G<(X,P)]
+5 {0, Zur(X), 4G (X, p))

=17(X,p)G=(X,p)—27(X,p) G~ (X, p)
+[Z2(X, p), G (X, p)]1+ [ (X, p), GR(X, p)], (5.10a)

(P =M, G2(X, p)} +3 [". 0,G2(X. p)] ~ {Ewr (X), G (X, )}

i >
+3 [0, Emr(X), 6,G=(X, p)]

=Z3(X,p)G (X, p)+ 2" (X,p)G(X, p)
+G2(X,p)E (X, p)+G*(X,p) T2(X, p), (5.11a)

> 2 i I
—2lpy 8;1D<(X,[’)+ [PMF(X)a D<(X9p)]_§ {avPMF(X)a @pD<(X,P)}

=—P7(X,p) D=(X,p)+ P=(X, p) D7 (X, p)
—[P2(X.p), D™ (X, p)1—[P (X,p), DX(X, p)], (5.10b)
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2(30%=p*+m2) DX, p) + {Pur(X), D(X.p))

i 2
3 [0, Pur(X), 0,D=(X, p}]

= —P2(X,p) D™ (X,p)— P*(X,p) DX(X, p)

—D2(X,p) P (X,p)—D*(X,p) PZ(X,p), (5.11b)
—2i(p* 3, — 38, /T\ue(X) 85) A2(X, p)
=17 (X,p)4=(X, p)+ 17 (X, p) 47 (X, p), (5.10c)

2(; 0 ~p*+m — (X)) 42(X, p)
=H2(X, p)(4* (X, p)+ 47 (X, p))
+(T(X,p)+ (X, p)) 42 (X, p). (5.11¢)
We have used the fact following from the definition (4.6) that all Green functions
and self-energies satisfy identities of the form
AT(X,p)—A (X, p)=A47(X,p)— A~(X, p). (5.12)

For the scalar field, one observes that Eq.(5.10c) has already the form of a
transport equation, with Eq. (5.11¢) being the associated mass shell constraint
(see, e.g., [26]). The equations for the fermion and vector fields demand further
analysis.

The retarded and advanced Green functions and self-energies (4.6) can be written
as

1
Y°G* (X, p)= +3 (°G> (X, p) —¥y°G=(X, p))

OG>(X9 wla P\_VOG<(X’ w” p)
w—a'

1 .7
+En—iPde , (5.13)

and analogous formulae for 2*, D*, and P*. It will be further shown that the first
term on the r.h.s. of Eq. (5.13) corresponds to the on-mass-shell part of the retarded
(advanced) Green function (self-energy), while the second one describes the off-shell
part.

Using Eq. (5.13), Egs. (5.10a) and (5.10b) can be manipulated to the form

i > ] 2
7 % 0,G=(X, p)} +5 19, Zme(X), 0,G=(X, p)}

+ [P,y X, p)1 = [Zue(X), G2(X, p) ]
1

1
{E>(X,P)’ G<(X’P)} _5 {Z<(Xsp)3 G>(va)}

2
+[Z3(X,p), GH(X, p) 1+ [2Z(X,p), G2(X, p)], (5.14a)

595/229/1-2
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=3 ! v z =3
_21p“ 6[1D<(Xa p)_z {a\’PMF(X)a 6PD<(X, P)} + [PMF(X)s D<(X, P)]

1 1
=3 {P>(X,p), D=(X,p)} +5 1P (X, p), D> (X,p)}

—[P3(X,p), D}(X, p)]— [P (X, p), DZ(X,p)]. (5.14b)

The functions with the index R correspond to the second term on the right-hand
side of Eq.(5.13), i.e,, to the off-mass-shell parts of the Green functions or self-
energies, respectively.

Equations (5.10c), (5.14a), and (5.14b) are the main result of this section. After
further preparations in the following section, they will be converted into standard
transport equations in Section 11.

6. NONINTERACTING FIELDS

It is instructive to first consider non-interacting fields. Then, Eqgs. (5.7) and (5.8)
reduce to

[(p,&%a,,) v*‘—M]G%(X,p)=0, (6.1a)
2 [« 4
G<(X9p)[(pu—_iau)y‘_M}ZO’ (628)
[50°—ip*0,—p*+ml] D3(X, p)=0, (6.1b)
[30°+ip*e,—p*+ml]1 D2(X, p)=0, (6.2b)
[30°—ip"d,—p*+m]]143(X, p)=0, (6.1c)
[§0°+ip*0,—p>+ml] A3(X, p)=0. (6.2¢)

To simplify the notation we avoid the index zero, which has been previously used
to specify Green functions of non-interacting fields. We hope that this will not cause
confusion.

To obtain the nucleon transport equation for the free fields one can use a trick,
which unfortunately does not work in general. Specifically, Eq. (6.1a) is multiplied
by [(p,+(i/2)3,) y*+ M] from the left, and Eq. (6.2a) by [(p,—(i/2)3,) y"+ M ]
from the right. Thus, one obtains

; 2
[(pﬁé@) —Mz]G%(X,p)zo, (6.1d)

: 2
[(pu—éa,,) —MZ]G%(X,p)=0. (6.2d)
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Subtracting and adding Egs. (6.2d), (6.2b), (6.2c) and Egs. (6.1d), (6.1b), (6.1c),
respectively, we find

pr9,G2(X, p)=0, (6.3)
(107 —p*+ M?JG3(X, p)=0, (6.4)

plus two identical sets of equations for D% and 4% , with M replaced by the
appropriate meson masses.’

Equation (6.3) and its analogues for meson fields are identified with the classical
relativistic kinetic equations (see, e.g., [26]) in the absence of mean-field and colli-
sion terms. However, due to Eq. (6.4), the Green functions G2, D2, and 42 can
be different from zero also for off-shell four-momenta. Since kinetic theory deals
only with averaged system characteristics which are homogeneous on a scale of the
Compton wave length of the individual particles (which is of the order of their
inverse mass), we formally impose the condition

|G (X, p)| >

! >
—A?626<(X,p)|, (6.5)

and similar conditions for D% and A%. Let us observe that the condition of
quasihomogeneity of the Green functions, on the one hand, limits the class of
systems which can be described by means of transport theory, but, on the other
hand, limits the amount of information provided by this theory. This condition is
further discussed in Section 12. Upon introducing these requirements into (6.4), we
obtain

[p*—M*1G*(X,p)=0, (6.6)

plus analogous mass-shell equations for D2 and 4 2. One sees that the condition
(6.5) renders the off-shell contributions to the Green functions G%, D%, and 42
negligible.

Let us also discuss the equations for the (anti-)chronological Green functions
G, D and 4. For noninteracting fields, the analogues of (6.3), (6.4) for the
time-ordered functions are

P"0,G(X, p)=0, (6.7a)

(87 =p*+ M*]G(X,p)=p"y,— M, (6.8a)
"3, D*(X, p) =0, (6.7b)

[‘1‘ aZ—p2+m3] Dj;\,(X,p)=gm,—E";1—’%", (6.8b)
pd,4°(X, p) =0, (6.7¢)

(10— p?+m2] 49X, p)= —1. (6.8¢)

2 Please note that for free fields Eqs. (6.3) and (6.4) can be obtained from the Lagrange equations
without making use of the approximations discussed at the beginning of Section 5.
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For the antichronological functions G“, D“ and 4 the right hand sides differ only
by a minus sign.

Imposing the conditions of quasihomogeneity, the solutions of Eqgs. (6.7), (6.8)
can be written as

. Py, — M > <
¢ P it @ — X .
G(X, p) Ny e T (=po) G (X, p)+ O(py) G (X, p), (6.9a)
_ “ ‘+M > <<
GUX, p)=——5—7 py,z - ++@(p0)(3' (X, p)+O(—py) G=(X, p), (6.10a)
p-—M-—i0
. - v+ v/ms > <
D (X, p)=—S0 T Puls Ty | (b D>(X, p)+ O(po) D= (X, p). (6.9b)
p —mi+i0
AV‘ A ms > <<
D3, (X, p) =S Le LI 4 () D (X p) + () D (X, ), (6.10b)
¢ — I _ > A= .
—1
A”(X,P)=m+9(+Po)A>(X,P)+9(~Po)A<(X,P), (6.10c)

where the free functions G2, D=, and 4 satisfy Eqs. (6.3) and (6.6), i.e., exist only
on-shell. The solutions (6.9) possess the initial conditions [22] of the standard
Feynman propagator, and (6.9), (6.10) satisfy the general relations (3.10)-(3.12).
From the solutions (6.9), (6.10) one also finds

Py, —M

GX, p)=5""45——,
(X.7) pr—M*+ip,0*

(6.11a)

— 8+ PP, /M
D,i(X,P):m, (6.11b)

1

A%(X, p)=———5——,
K = g0

(6.11c)

by using the identities
A4 (X, p)+ A7 (X, p)=4(X, p)— 4°(X, p), (6.12)
AT (X, p)—4" (X, p)=47 (X, p)— A= (X, p), (6.13)

and their analogues for the nucleon and vector field Green functions. These
relations follow directly from the definitions (4.6) and are exact also for interacting
fields. Let us remember that in the case of noninteracting fields, G> — G <,
D> — D=, and 4> — A< are given by the functions (2.7).
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7. THE PAIRING APPROXIMATION

In this section we discuss a specific approximation which allows to obtain the
nucleon transport equations in the presence of interactions using a method quite
similar to that applied to non-interacting fields. Unfortunately, the resulting
equations reproduce only the mean-field limit and do not yield any collision terms.

Let us return to Egs. (4.3) defining the self-energies and assume that the expecta-
tion values of the field operator products can be factorized into expectation values
of products of at most two operators. Then

T (%) $X) P (1)) = () DT x) P 3)D (7.1a)
and
(TP () V() (1)) = V)T (x) daly)) . (7.1b)

Consequently (cf. Eq. (4.3)),
L dix'E(x, X') G(x', y) = (—g{ X)) + g,V (x)D 3*) Glx, ),
fd&?qumehw,
C

j dix' H(x, x') 4(x', y)=0.
C

Therefore,
Z(x, y) = (— g B(x) ) + g,V (%)) 1) 6D x, p),
P(x,y)=0,
H(x,y)=0.

Comparing with Egs. (4.5), we see that the approximation (7.1} provides a nonzero
mean-field part only for the nucleon self-energy,

ZMF(X)= _gs<¢(x)>+gv<Vu(x)>y#’ (72)

with all the other self-energies vanishing. One sees that in the framework of the
pairing approximation, the vector and scalar mesons behave as free particles. So, let
us concentrate on nucleons. Substituting the self-energy (7.2) into Egs. (5.7a) and
(5.8a), we obtain

(P40 haD 45 007N 23)

i

—M+g X)) —5

g, 3,((X)> ag] G2 (X, p)=0, (1.3)
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62| (P =3 =8 V0D = 52,808,005 )

—M+gs<¢(X)>+%gs d, 5,,<¢(X)>]=0- (7.4)

As always in the context of interactions with an (electromagnetic) vector field [27],
it 1s more convenient to work with the kinetic rather than the canonical momen-
tum. For the Walecka model it is achieved via the replacement [9]

propt—g (VX))
Then,
-0t —g, 0"V (X)) 2.

After these changes, Eqs. (7.3) and (7.4) are
[(p,‘ 4 20,5 8. CFX) 6;;) 1~ MA(X)
~i3 80,4000 27 | G2 p) =0, (7.5)
G ()| (P85 £ B CFuXD ) 7

—M*(X)+%g>@“ f’,‘<¢(X)>] (7.6)

ignoring terms of third and fourth order in the gradients. We have introduced the
effective mass

M*(X)=M—g,{4(X)).
Now we apply a similar trick as in Eqgs. (6.1a), (6.2a): we multiply Eq. (7.5) from
the left by

[(p,. +30,m 5 CEM0) 83 ) 7"+ M0+ £, 0,0UX) a;;],

and Eq. (7.6) from the right by the complex conjugate of this expression. As a result
we obtain

— 10 4 ipt 0, 4+ p? — ig P (F (X)) 05— M**(X) — ig, M*(X) 8,{$(X) ) 8%

—ig, 0,(P(X)> 1* — ig (Fu( X)) 77" 1 GZ(X, p) =0, (7.7)
G2(X,p)[— 302 —ip" 0, +p* +ig, p*<F,(X)) T, — M**(X)

—ig, M (X) 3,{(X)> 0% +ig, 0,{#(X)> 7"+ ig CF,(X)) 17°]1=0, (7.8)
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again ignoring terms of third and fourth order in gradients and using the identity
(A.7"+ B)NA " —B)=A, A"~ B*—[A,, B] 7"+ [A,, 4,1 7*7".
Subtracting and adding Eqs. (7.7) and (7.8), one finds

(p"0,— g p"<F.(X)) 8, g M*(X)3,($(X)) 0,1 G(X, p)

= —18.0,{8X)>{y", G2(X, p)} ~ 1 g AF (XD {Yy G2 (X, p)}, (79)
[~50°+p°—M*(X)]G2(X, p)

=ig,0,{¢(X)>[y", G2(X, p)] + ig CF,(X)>[»"7", G2(X, p}]. (7.10)

To close the set of Eqgs. (7.9), (7.10), the classical fields (¥, (x)> and (#(X}))
should be self-consistently generated from the nucleon currents. Using Eqgs. (2.2b),
(2.2¢c), and (3.3a) one finds

[+ m2 )<V (x)> = —ig, Tr(y,G=(x, X)), (7.11a)
[0 +ml]{$(x)> = —ig, Tr G<(x, x). (7.11b)

Assuming that in the case of vanishing nucleon currents the mean fields vanish as
well, these equations are solved by

Vx)> = —ig, j d*x' D(x, X') Tr(y"G = (x', x')), (7.12a)

{P(x)> =g, I d*x 4% (x, x) Tr G<{x', X'), (7.12b)

where the retarded Green functions D* and 4" are given by Egs. (6.11b), (6.11¢).
Equations (7.9), (7.10), together with Eqgs. (7.12), form the set of kinetic equations
for the nucleon Green function in the mean field limit.

8. PERTURBATIVE APPROACH TO THE MEAN FIELD

As discussed in, e.g., [28, 29] (see also [30]) the contour Green functions admit
a perturbative expansion very similar to that known from vacuum QFT [22] with
essentially the same Feynman rules. However, the time integrations do not run
from —oc to + oo, but along the contour shown in Fig. . The right turning point
of the contour (¢,,,) must be above the largest time argument of the evaluated
Green function. In practice, ¢, is shifted to —o and ¢, to +co. The second
difference to vacuum QFT is the appearance of tadpoles, i.e., loops formed by single
lines. These give zero contribution in vacuum QFT due to the normal ordering of
operators in the lagrangian. A tadpole corresponds to a Green function with two
equal space-time arguments. However, the Green function G(x, y) is not well
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defined for x=y, and a prescription is needed for how to perform this limit. We
ascribe the function —iG <(x, x) to each tadpole.

It follows from Egs. (6.6) that for noninteracting fields the functions G2(X, p),
D=(X, p), and 42(X, p) are nonzero only for on-shell four-momenta. In the case
of interacting fields this is no longer true, in general. However, one expects that it
is approximately true as long as the perturbative expansion is justified. Then,
calculating the self-energies we are interested in their values only for on-shell
momenta. As we will see below this circumstance essentially simplifies the
calculations. Again, this approximation and the complications which would arise
from giving it up will be further discussed in Section 12.

In this section we consider the lowest-order contributions to the self-energies,
performing a perturbative expansion in the coupling constant. As we will see, these
contributions correspond to the mean field effects discussed in Section 7. The Green
functions which enter into the Feynman diagrams correspond, as usual, to the non-
interacting fields. To simplify the notation we omit, as previously, the index “0.”

In the case of the nucleon field the lowest-order contributions to self-energy,
represented by the graphs shown in Fig. 2a and Fig. 2b, respectively, are

—iZ(x, )= —(—ig,)? 0¥ (x—y) y* f d*x'iD,(x, x') Tr(y"iG=(x', x")),  (8.1a)
(‘
—iX, (X, y)=—(—ig,)? 8 (x—y) f d*x’ id(x, x') TriG=(x', x'). (8.1b)
c

The exchange or Fock graphs from Fig 2¢c and Fig 2d correspond to,
respectively,

—iZ(x, )= (—ig,)* 1"i D, (x, ») yiG(x, y), (8.1¢c)
—iZ(x, y) = (—ig,)* id(x, y) iG(x, y). (8.1d)

C d _
N S

FiG. 2. The lowest-order diagrams for the nucleon self-energy. Solid lines correspond to nucleons,
wavy lines to vector mesons, and dashed lines to scalar mesons.
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w@

FiG. 3. The lowest-order diagram for the self-energy of the vector field.

Comparing Egs. (8.1) with Eq. (4.5a), one finds that the contributions (8.1a) and
(8.1b) give the mean-field self-energy, while those of (8.1c) and (8.1d) give the
collisional self-energy as

Zurx)= —ig2y* [ dx D,u(x, ) TG = (¥, X))
.

—ig? L d*x A(x, x') Tr G=<(x', x'), (8.2)

Z2(x,y)=igiy*DR(x, ¥} y'G2(x, y) +igl A3 (x, y) G2(x, p). (8.3)

One notes that the self-energy (8.3) vanishes if the functions G2, D2, and 42 are
nonzero only on the mass shell, because this contribution corresponds to the
nucleon decay into a nucleon and a meson, i.e.,, N - N + M, which is forbidden due
to energy-momentum conservation.’ We will return to this point in Section 12. An
elaborate discussion of the Fock diagram is given in [31].

Let us further discuss the mean-field self-energy (8.2). Locating the argument x
on the upper branch of the contour, one finds

Zyurlx)= —igh"‘fd“X’(D" (x, x") =D (x, x)) Tr(y"G = (x', x'))

ny MY
—ig? J dx'(A°(x, X' )~ 47 (x, X')) Tt G=<(x', x'), (8.4)

where the time integration runs from —oo to +oo. One proves that an equivalent
result is obtained if the argument x is located on the lower branch.

Using Eqgs. (6.9), (6.11), (3.13), and (2.7) one shows that 4°— 4> =4" and,
consequently, Eq. (8.4) reduces to

Zur(x)= —ighy* [ d'x D}(x, ¥) Tr("G =(x', x'))

_ igfjd“x' A% (x, ') TrG=(x’, X'). (8.5)

3The decay N —+ N + M is allowed if the four-momentum of the meson is space-like. If in the medium
mesons with space-like momenta can propagate, this process can give rise to Cherenkov radiation. For
massive mesons this requires a very strong modification of the dispersion relation (|m* — m| > m) which
would be hard to reconcile with the perturbative approach taken here.
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__O__

FiG. 4. The lowest-order diagram for the self-energy of the scalar field.

In the case of the meson field there are no self-energy graphs analogous to those
in Figs. 2a, b, which are proportional to §'*!(x—y). Therefore, the mean-field
contributions to the meson self-energies vanish. The lowest-order contributions to
the collisional self-energies P2 and IT2 correspond to the graphs shown in Figs. 3
and 4. Arguments analogous to those used in the discussion of Eq. (8.3) lead us to
the conclusion that these contributions vanish due to the mass-shell constraints,

Comparing Eq. (8.5) to Egs. (7.2) and (7.12), we conclude that the lowest-order
perturbative calculations exactly reproduce the results found in the pairing
approximation in Section 7.

9. HIGHER ORDER SELF ENERGIES

In this section we go to the next order in the perturbative expansion. This will
produce the lowest-order nonvanishing contributions to the collisional self energies.
The fourth-order contributions to the self-energies are represented by the
diagrams shown in Figs. 5 and 6. (One should remember that the self-energies

S 3
T
P -

FiG. 5. The fourth-order diagrams for the nucleon self-energy. The zig-zag lines correspond to the
sum of vector and scalar field contributions.
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a %? b
C

e

F1G6. 6. The fourth-order diagrams for the self-energies of the meson fields.

defined as Egs. (4.4) relate only to one-particle-irreducible diagrams.) Zig-zag lines
correspond to the sum of scalar and vector Green functions. In nonhomogeneous
systems there can occur a scalar-vector mixing due to the longitudinal component
of the vector field [32]. The point is that, in general, p“D (X, p) #0 (cf. Eq. (5.9)).
The graph from Fig. Sa yields a contribution which only renormalizes [33] the
mean-field self-energy given by Eq.(8.5), and we will not discuss it here. The
remaining diagrams from Figs. 5 and 6, contributing to the collisional self-energy,
demand a more careful analysis.

Up to now we have always calculated the contour self-energy, and then extracted
the mean-field and collisional self-energies from the definition (4.5). In the case of
more complicated diagrams the latter step is algebraically quite complicated. There-

! |
f
. |
FiG. 7. The contributions to the nucleon collisional self energies corresponding to the graph in
Fig. Sc.
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FiG. 8. The contributions to the nucleon collisional self-energies corresponding to the graph in
Fig. 5d.

fore it is better to calculate the collisional self-energies directly by means of the
following graphical method [28].

We draw a line dividing the plane into two parts, left and right, which will
correspond to the two time branches, the left part to the chronological (upper)
branch and the right part to the antichronological (lower) branch. Then we draw
all topologically distinct diagrams locating the interaction vertices on both half-
planes in all possible ways. For example, calculating the self-energy 2 (x, y)
related to the diagram from Fig. 5c we place the x point in the left half-plane and
the y point in the right one. The remaining two vertices can be placed in four
possible ways as shown in Fig. 7. By virtue of the relations (3.6)-(3.9) the lines in
the diagrams are identified with the functions having the indices ¢, a4, >, and <,
according to the following rules:

1. When both end points are on the left (right) side of the plane, the line
corresponds to the function with the index ¢ (a).

2. When the start point is in the left (right) side of the plane and the end
point is in the right (left) part, the line relates to the function with the index >
(<)*

The vertex positions are integrated over with the time integration running from
—oo to +oo. However, each integration corresponding to a vertex placed on the
antichronological (right) half-plane is associated with a factor —1.

4 For meson lines which do not have an orientation, the two possible assignments of start and end
points yield equivalent results, due to the symmetry D (X, p)= D (X, —p) (cf. (3.14)).
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FiG. 9. The contributions to the nucleon collisional self-energies corresponding to the graph in
Fig. Se.

Because the self-energies are calculated for on-shell momenta and the Green
functions with indices > and < are assumed to satisfy the mass-shell constraints
(6.6), the method allows immediately to exclude those diagrams which give zero
contribution due to energy-momentum conservation.

Now we can return to the analysis of the diagrams from Figs. 5 and 6. The
contributions from Fig. 5¢ to the self-energy X2 are shown in Fig. 7. One finds that
each of them vanishes since the four-momenta of the lines crossing the plane
division must always stay off-shell by kinematical reasons, but the Green
functions assigned to them, according to the second rule given above, contribute
only on-shell.

C

‘

FiG. 10. The contributions to the nucleon collisional self-energies corresponding to the graph in
Fig. 5.
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FiG. 11. The contributions to the collisional self-energies of the meson fields originating from the
graph in Fig. 6a.

|
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The contributions to the self-energy X = related to the graphs from Figs. 5d-f are
shown in Figs. 8-10, respectively. We immediately find that among the 12 graphs
only four (Figs. 8a, 9a, 10a, and 10d) give a nonzero contribution. The contribu-
tions from Fig. 6 to the self-energies P2 and /72 are shown in Figs. 11-13. Since
in Fig. 11 all lines crossing the plane carry again off-shell four-momenta, none of
these diagrams contributes. Nonzero contributions come from the graphs 12a, 12b,
and 13a. We do not write down the very lengthy explicit expressions corresponding
to these diagrams, since this is easily done using the standard Feynman rules [22]
supplemented by those presented above.
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FiG. 12. The contributions to the collisional self-energies of the meson fields originating from the
graph in Fig. 6b.
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F1G. 13.  The contributions to the collisional self-energies of the meson fields originating from to the
graph in Fig. 6c.

It is interesting to note that if the meson exchange is replaced by an instan-
taneous interaction (as in non-relativistic nuclear physics), of all the diagrams in
Figs. 7-13 only those in Figs. 8a and 10d survive. They correspond to nucleon-
nucleon and nucleon-antinucleon scattering as shown in Figs. 14a, b. The other
non-vanishing contributions from Figs. 9a, 10a, 10d, 12a, b, and 13a disappear in
this limit because they correspond to the Compton-scattering diagrams, Fig. 14c,
and require propagating meson fields (real mesons) which do not exist in the non-
relativistic limit. This shows that a simple extrapolation from the non-relativistic
case [20] yields the correct result as long as the meson fields of the Walecka model

I MR

|
|

AAAAAAAA

?

LA

FiG. 14. The diagrams describing the lowest-order nucleon-nucleon (a), nucleon-antinucleon {b),
and nucleon—-meson (c) scattering processes.
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are only taken into account as classical fields. However, as seen in our derivation,
all this holds true only if the propagators crossing the dashed line are assumed to
vanish off-shell. Any modification at this point will immediately cause many more
diagrams which contribute to the collisional self-energies.

The perturbative expansion of the contour Green functions, as most perturbative
expansions in field theory, suffers from the appearance of infinities. The specific
divergences are due to the tadpole diagrams. We briefly discuss them in Section 10,
where the distribution functions are introduced. Their renormalization is based on
the physical argument that the tadpole contributions should vanish in the vacuum
limit; i.e., in a vacuum these contributions should be compensated by counterterms.
Other than tadpole divergences have not appeared explicitly in our considerations
due to our practical attitude to the problem: The mean-field divergent diagram
from Fig. 5a, which (as discussed in [33]) only renormalizes the lower order
contribution, has not been studied here. The contributions from the remaining
graphs in Figs.5 and 6 are finite because we have imposed the mass-shell
constraints. They will be discussed more explicitly in Section 12.

10. DiSTRIBUTION FUNCTIONS

Our first goal in this section is to determine the particle dispersion relations in
g” order of the perturbative expansion and zeroth order of the gradient one. Thus,
all terms proportional to g* or gradients are neglected. In this limit the collisional
self-energies (those with indices < and > ) are, as discussed in Section 9, zero at the
mass-shell of non-interacting or weakly interacting fields. Thus, Egs. (5.7) and (5.8)
read

[Pu" =M = Zyp(X)— 2 (X, p)] GX(X, p) =0, (10.1a)
G2(X, p)Lpy" — M —Epe(X)— 27 (X, p)] =0, (10.2a)
[—p*+m+ Pue(X)+ P*(X,p)1 D3(X, p) =0, (10.1b)
DX, p)[—p* +m2+ Pyp(X)+ P~ (X, p)]=0, (10.2b)
[=p*+m]— Mye(X)—1T* (X, p)] 4%(X, p) =0, (10.1¢)
[—p*+m]—Mue(X)~ 1T (X,p)] 43(X, p)=0. (10.2¢)

For the collisional self-energies, which vanish at the mass-shell, Eq. (5.12) tells us
that the retarded (+ ) and advanced (— ) self-energies are equal to each other at the
mass-shell. Furthermore, Eq. (5.13) implies

A>(X’ w,a p)_A<(X’ wl, P)
w—o

1
A*’(X,p)+A”(X,p)=EPfdw‘ . (103)

for any of the self-energies (A =2, P, IT). We see that the vanishing of the
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collisional self-energies at the mass-shell causes 41 (X, p)=4 (X, p) to be small
there since the function under the integral (10.3) is zero for ' which is close to w.
Thus, the retarded or advanced self-energies are neglected in (10.1), (10.2).

Equations (10.1), (10.2) provide the dispersion relations for quasi-particles and
quasi-antiparticles, including mean-field effects. From (7.2) we know that the
nucleon self-energy in the mean-field limit has the spinor structure

Smp(X)=2,(X) +7,27(X) (104)
The analogous formula for the vector field self-energy is

Plir) = (£ =25 ) POY) (105)

Actually, the self-energy (10.5) vanishes exactly in the mean-field limit, and we keep
it only for methodological reasons.
The dispersion relations thus read

det[y,(p" — 20(X)) -~ (M+ Z(X))]=0, (10.6a)
det[(—p2+m3+P(X))g“"~p,:};v P(X)]=0, (10.6b)
—p*+m}— My (X, p)=0. (10.6¢)

For the nucleons, it is again convenient to introduce the kinetic momentum
pr=p"—ZUX), (10.7)

in terms of which the nucleon dispersion relation reads

det[1,p*" — M*(X)]=0, (10.8)
where the effective mass is given by
M*(X)=M+Z (X). (10.9a)
Defining also effective vector and scalar meson masses by
m*2(X)=m?2+ P(X), (10.9b)
m#*(X)=m? — Myp(X), (10.5¢)

and evaluating the determinant of the matrix (y,p**— M*(X)) according to
Appendix 1, we obtain

(p*2 — M*2)2 =0, (10.10a)
(PP —m*?)? (p*—-m?) =0, (10.10b)
pl—-m*?=0. (10.10¢)

595:229/1-3



32 MROWCZYNSKI AND HEINZ

In each case we find pairs of solutions with positive and negative frequencies, which
we assign to particles and antiparticles, respectively,

pE=tw,.= 1 /p*+ M* (10.11a)

We distinguish between the frequencies w,., which satisfy “usual” mass-shell
constraints ). =p*’+ M*?, and energies E,=./p*’+M**+Z2), —E, =
—\/p*2+M*2+EE. While the frequencies are much more convenient to work
with, and in particular their sign serves to uniquely separate particles from antipar-
ticles, the physical energy of the total system is more directly given in terms of
energies, which contain the influence of the vector repulsion. This will be discussed
in connection with the energy-momentum tensor at the end of this section. For
the meson fields such a distinction is not necessary, and we find as particle and

antiparticle solutions,
po=tE,= +/p’+m¥’, i=v,s. (10.11b)

The duplication of both positive and negative {requency solutions of (10.10a} is
due to the two possible helicity states in each case, and we see that the dispersion
relation is identical for both polarizations within the zeroth order of the gradient
expansion. There are two types of solutions of Eq.(10.10b). However, it can be
easily shown that the solution p°> —m?2=0 corresponds to the unphysical time-like
vector mesons. Let us observe that in the zeroth order of the gradient expansion the
magnetic part of the vector-meson field, which is responsible for the interaction with
particle spins, vanishes. Thus it is not surprising that we have obtained helicity-
independent dispersion relations.

We can now introduce on-shell distribution functions of particles and
antiparticles through the positive and negative frequency components of the Green
functions, respectively, by writing (repeated spin indices r, s are always summed
over)

O(pd) IG5(X, p*) = — O(pd) 2nd(p** — M**(X)) 2M *(X)
x ua(ra p*) g{f(sa p*)f’;(Xs P*)

4

I

6(wp‘_p(‘;) ZM*(X) uz(r’ p*) ﬁﬂ(s’ P*)frf:/(x, P*),
’ (10.12a)

O(po) iD (X, p)= — O(p,) 278(p* — m¥*(X)) e (r, p) e,(5, p) [ X, p)

i

— = 8(E, = po) 0,(r. ) £.(5. p) S (X, p), (10.12b)
8(po) i4=(X, p) = O(po) 213(p* — m}*(X)) f(X, p)

= 0, —po) fi(X. p), (10.12¢)
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and (please note the order of the spin indices in the nucleon case)
O(—p&)iG(X, p*)=O(—p) 2nd(p** — M**(X)) 2M*(X)
XU,(S, —p*)u—ﬂ(ra —P*) _;;(X’ '_P*)

w"_ (e + pE) 2M*(X) (s, —p*) B,(r, —p*) (X, —p*),
r (10.13a)
O(—po) iD](X, p) = — O(po) 2n8(p* — m**(X)) £,(5, —p) £.(r, —p) f(X, ~p)

- ~—En—5(E,,+p(,)e“(s, —p)edr, —p) (X, —p),  (10.13b)
P
O(—po) i47 (X, p) = O(—p,) 21d(p*> —m**(X)) (X, —p)

O(E, + po) f(X, —p).. (10.13¢)

-
= E
Here f75(X, p*) (f73(X, p*)) is the (anti-)nucleon distribution function, with the
indices r, s labelling the spin states; u(s, p) and v(s, p) are the Dirac spinors which
satisfy

(y“pr — M*(X)) u(s, p*)=0,
(7pi + M*(X))v(s, p*) =0,
and they are normalized by the condition
Uy(s, p) us(r, p) = — (s, p) v,(r, p) = 07;

S2(X, p) (f2(X, p)) is the distribution function of vector (anti-)mesons; e,(s, p)is
the polarization vector, which satisfies the transversality condition

ple s, p)=0
and is normalized as
£,(s, p)e¥(r,p)= —9d",

fAX, p) (f.(X, p)) is the distribution function of scalar (anti-)mesons. Obviously the
distribution functions of nucleons and vector mesons are matrices in spin space.
Since these functions are defined only for on-shell momenta (the four-momenta
satisfy the dispersion equations (10.11)}), it is essential that the dispersion relations
are independent of the particle polarization. Otherwise, the off-diagonal elements of
the distribution functions would be meaningless because they correspond to mixed
polarization states which would not have a well-defined dispersion relation.

Please note that in the distribution functions f, spinors u, v, and polarization
vectors ¢, the four-momentum always satisfies the mass-shell constraint (10.11) and
that these functions thus depend only on p. Consequently, derivatives with respect
to p, in the kinetic equations act only on the mass-shell -functions.
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Due to the definitions (10.12), (10.13) the positive frequency (p,>0) parts of
G=, D=, and 4= can be expressed through the particle distribution functions, while
the negative frequency parts of G”, D”, and 4~ are expressed in terms of the
antiparticle distribution functions. We will now derive relations which allow us to
express both types of Green functions for positive and negative energies through the
distribution functions for particles and antiparticles.

As discussed in Section 6, for noninteracting fields G —G=<, D™ —D=<, and
47 — 4 are given by the functions (2.7). Our task is to derive analogous relations
for interacting fields. Since these will be based on the relations (6.13), let us write
the equations for the retarded and advanced Green functions. To lowest order in
the gradient expansion Egs. (4.9) yield

[Py —M—2up(X)]GH (X, p)=1, (10.14a)
MoV
([=p*+m+ Py ()] D* (X, p)) =g — 2L, (10.14b)
[—p*+mi—Mye(X)]4* (X, p)=1 (10.14¢c)
This immediately provides
p*“’}’ —M*

X, p*)= L 10.15

G ( s P ) p*2~M*2iip00+’ ( a)
_gn'+p1pv/m*2

DE(X p)= B T PuP/My 10.15b

(X, p) om0 ( )
1

A* (X, p)=— (10.15¢)

pP—m}’Lip,0*’

where m*=mX(X), i=N,v,s, and the infinitesimal imaginary terms are the
remnants of Im(Z*y%), Im P*, and Im /77, respectively. We have used Egs. (10.4)
to find Egs. (10.14a), (10.14b). The final form of Eq. (10.15b) has been obtained
by means of the transversality condition, which in zeroth order of the gradient
expansion is p*D,, =D, p'=0.

The explicit expressions (10.15) can now be used with Eq. (6.13) to write the
required relations (again m* =m*(X)):

iIG™ (X, p*)— iG=(X, p*)
= (y*pjr + M*) 2n3(p** — M**)(6(p) ~ O(~p§)), (10.16a)
iD>(X,p)—iD (X, p)

My my

= (g,w —'I;:fzv> 2md(p* — m3*)(O(po) — O(—po)), (10.16b)

id” (X, p)—id=(X, p)
=2nd(p* —m¥*)NO(po) — O(—py)), (10.16¢)
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valid in zeroth order in the gradient expansion (cf. Egs. (3.13)). Since the left-hand
sides denote the spectral functions for the respective particles, Egs. (10.16) simply
mean that at this order the system consists of quasiparticles with dispersion rela-
tions p*?=m*?, showing the consistency of the definition of on-shell distribution
functions.

By virtue of the relation (10.16), one finds

T
O(pg)iG 4(X, p*)= —

p*

Xu,(r, p*) ug(s, p*)[ WX, p*) - 671, (10.17a)

O(w,. —pd) 2M*(X)

O(py) iD (X, p) = —E"—é(E,—po)sp(r,p)e\.(s,m[f:‘(x,p)m”], (10.17b)
y4

O(po) i4” (X, p) =2 8(E, — p)LA(X. ) + 1), (10.170)

P

and

n
O(—p3)iG5(X. p*) =~

5((0[)‘ +p(,)k) 2M*(X) vm(sv —p*)

*

14

x 0g(r, —p*)[ [ WX, —p*)— 0671, (10.18a)
O(—po) DX, p) = =5 8(E, + po) e,(s. —p)
P
xe(r, —p) /DX, —p)+67], (10.18b)

6(—po) iA<(X,p)=E15(Ep+po)[fiy(x, —p)+11, (10.18c)
P

where we have used the identities [22]

] Py + M*X)

(s, p*) iy(s, p*) = ('—2‘;‘,{*(7)_)1[,’
) p*hy — M*(X)

o150 = (P M)

Luly
€.(8, P E(8, P) =8 0 —#5.

v

In the case of (real) vector and scalar fields, particles and antiparticles are
indistinguishable, and thus, the distribution functions of particles and antiparticles
must coincide. We will prove now that our definitions of the distribution functions
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(10.12), (10.13) indeed satisfy this requirement. This property is expressed by the

relations (3.14), which for the Wigner transformed functions are
DX, p) =Dy (X, =p), (10.192)
47(X,p)=4°(X, —p). (10.19b)

With the help of (10.18), we obtain from Egs. (10.12), (10.13), (10.17), (10.18) the
expected result

X, p) =X, p),
SX, py=1(X, p).

In fact, the definitions (10.12), and (10.13) have been constructed in a way to satisfy
the above relations.

Equations (10.12), (10.13), together with (10.17), (10.18), can now be used to
express the Green functions G2, D2, and 4% for both positive and negative
energies in terms of the particle and antiparticle distribution functions. Combining
(10.18) with (10.12) we find the important relations:

IG5(X, p*)= ——
w

0(@pe = p&) ZM*(X) u,(r, p*) itg(s, p*) fUX, p*)

P

+ w” 5(wpn+ pE) 2M*(X) v,(s, —p*)

r

-

x dg(r, —p*)L/ WX, —p*) =371, (10.20a)

e ; LA -
’D;w(X’p):_F‘)(Ep_.po)8;;("9p)ev(s’p)fv‘(X,P)
I

2 8, + po) (s, —p) aulr, —p)LS(X, —p)+57],  (10.20b)

P

i4=(X,p)= El OE,—po) [l X, p) + EL O(E, +po)l fi(X, —p)+1].  (10.20c)

P P

Similarly, Egs. (10.17) and (10.13) combine to give

IG2(X, p*) = ——— 8(e,e — pd) IM*(X) (1, p*) dpls, p*)LSR(X. p*) — 671
p.
+w" (e + pE) ZM*(X) v,(s, —p*) 5(r, —p*) JUX, —p*).

i (10.21a)
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DX, p)= — = 8(E, — po) (s p) 2,5, )L (X, p) + 8]

E
— 2 O(E, +po) 8,05, =) &.(r, —p) (X, =), (10.21b)
47 (X, p) =1 8(E, —po)LA(X. p)+ 1]+ - 8(E, +po) £(X, —p).  (1021c)
p P

We can now insert this into the definition (3.17) for the current and find

Gy =|

a'3 kL kpu ~
2:)317 LAVX, p*) =S (X, p) + 2], (10.22)

( W,
using the equality [22]

* 4

(s, p*) y*ulr, p*)=0(s, p*) y*o(r, p*) = % 8.

The integral in (10.22) is divergent and in the vacuum limit ( fy(X, p), fa(X, p) = 0)
gives

j. d3p Ei_ J.d3p* p*“
2n)lw, " (@2n)w,.

This type of divergence, which also appears in the tadpole contributions, is well
known in field theory. In the case of vacuum QFT, it is regularized away by the
normal ordering prescription for the field operators defining the lagrangian density
[22]. Subtracting the vacuum value from the right-hand side of Eq. (10.22), the
current equals

dlp* p*u
(27)* w,.

<.1'Z(X)/=J L/ p*) = fX, p*)]. (10.23)

A similar subtraction is needed for the energy-momentum tensor (2.5). The finite
result reads

de* P*up*v
2n)?

( — [Fa(X, p*) + F5(X, p*)]

Ty =

1
+ 20X X)) =3 872 (X)) plX) + 2T(X) b o(X)))

d’p
27\ E,

_—._-d3p HpV £'55 v
+I(2n)35p””fv(x’l’)+f p'p* 14X, p)

I o | o
=5 VX)) * V(X)) — 7 <8(X)) 0% 0 (4(X)),  (10.24)
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where p, is the so-called scalar density defined as

L’p* M*(X)
(2n)*  w,.

puX)=| L3, p*) + 750X, p) 1.

Since the distribution functions are defined within the mean field limit, the inter-
action terms from Eq. (2.5) have been calculated also in this limit (cf. Sections 7, 8).
The last two terms in (10.24) describe the energy-momentum tensor of the classical
fields, i.e., the fields which appear due to nonvanishing expectation values of the
mesonic fields,

Let us also write the energy density of the system,

Ty =| é;’—) [Ep [ (X, p*)+ E,e [ X, p*)]
_%(Z_V(X) PUX)+ ZUX) (X))
+| %’I—} E,f(Xp)+ | (%;L;S E, f{(X, p)
S VED BBV X)> — 5 ) P EPK),  (1025)

where the energies of the nucleon and the antinucleon are E,. = /M*? 4+ p** + £°¢
A P v

and E,=./M*?+p*>— £, respectively. One sees that the energy of the system
is expressed more naturally in terms of (anti-)nucleon energies E,. (E,.) than
frequencies w,.. Equations (10.22), (10.25) also show that our normalization of the
distribution functions defined in {10.12), (10.13) coincides with the conventional
one.

11. TRANSPORT EQUATIONS

In this section we will make the final step in the derivation of the transport
equations to be satisfied by the distribution functions. Specifically, we will substitute
the Green functions in the form (10.20), {10.21) into the Green function transport
equations (5.10c) and (5.14) found in Section 5. Before this, however, we still have
to manipulate the Green function transport equation (5.14a).

Changing the momentum variable p* — p* — 2%(X) (0* - 0~ 0"%, (X) 0,), the
Green function transport equation (5.14a) is rewritten as’

*To simplify the notation in this section we skip the index * labeling the kinetic momentum equal
p*—Z#(X) and identify E with ..
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) > i >
3 {r, 0,G*(X, p)} +3 {UX), 3,G=(X, p)}

+ [Py G2(X, p)] ~ [Zwr(X), G2(X, p)]

I
2

1
{27(X, p), GZ(X, p)} -3 {Z°(X, p), G7(X, p)}, (11.1)

where the force U,(X) is

UHX)=d"2(X)— 9, FMX)=0"M*(X)— 7y, F"(X),
with

FP(X)=0" (X))~ EHX).

X', and X% are the scalar and vector parts, respectively, of the mean-field self-energy
(cf. Egs.(104) and (10.9)). Anticipating the substitution of on-shell distribution
functions (10.20a), (10.21a) below, we have neglected in Eq.(11.1) the terms
[22(X,p), Gi(X,p)]), [Z (X, p), GZ(X, p)] which are present in Eq. (5.14a). The
point is that G} (X, p) (£ z (X, p)), which is defined as the second term of the r.h.s.
of Eq. (5.13), represents only the off-mass-shell part of G* (X, p) (£ (X, p)), while
their on-shell part is given by the first term in (5.13) (cf. Eq. (10.15)). This separa-
tion into on-shell and off-shell contributions is equivalent to the separation of the
imaginary and real parts of Egs. (10.15).

The collisional self-energies “mix™ the positive and negative energy parts of the
Green functions G2 due to particle-antiparticle collisions. However, the transport
equations split into separate equations for particles and antiparticles, which are
coupled to each other via the collision terms.

We now substitute the Green functions in the forms (10.20a), (10.21a) into
Eq. (11.1) and “sandwich” this equation between spinors ¥ and # and ¢ and
v for the positive and negative energy parts, respectively. Due to the d-functions
present in (10.20) and (10.21) one must carefully distinguish between on- and
off-shell four-momenta. In particular, the four-momentum which appears as
p¥ =2M*u(s, p) y*u(s, p) is on-mass-shell, but the four-momentum which is the
argument of the J-function is off-shell, and its four components are independent
from each other. To remove the d-functions and their derivatives from the final
transport equations one integrates them over p,, or equivalently over p?.

In order to avoid these rather cumbersome manipulations of the d-functions and
the distinction between on- and off-shell momenta, one can alternatively introduce
Green functions obtained from (10.20) and (10.21) by integration over p,. These
functions satisfy an equation that is nearly identical to (11.1), but with 84 replaced
by (0, V,). Choosing one or the other procedure one arrives after rather lengthy
calculations at the transport equations
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PO v+ (M*OM*—p° 7, )00 fy+ 5[, fa]

=%{7>Jv}—l{ﬂ<f~—l} (11.2)
POt (M* O M* +pF,) 0% fu+ 3 [, /5]
=317, {J Sv—1h (11.3)
where
T 2(X, p)= —iM*(X)(r, p) Z2(X, p) u(s, p), (11.4a)
T E2(X, p)= —iM*(X) i(r, p) 2(X, —p) v(s, p). (11.5a)

The matrices 7, and .«7,, which are responsible for the evolution of the spin
degrees of freedom due to the mean field, are the antihermitian parts of .«/,; and
o, respectively, (& =3 (/" —.o7'")) with

o (X, p)= M*(X) a(r, p) (7“5“ + (%M* - (/ + ;}) fu) @L‘) u(s, p)

e PO Mt (11.4b)
o (X, p)= M*(X)i(r, p) (7"‘5“ - (%M* + (v +Mp~*) 7,) 5;‘) v(s, p)

+ﬁ;p“8uM*5"“. (11.5b)
To derive Eqgs. (11.4b) and (11.5b) one needs to observe that the spinors u(p) and
v(p) depend on X only through M *(X) and that

u(s, p)=1o(r, p) 75 v(s, p) =0,

é il
4 P) g aM*
which is proved in Appendix 2. In fact, the direct calculation, which leads from
Eq.(11.1) to Egs.(11.2) and (11.3), provides the terms (of'fy+fyo'") and
(Z'fy+fn?’?) instead of [, fy] and [, fy], respectively, which are written in
Eqgs. (11.2) and (11.3). The reasons why the hermitian parts of matrices ./’ and .7’
have to be neglected are carefully discussed in Appendix 3.

The quantities &, ./, and M* are determined solely by the mean field 2,

which according to Eq. (8.5) is

3

: &p N
Zur(x) = — gl [ @D x) [ S B2 (i, py - F30x' )

(2n)?
dp
tgs'(d“x’d (vcx)f ) L5 p)+fax, p)]. (11.6)
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The first term gives the vector part of the mean-field self-energy, while the second
one gives the scalar part. In principle, the mean-field seif-energy enters also on the
right-hand side of Eq. (11.6) (through the energies of nucleons and antinucleons).
However, this equation has been obtained in second order of the perturbative
expansion, and consequently it is sufficient to use the vacuum dispersion relations
on the right-hand side of it without spoiling its exactness. Knowing the effective
mass, one finds the spinors 1 and v, and the matrix 7, the explicit form of which
is given in Appendix 4.

Let us briefly discuss the transport equations (11.2) and (11.3). The left-hand
sides of these equations contain terms corresponding to free streaming and to an
evolution due to the mean field. The terms proportional to (M*3, M* +p"# )
coincide with those given in [9, 11-13, 15, 17]. The third term on the left-hand side
of (11.2) and the respective term in (11.3) have been derived, to our best
knowledge, for the first time. These terms provide an evolution in spin space due
to the mean field. We show in Appendix 5 that Egs.(11.2) and (11.3) conserve
baryon number, and that entropy is, as expected, produced only due to collisions.
These proofs are somewhat more complicated than those usually found in
textbooks, see, e.g., [26], because here the (effective) particle mass is not constant
but position-dependent.

The mean-field self-energies of the vector and scalar fields are zero in the pairing
approximation discussed in Section 7 and in the perturbative approach presented
in Section 8. Therefore, the dispersion relations of mesons are as in a vacuum,
and the masses are, obviously, x-independent. Thus, one immediately finds from
Egs. (5.14b) and (5.10c) the form of the transport equations of f, and f, as

pro fo=3{?7, f.}—3{P=. fi+1}, (11.7)
1 1
p#aufs=2_l_n>/;—zn<(ﬁ+1), (11.8)
where
= 1 . =
37,i(X,P)—=—2*I.«S“(r,10)8‘(&17) P2(X, p). (11.9)

To complete the derivation of the transport equations one has to express the
collisional self-energies found in Section 9 through the distribution functions
and interaction matrix elements. After a very tedious evaluation of Eq. (11.4a),
according to the rules given in Section 9, one finds for the collisional self-energies

. d’p,  dp d’p| -
7>(xm=% | (@n)' 28, (a7 3F (any 28, 21 00 PR 0 = p))
X Tr(fill (fv—= NS £ 1) AT, (11.10a)
d’p; d’p’ d’p;

< - 4 ¢(4) n—npn'
T X0 =3 | G35 Gay aF Gy aE 0 O e+ p—p =)

XTr((fi 1) My fiuf 1l (11.10b)
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Here the summation runs over nucleons, antinucleons, vector mesons, and scalar
mesons, and ;. =.#(X;ps, p;s; | p's’,pis;) is the matrix element of nucleon-
nucleon, nucleon-antinucleon, nucleon—meson scatterings, represented by the
Feynman diagrams shown in Fig. 14. The trace Tr, should be taken over spin
indices of the i-particle. The minus sign is for fermions, and the plus sign for bosons.
In spite of the scalar—vector mixing, the collisional self-energies (11.10) do not
include inelastic meson—nucleon interactions, which convert vector mesons into
scalar ones or vice versa. The point is that the Green functions (10.20b) and
(10.21b), which are found in zeroth order of gradient expansion, are purely
transversal, ie, p“D (X, p)=p’D (X, p)=0.

The collisional self-energies of antinucleons, vector and scalar mesons are
analogous to those given by Eqgs. (11.10); only the nucleon distribution function
should be substituted by antinucleon or meson distribution functions, and the
matrix elements should be respectively modified. The self-energies (11.10) thus yield
collision terms of the form which appears in the so-called relativistic Waldmann-
Snider equation studied in [26] (see also [14]). Inserting the collisional self-
energies (11.10) into Egs. (11.2), (11.3), (11.6), (11.7), and (11.8), we obtain the
final set of transport equations, which is the main result of this study.

At the end, let us consider the transport equations for an unpolarized system,
where the distribution functions of (anti-)nucleons and vector mesons can be
expressed as

frs=%5'-ﬁ‘ 3. {]l]]b)

v

Substituting the distribution functions (11.11) into Eqs. (11.2), (11.3), and (11.7)
and taking the trace of the resulting equations over spin indices, one finds

Pro SN M*O MY —p'Z )0, fv=T s fy—Tc(fx—1). (1112)
PrOS N+ (M*OM*+p' ) 0sfA=T ;=T (fa—1, (1113)

vy

PO SI=Ps PSS+, (11.14)
where
S-S [ e e e () 6% 5, =)
"EZ Tron( My ML) SIS %= DU £ 1), (11.15a)
7500 =3 | G T e W 8 5
x—l—Tr,N(L/l,-,-,.//l:',)(fo-f-l)f Y (11.15b)

24,
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Tr,;y means that the trace should be taken over the spin indices of the ith particle
and the nucleon; 4, equals 1, 2, or 3 depending on whether the ith particle is a
scalar meson, an (anti-)nucleon, or a vector meson. The antinucleon and vector
meson collisional self-energies are of the same form as the nucleon ones but the
nucleon distribution functions are replaced by the antinucleon or meson functions
and the matrix elements are respectively modified.

12. DISCUSSION OF THE METHOD

Our derivation of the transport equations is based on several restrictive assump-
tions and approximations. Let us now discuss the most important of them, keeping
in mind that these assumptions and approximations, on one hand, impose some
restrictions on the physical systems which can be described in the framework of
transport theory, but which, on the other hand, limit the amount of information
about the system which can be obtained from this theory.

The essential simplifications have been made in Section 5, where we have
assumed that A4(X, «) and other Green functions are slowly varying functions of X
and are strongly peaked for u =~ 0. This assumption can be written as

0 ¢ 40\
A(X, — A(X, — — |} 4({X, ey 12.1
406> |55 2k |> (55 ) 40> (121)
which is equivalent to the requirement that
AX* Ap, > 1, {12.2)

where 4X* and Ap* are the characteristic lengths over which the function 4(X, p)
varies in position and momentum space. In physical units the right-hand side of the
inequality (12.2) equals 7.

If 4(X, p) provides the exact description of a single-particle system, the relation
(12.2) cannot be satisfied since 4X*~ 1/4p* in this case. For a single-particle
system, Eq.(12.2) is the condition for validity of a classical description of the
system, ie., the description with poor position and/or momentum resolutions.
Therefore, to satisfy the condition (12.2), the single-particle function A4(X, p) must
be averaged over space-time cells that are much bigger than the single-particle de
Broglie wavelength. In the case of a many-particle system, the function A4(X, p),
being defined in terms of an ensemble average, anyhow, carries only averaged infor-
mation from all particles. Thus, the size of the averaging cell can be, in principle,
smaller than a single-particle de Broglie wave length. In any case, the fact that the
distribution functions obey quantum statistics is not affected by the condition (12.2)
which is often referred to as the semiclassical approximation.

An obvious consequence of (12.1) is that on a macroscopic level the on-shell
distribution function must also satisfy

h

6 2
¢ —) fX, p)

é
JX,p)» f(Kp)'»’(aX,, % > e (12.3)

ax* op,,
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Because the distribution of a many particle system is never momentum independent
(4p, never approaches infinity), the requirement (12.3) limits the kinetic description
to systems where the rate of temporal changes and the inverse gradients are much
smaller than the particle energies and momenta, respectively.

In Section 5 we have also assumed that the self-energies satisfy a condition
analogous to (12.1). The characteristic length Ap*, at which the self-energy 77(X, p)
varies in four-momentum space, corresponds to the inverse space—time interaction
range. Therefore, the requirement A4X* Adp, > 1, applied to the self-energies,
demands shortness of the space-time interaction range when compared with the
scale of space-time inhomogeneities in the system.

The condition (12.1) justifies the expansion in gradients and, in particular, the
formulae (5.2)-(5.6). Deriving the transport equations we have kept only quantities
which are at most of first-order in the gradients. However, while keeping the first-
order gradients to the mean-field self-energy, we have neglected such terms in the
collisional self-energies. Such a procedure is justified when the interaction in the
system is weak and a perturbative expansion is allowed, since the mean-field
contribution appears at a lower order in the coupling constants than the collisional
one.

It proved crucial for the calculation of the collisional self-energies that the
incoming four-momentum p could be taken on-shell. In fact in Section 9 we used
free-field dispersion relations, but everything would formally have gone through
in the same way had we used the mean-fiecld modified quasiparticle dispersion
relations derived in Section 10. The on-shell conditions allowed us to neglect several
diagrams because of energy-momentum conservation which, in particular, forbids
the decay A4 — A+ B. Our analysis remains valid as long the mass shift due to
interactions is much smaller than the mass itself (|m* — m| < m). This is the case for
perturbative interactions between massive fields. For massless fields our arguments
do not hold since already a small (perturbative) modification of the particle
dispersion relation can open channels for processes which are forbidden in a
vacuum, as it happens with Cherenkov radiation.

When introducing in Section 10 the dispersion relations of quasiparticles, we
neglected the possible contribution of the collisional self-energies to the effective
mass. It was argued that the mean-field contribution is leading here. As discussed
in [17], a contribution of collisional self-energies would cause the quasiparticles to
acquire a finite width, ie., go off mass shell. This would, on the one hand, be a
desired effect because it can lead to a momentum dependence of the effective mass,
but on the other hand, it would cause serious complications in the further deriva-
tion of the collision terms of the transport equations, and we do not know how to
deal with them at present.

Due to mass-shell constraints we have also avoided the problem of renormaliza-
tion of loop diagrams, which usually appears in perturbative expansions beyond the
Born approximation. Our collisional self-energies calculated in fourth order of the
coupling constant are finite. This is not surprising since they correspond to the
imaginary parts of the self-energies in a vacuum QFT, which are also finite
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[22]. The real parts which usually cause troubles are exactly zero in the approach
presented in this paper as long as the mass-shell restrictions are assumed.

It has been stressed in several publications [34-36] that the mean-field force,
which appears in the transport equations of nuclear matter, should be momentum-
dependent. Indeed, the force (M*(X) o, M*(X)—p'#,(X)) in Eq. (11.2) has this
feature. Unfortunately, the momentum dependence is not exactly as required by the
real part of the optical potential of proton-nucleus scatterings [ 36]. One can try to
remove this defect of the transport equation (11.2) by taking into account contribu-
tions of fourth order in the coupling constant and/or second-order contributions
in the gradient expansion. In the present study these contributions have been
neglected.

13. CoMPARISON WITH PREVIOUS WORK AND CONCLUSIONS

The probilem of systematically deriving kinetic equations for relativistic nuclear
matter has attracted a lot of attention in the last few years. In this section we
discuss the relation of our work to the papers [9-19], where transport equations
of relativistic nuclear matter have been studied before.

The papers [9-13] present the derivation of transport equations in the mean-
field limit only. The meson fields have been treated as classical in [9-12], while a
lowest-order perturbative approximation has been performed in [13]. These two
equivalent approaches correspond to our considerations from Section7 and 8§,
respectively. In contrast to our study, the spin degrees of freedom have been
eliminated in [9-13] due to the (explicit or implicit) assumption that the system is
spin saturated, i.e., unpolarized. Therefore, the equations derived in [9-137] do not
contain terms describing the evolution in spin space.

Attempts to derive collision terms have been made in [14-17], where, as in our
work, the contour Green function technique has been used. The considerations
presented in [15] are, to a large extent, based on intuitive arguments and lack
rigor. For example, it appears that in converting Eq. (9) from [15] into Eq. (12),
the authors of [15] have assumed Tr(y*G > (x, p)}= (p*/m) Tr(G > (x, p)), which in
general is not true. As explained in our Section 9, it is a fairly complicated problem
to extract the coilisional self-energies from the contour self-energies. For its resolu-
tion we have applied the graphical method described in Section 9. While in [15]
the collision term is written down by essentially copying the nonrelativistic expres-
sions from Kadanoff and Baym [19], we point out at the end of Section 9 that the
structure of the relativistic collisional self-energies reduces to the nonrelativistic
form only after imposing the mass-shell constraints which are very restrictive.
Furthermore, it is not clear how the spin degrees of freedom have been treated in
[15] going from their Eq. (18) to (25).

The study [14] is more complete than [15], but the part dealing with relativistic
nuclear matter is also not quite satisfactory in our opinion. For example, the spinor
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structure of the self-energies described by Eq. (6.50) from [14] is exact only for
equilibrium nuclear matter, and consequently Eq. (6.51), which is sufficient for a
near-equilibrium expansion, does not really represent “the most general expres-
sion.” The transformation from spinor to spin basis performed in {14] is not quite
correct. In particular, the authors of [14] appear to have missed that, through the
effective mass, the spinors ¥ and v depend on X. Therefore, the term in our
Eq. (11.2) containing the matrix & is missing in their final transport equation
(6.109). It is claimed in [14] that the relativistic equation of motion of G~ is
“formally identical” to the nonrelativistic one, and by means of this observation the
collisional self-energies are found. As already mentioned and clarified by the present
analysis, this observation is correct only under specific approximations. Similar to
[15] the mesons have been treated in [14] only as effective fields mediating the
interaction, but not as real particles.

In the paper [16] a system of nucleons interacting with scalar mesons is
considered, eliminating spin degrees of freedom by the explicit assumption of spin
equilibrium. The transport equation is given in the one-loop approximation in a
treatment very similar to that of [5], where the relativistic electrodynamic plasma
has been studied. However, as the authors of [16] admit, the collision terms in
their transport equations (3.90), (3.91), which correspond to the Cherenkov
radiation or Landau damping terms from [5], are negligibly small within their
approximations. There is a very important difference between the electrodynamic
plasma with massless photons and a system of nucleons interacting via massive
mesons. When one deals with massive particles, the gradient expansion leads
{through condition {6.5)) to the very restrictive mass-shell constraints resulting in
vanishing contributions to the meson self-energies (Figs.3, 4) in the one-loop
approximation. Therefore, the meson dispersion relations coincide with the vacuum
ones, and processes similar to the plasma Cherenkov radiation or Landau damping
are kinematically forbidden. In the case of massless photons the condition (6.5)
cannot be imposed, and thus, one obtains nontrivial collision terms for the electron
transport equations even in the one-loop approximation. At the very end of the
paper [16], the nucleon transport equations at the two-loop level are also written,
without, however, giving any details of the derivation.

Our study has probably the largest overlap with the analysis of Schonhofen,
Cubero et al. [17]. In this work a thorough discussion of the derivation of
transport equations for the Walecka model is given. The gradient expansion,
quasiparticle approximation, and perturbative nature of the approach are critically
discussed in a spirit similar to our own presentation. Although not stated explicitly,
even the graphical method of Section 9 to select the allowed diagrams for the colli-
sion terms appears to have been used by these authors. Furthermore, their work
additionally includes pions and A’s. However, the pions appear as real particles
only in the context of the reaction nN «» 4. (n-production outside the 4-resonance
would require to take into account sixth-order diagrams.) Pion Compton scattering
{the process corresponding to our Figs. 9a, 10a) is neglected. In contrast to our
work, in [17] the scalar and vector mesons are treated everywhere only as effective
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interaction-mediating particles. The transport equations are derived there only for
unpolarized systems and thus lack the spin dynamics contained in ours.

The considerations presented in [18] are very different from those in [14-17]
and from our study. Instead of deriving transport equations, the authors of [18]
look for a numerically tractable form of the Dyson-Schwinger equations. Their
approach is fully quantum mechanical but the interactions in the system are intro-
duced in a rather simplified way by means of Skyrme-like forces. The paper [18]
deals only with equations of motion of time-ordered Green functions (propagators)
and consequently does not provide, in our opinion, a complete description of a
many-body system out of equilibrium. For such a description one additionally
~ needs equations for the Green functions G2, which correspond to distribution

functions.

At the end of this comparison let us mention the very recent paper [19]. The
authors of it start with the relativistic Lagrangian of a Walecka-like model but then
use the approximation of instantaneous meson exchange, which makes the whole
approach rather nonrelativistic than relativistic.

We conclude our study as follows. Starting with the quantum field theory
Lagrangian we have derived the set of relativistic transport equations of nucleons
interacting with mesons. The derivation assumes quasi-homogeneity of the system,
which justifies the gradient expansion, and weakness of the interaction, which in
turn permits a perturbative expansion. The equations have been obtained in the
lowest nontrivial order® of the two expansions. The procedure enables one to
include higher order corrections but serious technical difficulties have to be
resolved. It remains a real challenge to clarify whether the kinetic description is
valid when one of the basic assumptions made here is completely relaxed.

APPENDIX |

In this appendix the determinant of a matrix (p -y + M) is calculated.” Using the
well-known identity det A =exp TrIn 4, we find by expanding the logarithm in the
exponent

e o) _1 n . n
det(p-yiM)=exp<4lnM— Y (—+—)Tr(‘”—l> ) (AL1)
=, n M
Then one calculates
o (?1)" (p,)))n oo l (p,y 2n
T e (2 = — Tr &L
E n f M E, 2n g M

I=s) 1 2\n 2
23 ;(%5) =—21n<1—7{’4—2), (A1.2)

n=1

® The lowest order in coupling constant, i.e., the mean-field limit of the transport equations, is rather
trivial from the point of view of kinetic theory, since the system described by such equations never
reaches equilibrium.

7 We are grateful to Teiji Kunihiro for suggesting this method.

595,229/1-4
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where we have proven by induction that Tr(p .7)?" =4p®". Substituting Eq. (A1.2)
into Eq. (Al.1) one finally finds

det(p-y £ M)=(p’— M*).
APPENDIX 2
We prove that

d 0
ir, p) 557 uls, p)=0lr, p) =52 ols, p) =0. (A21)

The spinors u(r, p) and #u(s, p) can be expressed as

py+M _ _ p-v+M
s e ,0 N y = ,0 — e, A22
u(r, p) 2MUHM)u(r ) i(r, p)=u(r )\/ZM(E+M) ( )

where E=./p*+ M? and u(r,0)=u(r, E= M, p=0). Keeping in mind that the
spinor u(r, 0) satisfies the equation (y°— 1) u(r, 0) =0, one finds

1 JE+M E+M

2
am P T EN T O e

(r,p).

Observing that (p-y+ M)?*=2M(p -y + M), and using Eq. (A2.2) we obtain
(r, p)u(s,0)=6" J/(E+ M)/2M,

and finally prove Eq. (A2.1) for the spinor u. The proof for the spinor v is obviously
very similar.

APPENDIX 3

The aim of this appendix is to discuss those terms of the transport equations
{11.2) and (11.3) which are responsible for the mean-field evolution of spin degrees
of freedom. The direct calculation, which leads from Eq. (11.1) to Egs. (11.2) and
(11.3), yields the terms (o 'fy + fv'") and (F'fy + fvo/'7) instead of [, fx] and
[, fv], respectively, which were written down in Egs. (11.2), (11.3). With these
terms the transport equations are found to violate baryon number conservation and
to lead to entropy production even by the mean-field spin dynamics. Specifically,
following the derivation in Appendix 5 we obtain

1 d? —z A -
0, JHX)Y =3 T [ S Ut fo St ) = (T o+ T )Y (A3.1)
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5MS§(X)=“collisionS”—%Trf(2d)p Tr[(df~+f,vd”)ln( fo}v)

+(,offN+me'*)1n<1{”fN>] (A3.2)

As seen in Egs. (A3.1) and (A3.2), these two problems would be absent if the
matrices o/’ and /" were purely antihermitian. Indeed, the hermitian parts seem to
be physically meaningless. To clarify this statement let us consider, for simplicity,
the unpolarized system. Then, the distribution functions are as in Eqgs. (11.11), and
the positive energy part of the Green function (10.12a) reads

i0(py) G 4(X, p)= —-—5(5 Po)(yup" + M*) fOUX, p). (A3.3)
Let us observe that

M*
u(r, p)iO(po) G (X, p) uyls, p) = —n——E— 0" 8(E~po) f3(X, p), (A34a)

05(r, P) iO(po) G 4(X, p) vg(s, p) =0. (A3.4b)

Now we will derive the transport equation for f%(X, p). We substitute the Green
function (A3.3) into Eq. (11.1) and integrate the resulting equation over p,. In this
way we obtain

(P*+ M*7) 8, %+ (p"y+ M*) O, M*— (p" + M*y") F,) 00 /.
(M*M* M*3, M p'o,M*
\TE

+ o, M* — —E———-(p + M*y*) + I (p'y,+M*)

‘0, M* . g
—E—'E—)J°+}"B,»M*-%(p"+M*y")37\,,-+ %,)f,v “collisions,”  (A3.5)

where the dot denotes time derivative.
Projecting Eq. (A3.5) on particle (#, u) and antiparticle (7, v) states, one finds,
respectively,

PO SN (MO M* —p'F,) 0, [

1/p“8 M* M*M* b ..
3 (e T ) S eolisions” (A36a)
KO, M*  M*M* pf
(p Mr_ M _%ym)fg:o, (A3.6b)

The result expressed by Eq. (A3.6b) is surprising: The kinetic operator from the
left-hand side of Eq. (11.1) acting on the Green function (A3.3) which represents
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only particle states (no antiparticles, cf. Eq.(A3.4)), produces a nonvanishing
antiparticle component (found by projecting onto 7, v). One should keep in mind
here that the mean field is assumed to be weak and the system quasihomogenous,
thus no particle-antiparticle mixing should occur. The collision terms in Eq. (11.1)
for particles depend lineary on @( p,) Gj,(X, P), and consequently: ¢ “collisions”v = 0.
Therefore, according to Eq. (A3.6b), the antiparticle component must be zero.
Unfortunately, we do not have a simple interpretation of this constraint. Inserting
Eq. (A3.6b) back into Eq. (A3.6a), we find

pro S+ (M*o,M* —p*F.) 8! [, =“collisions,” (A3.7)

which is the standard kinetic equations of unpolarized nucleons in the Walecka
model. In contrast to Eq. {A3.6a), the transport equation (A3.7) does conserve
baryon number and leads to the entropy production only wvia collisions, see
Appendix 5.

A more complicated but similar analysis of a polarized system shows that the
false antiparticle (particle) component is contained in the hermitian part of the
matrix ./’ («/'). The constraints analogous to Eq.(A3.6b) are .«&/' —.«/'*=0 and
' — 4" =0, respectively. In the transport equations (11.2), (11.3) and (11.12),
(11.13) we have already implemented these constraints.

APPENDIX 4

Her we find the explicit form of the matrix &/, defined as the antihermitian part
of the matrix &’ given by Eq. (11.4b). Expressing the spinors as in Eq. (A2.2) and
using the formulae given in Appendix J of [37], one finds after rather lengthy
calculations the following results, valid for the Dirac representation of the
y-matrices,

2u(r, p) y* ,u(s, p)=2, (%;) o™+ MiEVM* (6,,xp), (Ad.1a)

2u(r, p) & u(s, p) = —m (6,,xp), (A4.1b)
2u(r, p)y° 6;u(s,p)=M+‘Ep"5”+m (6,.xp), (Ad.1c)
2a(r, pyy’ 0,u(s, p) =Ml; 076" + mﬂ(% xp)’

+;4’_*8Ukafs, (A4.1d)
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where 6= (0, ¢,, 03) is the vector of Pauli matrices and ¢, is the completely
asymmetric tensor. Substituting Egs. (A4.1) in Eq. (11.4b) and removing the
hermitian part one obtains

3E4+ M*

_ " ———E- _
(X, p)= [E(E+M*)VM YT ](c,,,xm

2M*EB (pX(o,JXp))+ B-o,,

where E and B are the electric and magnetic vectors related to the stress tensor %
as

— % =1 G
E,= %y, B;= 56 Py

APPENDIX 5

In this appendix we show that the transport equations (11.2) and (11.3) satisfy
baryon number conservation and that entropy is produced only by collisions. Let
us start with the current expressed by Eq. (10.23). The divergence of the current
reads®

d’p [EB,,p“—p“é,,E

2.7 = ¢
+pH[0, fEX. p)— 0, J5UX, pn] (AS.1)

The first term on the left-hand side of Eq. (A5.1), which is usually absent in discus-
sion of current conservation (see, e.g., [26]), appears because the (effective) particle
mass is not constant but position dependent. Using the transport equations (11.2)
and (11.3) one expresses p*d, f; and p“ﬁ,‘f-j\’, as

pHd f”:——(M*a M**p"g,;u) a:fx+C“, (AS.2a)
pre, fu=—(M*3,M* +p'F,) 0" f5 + C*, (A5.2b)

where C and C represent the collision terms,

¥ To simplify the notation, we drop, as in Section 11, the index * and identify E with «w,,.
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and the trace is taken over spin indices. Let us observe that these terms of the trans-
port equations which are responsible for the mean-field spin dynamics are absent
in Eqs. (A5.2), because the traces of the anticommutators [.«/, fy] and [.¢7, fy]
vanish.

One easily proves using symmetry arguments (see, €.g., [26]) and the respective
properties of the collisional self-energies 7 2 and 7 < that

3

d }
=| (zn)’jETrC=o, (A5.3)

(2n)* E

which expresses baryon number conservation in particle collisions.
Substituting Eqs. (AS5.2) into Eq. (AS.1) and using the relation (A5.3), one finds

dp [Eé.p"—p"d
QXD =] 53 [ L0

——[(M*(?I‘M* v )(‘;u \_(M*L‘J M*+p - 6£f“]]
(A5.4)

[/ (X, p)—fa(X, p)]

Performing a partial integration of the second term on the right-hand side of
Eq. (AS.4) and assuming that the distribution functions vanish for infinite
momenta, one finds that the two terms in Eq. (A5.4) cancel each other and

0, J3(X)5 =0.

Let us now discuss the entropy. The baryon contribution to the entropy flow is
defined as

d’p p"
SHH) = = Tr [ 5 B Ui fy— (1 =/ In(1 =)
+/fwInfy—(1—fx) In(1 = /1)1, (A5.5)

and the entropy production is

d’p [E[fﬂp“—p“@#E

0,84(X)=—Tr [fxInfy—(1—/x)In(1—fy)

(2n) E E
+lean—(l —fN)ln(l _f)v)]
+p* [a,,fN In (I{Nf,) +0, /v ln( foN)ﬂ (A5.6)

In a way very similar to the case of baryon number conservation above we arrive
at the formula

S;,‘(X)=—Trj(2—‘:)—l3—)—E[Cl (1{’}N)+C1n<1{’}~>]. (A5.7)
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Thus, entropy is produced, as expected, only by collisions. The terms of the trans-
port equations corresponding to the mean-field spin dynamics do not contribute to
the entropy production because of the property

Tr([ A4, B]In B) =0, (A5.8)

which is valid for any matrices 4 and B.
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