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Abstract
Because the quark-gluon plasma (QGP) reveals some obvious sim-
ilarities to the well-known electromagnetic plasma (EMP), an ac-
cumulated knowledge on EMPs can be used in QGP studies. After
discussing similarities and differences of the two systems, we present
the theoretical tools used to describe the plasmas. The tools include
kinetic theory, hydrodynamic approach, and diagrammatic pertur-
bative methods. We consider collective phenomena in the plasma,
with a particular emphasis on instabilities that crucially influence
the temporal evolution of the system. Finally, properties of strongly
coupled plasma are discussed.
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1. INTRODUCTION

Plasma—the ionized gas of electrons and ions—has been actively studied since its
discovery in a discharge tube at the end of nineteenth century. The term plasma was
introduced by Irving Langmuir in 1929. Prospects to get a practically unlimited source
of energy due to nuclear fusion reactions in a hot ionized gas of hydrogen isotopes
have stimulated a large-scale program to study plasmas in terrestrial experiments for
more than half a century. Plasmas are also actively studied by astrophysicists, as it
appears to be the most common phase of matter. Approximately 99% of the entire
visible Universe is in the plasma phase. Not only are stars formed of ionized gas,
but the interstellar and intergalactic mediums are also plasmas, although very sparse
ones. Principles of plasma physics can be found in, for example, well-known textbooks
(1, 2).

The quark-gluon plasma (QGP) is the system of quarks and gluons that are not
confined in the hadron’s interiors but can move freely in a whole volume occupied
by the system. A broad presentation of the whole field of QGP physics is contained
in three volumes of review articles (3–5); the lectures (6) can serve as an elementary
introduction. Active studies of the QGP started in the mid-1980s when relativistic
heavy-ion collisions offered an opportunity to create a drop of the QGP in a lab-
oratory. The experimental programs at CERN and BNL provided evidence of the
QGP production at the early stage of nucleus-nucleus collisions, when the system is
extremely hot and dense, but properties of the QGP remain enigmatic. So, one can
ask, what do electromagnetic plasmas (EMPs) tells us about the QGP?

The QGP reveals some obvious similarities to the well-known EMP, as quan-
tum chromodynamics (QCD) describing the interactions of the quarks and gluons
resembles quantum electrodynamics (QED), which governs interactions of charged
objects. Thus, some lessons from EMPs should be useful in the exploration of the
QGP. The aim of this review is to discuss what QGP physicists can actually learn
from their EMP colleagues, and how the huge accumulated knowledge on EMPs

62 Mrówczyński · Thoma



ANRV326-NS57-03 ARI 23 March 2007 19:37

can be used in QGP studies. However, we must be aware not only of similarities but
also of important differences between EMPs and the QGP. Some differences are of
rather trivial origin, but some are deeply rooted in dynamical foundations of the two
systems.

Let us enumerate these trivial dissimilarities. The QGP is usually relativistic or
even ultrarelativistic, whereas the EMP is mostly nonrelativistic in laboratory exper-
iments. The differences between the nonrelativistic and relativistic plasmas go far
beyond the kinematics of motion of plasma particles. For example, let us consider
the plasma’s composition. In the nonrelativistic system, there are particles but no
antiparticles, and the particle’s number is conserved. In the relativistic system, we
have both particles and antiparticles (as electrons and positrons in EMPs), and the
lepton number—not the particle’s number—is conserved. Particle number density is
not a proper way to characterize the system. For this reason, QGP physicists use the
baryon and strangeness densities.

Another trivial but very important distinctive feature of the EMP is the huge mass
difference between electrons and ions, which is responsible for a specific dynamic role
of heavy ions. The ions are usually treated as a passive background, which merely com-
pensates the charge of electrons, but electro-ion collisions drive the system toward
equilibrium and maintain the equilibrium. However, the energy transfer between
electrons and ions is very inefficient, and their mutual equilibration is very slow.
Therefore, we have electron and ion fluids of different temperatures for a relatively
long time. There is nothing similar in the QGP. There are heavy quarks—charm,
bottom, and top—that are, however, much less populated than the light quarks and
gluons, and their lifetime is short. Therefore, the heavy quarks hardly influence the
QGP dynamics.

The EMP, which is the closest analog of the QGP, is the relativistic system of
electrons, positrons, and photons. Such a plasma is actually studied in the context of
some astrophysical applications, for example, supernovae explosions. The differences
between the QGP and the EMP are of dynamical origin: The first one is governed
by QCD and the second one by QED. The latter theory is Abelian, whereas the
former one is non-Abelian with a prominent role for gluons that carry color charges
and, thus, not only mediate the interaction among colored quarks and antiquarks but
interact among themselves. Gluons, in contrast to photons, also contribute to the
density of color charges and to the color current.

The most important common feature of the EMP and the QGP is the collective
character of the dynamics. The range of electrostatic interaction is, in spite of the
screening, usually much larger than the interparticle spacing. There are many particles
in the Debye sphere—the sphere of the radius equal to the effective interaction
range—and motion of these particles is highly correlated. There is a similar situation
in the deconfined perturbative phase of QCD (7). The Debye mass is of order gT,
where g is the QCD constant and T is the temperature. Because the particle density
in QGP is of order T 3, the number of partons in the Debye sphere, which is roughly
1/g3, is large in the weakly coupled (1/g � 1) QGP.

In various laboratory experiments, the EMP is embedded in an external electro-
magnetic field. For example, the magnetic field is used to trap the plasma, and there
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are numerous fascinating phenomena occurring in such a situation. In the case of
QGPs produced in relativistic heavy-ion collisions, it is hard to imagine any external
chromodynamic field applied to the plasma. Therefore, we consider here only the
systems in which fields are generated self-consistently in the plasma.

Our review is organized as follows: Theoretical tools, which are used to describe
the plasmas, are presented in Section 2. The tools include the kinetic theory, the
hydrodynamic approach, and diagrammatic methods of field theory. In Section 3 we
discuss collective phenomena that are the most characteristic feature of plasmas. After
explaining the phenomenon of screening, quasi-particle modes in the equilibrium
and nonequilibrium plasma are presented. We pay much attention to instabilities
that crucially influence plasma dynamics. The problem of a particle’s energy loss in a
plasma is also discussed. Section 4 is devoted to the strongly coupled plasma, which
reveals particularly interesting properties.

Throughout the review we use the natural units, with c = h̄ = kB = 1 and the met-
ric (1, −1, −1, −1). However, this gets a bit complicated. Plasma physicists usually use
the Gauss (CGS) units, where the fine structure constant equals α = e2 ≈ 1/137, and
the electromagnetic counterpart of the units usually applied in QCD is the so-called
Heaviside-Lorentz system, where the 4π factor does not show up in the Maxwell
equations but α = e2/4π . We stick to the traditionally used units in the two fields
of physics, and thus the factor of 4π must be additionally taken into account when
comparing EMP and QGP formulas.

2. THEORETICAL TOOLS

2.1. Transport Theory

Transport theory provides a natural framework for studying equilibrium and nonequi-
librium plasmas. The central object of the theory is the distribution function, which
describes a time-dependent distribution of particles in a phase-space spanned by the
particle’s momenta and positions. The distribution function of each plasma compo-
nent evolves owing to the interparticle collisions and the interaction with an external
and/or self-consistently generated mean field. The two dynamical effects give rise to
the collision and mean-field terms of a transport equation satisfied by the distribution
function.

2.1.1. Electromagnetic plasma. A formulation of the kinetic theory of relativis-
tic plasma can be found in Reference 8. The distribution function is denoted as
fn(p, x), with the index n labeling plasma components: electrons, positrons, ions.
Spin is usually treated as an internal degree of freedom. The function depends on the
four-position x ≡ (t, x) and the three-momentum p. The four-momentum p obeys
the mass-shell constraint p2 = m2, where m is the particle mass. Then p ≡ (Ep , p),
with Ep ≡ √

m2 + p2.
The distribution function satisfies the transport equation(

pμ∂μ + qn pμ Fμν∂
ν
p

)
fn(p, x) = C[ fn], 1.
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where C[ fn] denotes the collision term, qn is the charge of the plasma species n,
and Fμν is the electromagnetic strength tensor that either represents an external
field applied to the system and/or is generated self-consistently by the four currents
present in the plasma:

∂μ Fμν = 4π jν,

where

jμ(x) =
∑

n

qn

∫
d 3 p

(2π )3

pμ

Ep
fn(p, x). 2.

The transport equation can be solved in the linear-response approximation. The
equation is linearized around the stationary and homogeneous state described by the
distribution f̄ n(p). The state is also assumed to be neutral, and there are no currents.
The distribution function is then decomposed as

fn(p, x) = f̄ n(p) + δ fn(p, x),

where f̄ n(p) � δ fn(p, x).
The transport equation linearized in δ fn, and Fμν can be exactly solved after the

Fourier transformation, which is defined as

f (k) =
∫

d 4xe ikx f (x), f (x) =
∫

d 4k
(2π )4

e−ikx f (k). 3.

Then, one finds δ fn(p, k), which is the Fourier transform of δ fn(p, x), and the induced
current, which can be written as

δ jμ(k) = −�μν (k)Aν (k), 4.

with the polarization tensor equal to

�μν (k) = 4π
∑

n

q 2
n

∫
d 3 p

(2π )3
f̄ n(p)

(p · k)2gμν + k2 pμ pν − (p · k)(kμ pν + kν pμ)
(p · k)2

. 5.

The tensor is symmetric [�μν (k) = �νμ(k)] and transverse [kμ�μν (k) = 0], which
guarantees that the current given by Equation 4 is gauge independent.

For isotropic plasmas, the polarization tensor has only two independent compo-
nents, which are usually chosen as

�L(k) = �00(k)

�T(k) = 1
2

(
δi j − ki k j

k2

)
�i j (k), 6.

where the indices i, j = 1, 2, 3 label three-vector and tensor components. In the case
of an ultrarelativistic (T � m) electron-positron equilibrium plasma, the momentum
integral in Equation 5 can be performed analytically in the high-temperature limit
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(T � ω, |k|), and the result already derived by Silin (9) in 1960 reads

�L(k) = −3m2
γ

[
1 − ω

2|k| ln
ω + |k|
ω − |k|

]
,

�T(k) = 3
2

m2
γ

ω2

k2

[
1 −

(
1 − k2

ω2

)
ω

2|k| ln
ω + |k|
ω − |k|

]
, 7.

where k ≡ (ω, k) and mγ ≡ eT/3 denotes the thermal photon mass generated by the
interaction of the photons with the electrons and positrons.

The above polarization tensor was found in the collisionless limit of the transport
equation. The effect of collisions can be easily taken into account if the so-called
Bhatnagar-Gross-Krook (BGK) collision term is used in the transport equation
(Equation 10). The result for an ultrarelativistic equilibrium plasma is given in
Reference 11.

2.1.2. Quark-gluon plasma. The transport theory of the QGP (12, 13) appears to
be much more complicated than its electromagnetic counterpart. The distribution
function of quarks Q(p, x) is a hermitian Nc × Nc matrix in color space [for an SU(Nc )
color gauge group]. The distribution function is gauge dependent, and it transforms
under a local gauge transformation U(x) as

Q(p, x) → U(x)Q(p, x)U†(x). 8.

Here and in most cases below, the color indices are suppressed. The distribution
function of antiquarks, which we denote by Q̃(p, x), is also a hermitian Nc ×Nc matrix,
and it transforms according to Equation 8. The distribution function of gluons is a
hermitian (N2

c − 1) × (N2
c − 1) matrix, which transforms as

G(p, x) → U (x)G(p, x)U†(x), 9.

where

Uab (x) = 2Tr[τ aU(x)τ bU†(x)],

with τ a, a = 1, . . . , N2
c − 1 being the SU(Nc ) group generators in the fundamental

representation with Tr(τ aτ b ) = 1
2 δab .

The color current is expressed in the fundamental representation as

jμ(x) = − g
2

∫
d 3 p

(2π )3
pμ

[
Q(p, x) − Q̃(p, x)

]
− 1

Nc
Tr

[
Q(p, x) − Q̃(p, x)

] + 2τ a Tr
[
Ta G(p, x)

]
, 10.

where g is the QCD coupling constant. A sum over helicities, two per parti-
cle, and over quark flavors Nf is understood in Equation 10, even though it is
not explicitly written down. The SU(Nc ) generators in the adjoint representation
are expressed through the structure constants Ta

bc = −i fabc, and are normalized
as Tr[Ta Tb ] = Nc δ

ab . The current can be decomposed as jμ(x) = jμ
a (x)τ a , with

jμ
a (x) = 2Tr(τa jμ(x)). The distribution functions, which are proportional to the unit
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matrix in color space, are gauge independent, and they provide the color current
(Equation 10) that vanishes identically.

Gauge-invariant quantities are given by the traces of the distribution functions.
Thus, the baryon current and the energy-momentum tensor read

bμ(x) = 1
3

∫
d 3 p

(2π )3
pμTr

[
Q(p, x) − Q̃(p, x)

]
,

Tμν (x) =
∫

d 3 p
(2π )3

pμ pνTr
[
Q(p, x) + Q̃(p, x) + G(p, x)

]
,

where we use the same symbol Tr[· · ·] for the trace both in the fundamental and
adjoint representations.

The distribution functions of quarks, antiquarks, and gluons satisfy the transport
equations

pμ Dμ Q(p, x) + g
2

pμ
{

Fμν (x), ∂ν
p Q(p, x)

} = C[Q, Q̃, G], 11.

pμ Dμ Q̃(p, x) − g
2

pμ
{

Fμν (x), ∂ν
p Q̃(p, x)

} = C̃[Q, Q̃, G], 12.

pμ DμG(p, x) + g
2

pμ
{
Fμν (x), ∂ν

p G(p, x)
} = Cg [Q, Q̃, G], 13.

where {. . . , . . .} denotes the anticommutator and ∂ν
p the four-momentum derivative.1

The covariant derivatives Dμ and Dμ act as

Dμ = ∂μ − ig[Aμ(x), . . .], Dμ = ∂μ − ig[Aμ(x), . . .],

with Aμ andAμ being four-potentials in the fundamental and adjoint representations,
respectively:

Aμ(x) = Aμ
a (x)τ a , Aμ(x) = Ta Aμ

a (x).

The strength tensor in the fundamental representation is Fμν = ∂μ Aν − ∂ν Aμ −
ig[Aμ, Aν ], whereas Fμν denotes the field strength tensor in the adjoint representa-
tion. C, C̃ and Cg represent the collision terms.

The transport equations are supplemented by the Yang-Mills equation describing
generation of the gauge field:

Dμ Fμν (x) = j ν (x), 14.

where the color current is given by Equation 10. As in the case of the electromagnetic
plasma, the transport equations, which are linearized around a stationary, homoge-
neous, and colorless state, can be solved. Because of the color neutrality assumption,
the analysis is rather similar to that of the Abelian plasma, and it ends up with the
polarization tensor that is proportional to the unit matrix in the color space and has
the form of Equation 5.

1As the distribution functions do not depend on p0, the derivative over p0 is identically zero.
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As in the case with EMPs, the collisions can be easily taken into account using
the approximate BGK collision terms (14, 15). Within a more realistic approach,
color charges are treated in a similar way as spin degrees of freedom, and one uses
the so-called Waldmann-Snider collision terms (16, 17), which are usually applied to
study spin transport.

2.2. Hydrodynamic Approach

Within the hydrodynamic approach, the plasma is treated as a liquid and described
in terms of macroscopic variables that obey the equations of motion resulting from
the conservation laws. The fluid equations are applied to a large variety of plasma
phenomena, but, depending of the timescale of interest, the actual physical content
of the equations is rather different.

Real hydrodynamics deals with systems in local equilibrium, and thus it is appli-
cable only at sufficiently long timescales. The continuity and the Euler or Navier-
Stokes equations are supplemented by the equation of state to form a complete set of
equations. The equations can be derived from kinetic theory, using the distribution
function of local equilibrium, which by definition maximizes the entropy density and
thus cancels the collision terms of the transport equations.

In the electron-ion plasma, there are several timescales of equilibration. The elec-
tron component of the plasma reaches the equilibrium in the shortest time. Then
ions are equilibrated, but for a relatively long time the electron and ion temperatures
remain different from each other, as the energy transfer between electrons to ions is
rather inefficient. This happens owing to the huge mass difference between electrons
and ions.

When the electrons have reached local equilibrium with their own temperature
and hydrodynamic velocity, the collision terms of the kinetic equations represent-
ing electron-electron collisions vanish, while the collision terms due to electron-ion
collisions can be neglected because they influence the electron distribution function
only at a sufficiently long timescale. Then, one obtains hydrodynamic equations of
an electron fluid. When the ion component is also equilibrated, we have two fluids
with different temperatures and hydrodynamic velocities. At the timescales when the
fluid equations are applicable, the plasma can be treated as locally neutral. Charge
fluctuations are obviously possible, but they disappear rapidly because the electric
field generated by the local charges induces the currents, which in turn neutralize
the charges. Because the plasma is nearly an ideal conductor, the process of plasma
neutralization is very fast. Owing to the charge neutrality of the plasma, the electric
field is not present in the fluid equations and we end up with magnetohydrodynamics,
where the pressure gradients and magnetic field drive the plasma dynamics.

As explained above, the regime of magnetohydrodynamics appears because there
is a heavy positive component (ions) and a light negative component (electrons) of the
plasma. There is no QCD analog of magnetohydrodynamics, as every quark or gluon
can carry opposite color charges. Therefore, when local equilibrium is reached, var-
ious color components of the plasma have the same temperatures and hydrodynamic
velocities (17). Because the quark-gluon system becomes color neutral even before

68 Mrówczyński · Thoma



ANRV326-NS57-03 ARI 23 March 2007 19:37

the local equilibration is reached (14, 16), we deal with hydrodynamics of a neutral
fluid where the chromodynamic fields are absent. Such a relativistic hydrodynamics
of colorless QGP has been actively studied over the past two decades (18, 19).

The hydrodynamic equations, which actually express macroscopic conservation
laws, hold not only for systems in local equilibrium but for systems out of equilibrium
as well. The equations can then be applied at timescales significantly shorter than that
of local equilibration. At such a short timescale, the collision terms of the transport
equations can be neglected entirely. However, extra assumptions are then needed
to close the set of equations, as the (equilibrium) equation of state cannot be used.
Plasma physicists developed several methods to close the set of equations, and thus
fluid equations are used to study bulk features of short timescale phenomena in the
plasmas. To get more detailed information, kinetic theory is needed. Because the fluid
equations are noticeably simpler than the kinetic ones, the hydrodynamic approach
is used frequently in numerical simulations of plasma evolution, studies of nonlinear
dynamics, and so on.

Below, we derive the fluid equations for the EMP and the QGP from the respective
kinetic theory. Because the fluid approach under consideration is supposed to hold at
sufficiently short timescales, we use the collisionless transport equations.

2.2.1. Electromagnetic plasma. We assume here that there are several streams in
the relativistic plasma system and that the distribution functions of each plasma com-
ponent (electrons, positrons, ions) belonging to each stream satisfy the collisionless
transport equation. The equations are coupled only through the electromagnetic
mean field, which is generated by the current coming from all streams. The field in
turn interacts with every stream.

Integrating the collisionless transport equation (Equation 1) over momentum, one
finds the continuity equation

∂μnμ
α = 0, 15.

where the four-flow is

nμ
α (x) ≡

∫
d 3 p

(2π )3
pμ fα(p, x). 16.

The index α simultaneously labels the streams and plasma components.
Multiplying the transport equation (Equation 1) by the four-momentum p and

integrating over momentum, we get

∂μTμν
α + qαnμ

α F ν
μ = 0, 17.

where the energy-momentum tensor is

Tμν
α (x) ≡

∫
d 3 p

(2π )3
pμ pν fα(p, x). 18.

The structure of nμ
α and Tμν

α is assumed to be that of an ideal fluid in local thermo-
dynamic equilibrium. Thus, one has

nμ
α (x) = nα(x)uμ

α (x), 19.

Tμν
α (x) = [εα(x) + pα(x)] uμ(x)uν (x) − pα(x)gμν. 20.
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To obtain the relativistic version of the Euler equation, Equation 17 needs to be
manipulated following Reference 20. Substituting the energy-momentum tensor of
the form of Equation 20 into Equation 17 and projecting the result on the direction
of uμ

α , one finds

uαν∂μTμν
α = uμ

α ∂μεα + (εα + pα)∂μuμ
α = 0. 21.

Computing ∂μTμν
α − uν

αuαρ∂μTμρ
α , one gets the Lorentz covariant form of the Euler

equation

Mν
α ≡ (εα + pα)uαμ∂μuν

α + (
uμ

α uν
α∂μ − ∂ν

)
p − qαnαuαμ Fμν = 0. 22.

In a more familiar form, the equation is given by Mα − vα M0
α = 0. Namely,

(εα+pα)γ 2
α

(
∂

∂t
+ vα · ∇

)
vα+

(
∇ + vα

∂

∂t

)
pα−qαnαγα [E − vα(vα · E) + vα × B] = 0,

23.
where the four-velocity uμ

α was expressed as uμ
α = (γα, γαvα), with γα ≡ (1 − v2

α)−1/2.
In the nonrelativistic limit (which is easily obtained when the velocity of light c is

restored in the equation), Equation 23 assumes the well-known form(
∂

∂t
+ vα · ∇

)
vα + 1

mαnα

∇ pα − qα

mα

(E + vα × B) = 0. 24.

The fluid Equations 15 and 17 with nμ
α and Tμν

α given by Equations 19 and 20, re-
spectively, do not constitute a closed set of equations. There are five equations and six
unknown functions: nα , pα , εα , and three components of uμ

α (because of the constraint
uμ

α uμ α = 1, one component of uμ
α can be eliminated). There are several methods to

close the set of equations. In particular, assuming that the system’s dynamics is domi-
nated by the mean-field interaction, one can neglect the pressure gradients. One can
also add an equation that relates pα to εα . The relation is usually known as the equa-
tion of state, but one should be aware that the plasma system is not in equilibrium,
and in general the thermodynamic relations do not hold.

In the ultrarelativistic limit when the characteristic particle’s energy (the temper-
ature of the equilibrium system) is much larger than the particle’s mass, and thus
p2 ∼= 0, the energy-momentum tensor is traceless (Tμ

μα = 0), as follows from Equa-
tion 18 for p2 = 0. Then, Equation 20 combined with the constraint uμ

α (x)uαμ(x) = 1
provides the desired relation

εα(x) = 3pα(x), 25.

which coincides with the equation of state of an ideal gas of massless particles.
Because the distribution functions of every plasma component belonging to every

stream are assumed to obey the collisionless transport equation, we have a separated
set of fluid equations for every plasma component of every stream. The equations are
coupled only through the electromagnetic mean field. More precisely, the electrons,
positrons, and ions of every stream contribute to the current generating the field,
which in turn interacts with the streams.

The fluid equations can be solved in the linear-response approximation. The equa-
tions are linearized around the stationary and homogeneous state described by n̄α and
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ūμ
α . This state is neutral and there are no currents, i.e.,∑

α

n̄α ūμ
α = 0. 26.

The charge density is decomposed as

nα(x) = n̄α + δnα(x), 27.

where n̄α � δnα . The fully analogous decomposition of the hydrodynamic velocity
uμ

α , pressure pα , and energy density εα is also adopted.
The set of the continuity and Euler equations linearized in δnα , δuμ

α , δpα , δεα ,
and Fμν can be exactly solved after they are Fourier transformed. Thus, one finds
δnα(k) and δuμ

α (k) when the set of fluid equations is closed by neglecting the pressure
gradients. If the equation of state is used, one also finds δεα(k).

Keeping in mind that the induced current equals

δ jμ =
∑

α

(
qα n̄αδuμ

α + qαδnα ūμ
α

)
,

one finds from Equation 4

�μν (k) =
∑

α

4πq 2
α n̄2

α

ε̄α + p̄α

1
(ūα · k)2

[
k2ūμ

α ūν
α + (ūα · k)2gμν − (ūα · k)

(
kμūν

α + kμūμ
α

)

+ (ūα · k)k2
(
kμūν

α + kν ūμ
α

) − (ūα · k)2kμkν − k4ūμ
α ūν

α

k2 + 2(ūα · k)2

]
28.

The first term gives the polarization tensor when the pressure gradients are neglected,
and the second term gives the effect of the pressure gradients due to the equation
of state given by Equation 25. The first term is symmetric [�μν (k) = �νμ(k)] and
transverse [kμ�μν (k) = 0]. The second term is symmetric and transverse as well.
Thus, the whole polarization tensor (Equation 28) is symmetric and transverse. The
first term of Equation 28 can be obtained from the kinetic theory result (Equation 5)
with the distribution function f̄ n(p) proportional to δ(3)(p − (ε̄α + p̄α)uα/n̄α). Thus,
the first term neglects the thermal motion of plasma particles, whereas the second
term takes this effect into account.

2.2.2. Quark-gluon plasma. The fluid approach presented here follows the formu-
lation given in Reference 21. As in the EMP case, we assume that there are several
streams in the plasma system and that the distribution functions of quarks, antiquarks,
and gluons of each stream satisfy the collisionless transport equation. The streams
are labeled with the index α.

Further analysis is limited to quarks, but inclusion of antiquarks and gluons is
straightforward. The distribution function of quarks belonging to the stream α is de-
noted as Qα(p, x). Integrating over momentum—the collisionless transport (Equation
11) satisfied by Qα—one finds the covariant continuity equation

Dμnμ
α = 0, 29.
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where nμ
α is an Nc × Nc matrix defined as

nμ
α (x) ≡

∫
d 3 p

(2π )3
pμ Qα(p, x). 30.

The four-flow nμ
α transforms under gauge transformations as the quark distribution

function, that is, according to Equation 8.
Multiplying the transport (Equation 11) by the four-momentum and integrating

the product over momentum, we obtain

DμTμν
α − g

2
{

F ν
μ, nμ

α

} = 0, 31.

where the energy-momentum tensor is

Tμν
α (x) ≡

∫
d 3 p

(2π )3
pμ pν Qα(p, x). 32.

We assume further that the structure of nμ
α and Tμν

α is

nμ
α (x) = nα(x)uμ

α (x), 33.

Tμν
α (x) = 1

2
(εα(x) + pα(x))

{
uμ

α (x), uν
α(x)

} − pα(x)gμν, 34.

where the hydrodynamic velocity uμ
α is, as nα , εα , and pα , an Nc × Nc matrix. The

anticommutator of uμ
α and uν

α is present in Equation 34 to guarantee the symmetry
of Tμν

α with respect to μ ↔ ν, which is evident in Equation 32.
In the case of an Abelian plasma, the relativistic version of the Euler equation is

obtained from Equation 31 by removing from it the component parallel to uμ
α . An

analogous procedure is not possible for the non-Abelian plasma because in general
the matrices nα , uμ

α , and uν
α do not commute with each other. Thus, one has to work

directly with Equations 29 and 31 with nμ
α and Tμν

α defined by Equations 33 and
34, respectively. The equations have to be supplemented by the Yang-Mills equation
(Equation 14) with the color current of the form

jμ(x) = − g
2

∑
α

(
nαuμ

α − 1
Nc

Tr
[
nαuμ

α

])
, 35.

where only the quark contribution is taken into account.
The fluid Equations 29 and 31, as their electromagnetic counterpart, do not form

a closed set of equations, but can be closed analogously. The only difference is that
the equation of state (Equation 25) relates the matrix value functions εα and pα to
each other.

As in the case of the electromagnetic plasma, the fluid Equations 15 and 17, which
are linearized around a stationary, homogeneous, and colorless state described by n̄α ,
ε̄α , p̄α , and ūμ

α can be solved (21). Because of the color-neutrality assumption—n̄α ,
ε̄α , p̄α , and ūμ

α are all proportional to the unit matrix in the color space—the analysis
is rather similar to that of the Abelian plasma, and one ends up with the polariza-
tion tensor from Equation 28, which is proportional to the unit matrix in the color
space.
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2.3. Diagrammatic Methods

Various characteristics of the weakly coupled plasma can be calculated using the
perturbative expansion, that is, diagrammatic methods of field theory. It requires a
generalization of the Feynman rules applicable to processes, which occur in vacuum,
to many-body plasma systems. When the plasma is in thermodynamic equilibrium,
one can either follow the so-called imaginary-time formalism (see, e.g., References
22 and 23) or the real-time (Schwinger-Keldysh) formalism (24, 25). The latter can
also be extended to nonequilibrium situations (26, 27).

The perturbative expansion expressed in terms of Feynman diagrams allows a
systematic computation of various quantities. However, to obtain a gauge-invariant
finite result, one often has to re-sum a class of diagrams, as required by the hard
loop approach (28–30) (the real-time formulation is discussed in Reference 31). The
approach, which was first developed for equilibrium systems (28–30) (for a review, see
Reference 32) and then extended to the nonequilibrium case (33–35), distinguishes
soft from hard momenta. In the case of ultrarelativistic QED plasmas in equilibrium,
the soft momenta are of order eT, whereas the hard momenta are of order T, with T
being the plasma temperature. One obviously assumes that 1/e � 1. The hard loop
approach deals with soft collective excitations generated by hard plasma particles that
dominate the distribution functions.

As an example, we consider the polarization tensor given by Equation 5, which
was obtained within the kinetic theory in Section 2.1. We restrict ourselves to ul-
trarelativistic QED plasmas. In the lowest order of the perturbative expansion, the
polarization tensor or photon self-energy is given by the diagram shown in Figure 1.
The tensor can be decomposed into vacuum and medium contributions. The first one
requires a usual renormalization because of a UV divergence, whereas the medium
part appears to be UV finite. One reproduces Equation 5 by applying to the dia-
grammatic result the hard loop approximation, which requires that the energy and
momentum (ω, k) of the external photon line are much smaller than the momentum
(p) of the electron loop. Then, it appears that the vacuum part can be neglected, as it
is much smaller than the medium part. In the case of an ultrarelativistic equilibrium
EMP, Equation 7 was derived diagrammatically in References 36 and 37. In the QGP,
the lowest-order polarization tensor (gluon self-energy) includes one-loop diagrams
with internal gluon and ghost lines. The final result for the gluon-polarization tensor
in the high-temperature approximation essentially coincides with the QED expres-
sion. The color degrees of freedom enter through the trivial color factor δab . In the
case of equilibrium QGP, one additionally replaces in Equation 7 the thermal photon

Figure 1
The lowest-order
contribution to the QED
polarization tensor.
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mass by a thermal gluon mass given by

m2
g = g2T2

3

(
1 + Nf

6

)
, 36.

where Nf indicates the number of light-quark flavors.
The hard loop approach can be formulated nicely in terms of an effective action.

Such an action for an equilibrium system was derived diagrammatically in Reference
29 and in the explicitly gauge-invariant form in Reference 30. The equilibrium hard
loop action was also found within the semiclassical kinetic theory (38, 39). The action
was generalized (33, 35) for nonequilibrium systems, which are, on average, locally
color neutral, stationary, and homogeneous.

The starting point was the effective action, which describes an interaction of
classical fields with currents induced by these fields in the plasma. The Lagrangian
density is quadratic in the gluon and quark fields, and it equals

L2(x) = −
∫

d 4 y
[

1
2

Aa
μ(x)�μν

ab (x − y)Ab
ν ( y) + �̄(x)�(x − y)�( y)

]
, 37.

where �
μν

ab and � are the gluon-polarization tensor and the quark self-energy, re-
spectively, while Aa and � denote the gluon and quark fields. Following Braaten &
Pisarski (30), the Lagrangian from Equation 37 was modified to comply with the
requirement of gauge invariance. The final result, which is nonlocal but manifestly
gauge invariant, is

LHL(x) = g2

2

∫
d 3 p

(2π )3

[
f (p)Fa

μν (x)
(

pν pρ

(p · D)2

)
ab

F bμ
ρ (x)

+ i
N2

c − 1
4Nc

f̃ (p)�̄(x)
p · γ

p · D
�(x)

]
, 38.

where Fμν
a is the strength tensor and D denotes the covariant derivative;

f (p) and f̃ (p) are the effective parton distribution functions defined as f (p) ≡
n(p) + n̄(p) + 2Nc ng (p) and f̃ (p) ≡ n(p) + n̄(p) + 2ng (p), respectively; n(p), n̄(p),
and ng (p) are the distribution functions of quarks, antiquarks, and gluons, respec-
tively, of a single-color component in a homogeneous and stationary plasma, which
is locally and globally colorless; the spin and flavor are treated as parton internal
degrees of freedom. The quarks and gluons are assumed to be massless. The effec-
tive action given by Equation 38 generates n-point functions, which obey the Ward-
Takahashi identities. Equation 38 holds under the assumption that the field amplitude
is much smaller than T/g, where T denotes the characteristic momentum of (hard)
partons.

3. COLLECTIVE PHENOMENA

The most characteristic feature of the electromagnetic and QCD plasmas, which
results from a long-range interaction governing both systems, is a collective behav-
ior that leads to specific plasma phenomena such as screening, plasma oscillations,
instabilities, and so on.
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Because the electromagnetic and chromodynamic polarization tensors, which are
obtained in the linear-response analysis, are essentially the same, the collective effects
in EMPs and QGPs are very similar in the linear-response regime. As our discussion
is limited to this regime, mostly the EMP is considered in this section.

3.1. Screening

We start with screening of electric charges in the plasma. To discuss the effect, let us
consider an electric field generated by a point-like charge q moving with velocity v
in the plasma. The problem is studied in numerous plasma handbooks, for example,
in Reference 2. The induction vector obeys the Maxwell equation

∇ · D(x) = 4πqδ(3)(r − vt) ,

with x ≡ (t, r). After the Fourier transformation, which is defined by Equation 3, the
induction vector reads

ik · D(k) = 8π2qδ(ω − k · v), 39.

where k ≡ (ω, k). The induction vector D(k) is related to the electric field E(k)
through the dielectric tensor εij(k) as

Di (k) = εij(k)E j (k). 40.

We note that the dielectric tensor εij(k), which carries information on the electro-
magnetic properties of a medium, can be expressed through the polarization tensor
as

εij(k) = δij + 1
ω2

�ij(k). 41.

In an isotropic plasma, there are only two independent components of the dielectric
tensor εT and εL, which are related to εij as

εij(k) = εT(k)(δij − ki k j /k2) + εL(k)ki k j /k2. 42.

Using Equations 40 and 42, and expressing the electric field E through the scalar φ and
vector A potentials [E(k) = −ikφ(k) + iωA(k)] in the Coulomb gauge [k ·A(k) = 0],
one finds the electric potential in a medium (the wake potential):

φ(x) = 4πq
∫

d 3k
(2π )3

e ik·(r−vt)

εL(ω = v · k, k)k2
. 43.

Let us first consider the simplest case of the potential generated by a static (v = 0)
charge. Using Equations 6 and 7, εL(0, k) of an ultrarelatvistic electron-positron
plasma is found as

εL(0, k) = 1 + m2
D

k2
, 44.

where mD is the so-called Debye mass given by m2
D = e2T2/3 = 3m2

γ = �L(0, k).
Then, Equation 43 gives the well-known screened potential

φ(r) = q
r

e−mDr , 45.
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with r ≡ |r|. Thus, the inverse Debye mass has the interpretation of the screening
length of the potential. Because the average interparticle spacing in the ultrarelativistic
plasma is of order T−1, the number of particles in the Debye sphere (the sphere of
the radius m−1

D ) is of order e−3, which is, as already mentioned in the Introduction,
much larger than unity in the weakly coupled plasma (1/e2 � 1). This explains the
collective behavior of the plasma, since motion of particles from the Debye sphere is
highly correlated.

For v 	= 0, the potential given by Equation 43 has a rich structure. It has been
discussed in the context of QGPs in References 40–42, showing that it can exhibit
attractive contributions even between like-sign charges in certain directions (40). For
a supersonic particle, the potential can reveal a Mach cone structure associated with
Cerenkov radiation when electromagnetic properties of the plasma are appropriately
modeled (41, 42).

3.2. Collective Modes

Let us consider a plasma in a homogenous, stationary state with no local charges
and no currents. As a fluctuation or perturbation of this state, there appear local
charges or currents generating electric and magnetic fields, which in turn interact
with charged plasma particles. Then, the plasma reveals a collective motion, which
classically is termed plasma oscillations. Quantum mechanically we deal with quasi-
particle collective excitations of the plasma.

The collective modes are solutions of the dispersion equation obtained from
the equation of motion of the Fourier-transformed electromagnetic potential Aμ(k),
which is

[k2gμν − kμkν − �μν (k)]Aν (k) = 0, 46.

where the polarization tensor �μν contains all dynamical information about the sys-
tem. The general dispersion equation is then

det[k2gμν − kμkν − �μν (k)] = 0. 47.

Owing to the transversality of �μν (k), not all components of �μν (k) are independent
of each other. Consequently, the dispersion equation (Equation 47), which involves a
determinant of a 4 × 4 matrix, can be simplified to the determinant of a 3 × 3 matrix.
For this purpose, one usually introduces the dielectric tensor εij(k), which is related
to the polarization tensor by Equation 41. Then, the dispersion equation gets the
form

det[k2δij − ki k j − ω2εij(k)] = 0. 48.

The relationship between Equation 47 and Equation 48 is most easily seen in the
Coulomb gauge when φ = 0 and k · A(k) = 0. Then, E = iωA and Equation 46 is
immediately transformed into an equation of motion for E(k), which further provides
the dispersion equation (Equation 48).

As expressed by Equation 42, there are only two independent components of
the dielectric tensor [εT(k) and εL(k)] in an isotropic plasma. Then, the dispersion
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equation (Equation 48) splits into two equations:

εT(k) = k2/ω2, εL(k) = 0. 49.

Solutions of the dispersion equations ω(k), with a generally complex frequency ω, rep-
resent plasma modes, which classically are, as already mentioned, the waves of electric
and/or magnetic fields in the plasma, whereas quantum mechanically the modes are
quasi-particle excitations of the plasma system. If the imaginary part of the mode’s
frequency 
ω is negative, the mode is damped. Its amplitude decays exponentially in
time as e
ωt . When 
ω = 0, we have a stable mode with a constant amplitude. Finally,
if 
ω > 0, the mode’s amplitude grows exponentially in time; there is an instability.

When the electric field of a mode is parallel to its wave vector k, the mode is termed
longitudinal. A mode is termed transverse when the electric field is transverse to the
wave vector. The Maxwell equations show that the longitudinal modes, also known as
electric, are associated with electric-charge oscillations. The transverse modes, also
known as magnetic, are associated with electric-current oscillations.

The collective (boson) modes in the equilibrium ultrarelativistic plasma are shown
in Figure 2. There are longitudinal modes, also termed plasmons and transverse
modes. Both start at zero momentum at the plasma frequency, which is identical to
the thermal photon (or gluon) mass, ωp = mγ . The dispersion relations lie above
the light cone (ω > |k|), showing that the plasma waves are undamped (no Landau
damping) in the high-temperature limit. As explained in Section 3.3.1, the Landau
damping, which arises formally from the imaginary part of the polarization tensor
given by Equation 7 at ω2 < k2, occurs when the energy of the wave is transferred to
plasma particles moving with velocity equal to the phase velocity (ω/|k|) of the wave.
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If the phase velocity is larger than the speed of light, such a transfer is obviously not
possible.

3.2.1. Two-stream system. As an example of the rich spectrum of collective modes,
we consider the two-stream system within the hydrodynamic approach when the
effect of pressure gradients is neglected. Details of the analysis can be found in
Reference 21. The dielectric tensor provided by the polarization tensor from
Equation 28 is

εij(ω, k) =
(

1 − ω2
p

ω2

)
δij − 4π

ω2

∑
α

q 2
α n̄2

α

ε̄α + p̄α

[
v̄i

αk j + v̄ j
αki

ω − k · v̄α

− (ω2 − k2)v̄i
αv̄

j
α

(ω − k · v̄α)2

]
, 50.

where vα is the hydrodynamic velocity related to the hydrodynamic four-velocity and
ūμ

α . ωp is the plasma frequency given as

ω2
p ≡ 4π

∑
α

q 2
α n̄2

α

ε̄α + p̄α

. 51.

The index α, which labels the streams and plasma components, has four values,
α = L−, L+, R−, R+. The first character labels the stream (R for right and L for
left), while the second one labels the plasma component (+ for positive and − for
negative charges). For simplicity we assume here that the streams are neutral and
identical to each other and their velocities, which are chosen along the z-axis, and are
opposite to each other. Then,

n̄ ≡ n̄L− = n̄L+ = n̄R− = n̄R+, ε̄ ≡ ε̄L− = ε̄L+ = ε̄R− = ε̄R+,

p̄ ≡ p̄L− = p̄L+ = p̄ R− = p̄ R+, v̄ ≡ v̄L− = v̄L+ = −v̄R− = −v̄R+,

e = qL− = −qL+ = qR− = −qR+, 52.

and the plasma frequency is ω2
p = 16πe2n̄2/(ε̄ + p̄).

The wave vector is first chosen to be parallel to the x-axis, k = (k, 0, 0). Owing to
Equation 52, the off-diagonal elements of the matrix in Equation 48 vanish and the
dispersion equation with the dielectric tensor given by Equation 50 is

(
ω2 − ω2

p

) (
ω2 − ω2

p − k2) (
ω2 − ω2

p − k2 − λ2 k2 − ω2

ω2

)
= 0, 53.

where λ2 ≡ ω2
p v̄2. As solutions of the equation, one finds a stable longitudinal mode

with ω2 = ω2
p and a stable transverse mode with ω2 = ω2

p + k2. There are also
transverse modes with

ω2
± = 1

2

[
ω2

p − λ2 + k2 ±
√(

ω2
p − λ2 + k2

)2 + 4λ2k2
]
. 54.

As seen, ω2
+ > 0, but ω2

− < 0. Thus, the mode ω+ is stable and there are two
modes with pure imaginary frequency corresponding to ω2

− < 0. The first mode is
overdamped, whereas the second one is the well-known unstable Weibel mode (43),
leading to the filamentation instability. A physical mechanism of the instability is
explained in Section 3.3.2.
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The wave vector, as well as the stream velocities, is now chosen along the z-axis,
i.e., k = (0, 0, k). Then, the matrix in Equation 48 is diagonal. With the dielectric
tensor given by Equation 50, the dispersion equation reads

(
ω2 − ω2

p − k2)2
{
ω2 − ω2

p − ω2
p

[
kv̄

ω − kv̄
+ (k2 − ω2)v̄2

2(ω − kv̄)2
− kv̄

ω + kv̄
+ (k2 − ω2)v̄2

2(ω + kv̄)2

]}
= 0.

55.
There are two transverse stable modes with ω2 = ω2

p + k2. The longitudinal modes
are solutions of the above equation, which can be rewritten as

1 − ω2
0

[
1

(ω − kv̄)2
+ 1

(ω + kv̄)2

]
= 0, 56.

where ω2
0 ≡ ω2

p/2γ̄ 2 with γ̄ = (1 − v̄2)−1/2. With the dimensionless quantities x ≡
ω/ω0 and y ≡ kv̄/ω0, Equation 56 is

(x2 − y2)2 − 2x2 − 2y2 = 0, 57.

and is solved by

x2
± = y2 + 1 ±

√
4y2 + 1. 58.

As seen, x2
+ is always positive and thus gives two real (stable) modes, x2

− is negative
for 0 < y <

√
2, and so there are two pure imaginary modes. The unstable one

corresponds to the two-stream electrostatic instability. A physical mechanism of the
instability is explained in Section 3.3.1.

3.3. Instabilities

The presence of unstable modes in a plasma system crucially influences its dynamics.
Huge difficulties encountered by the half-century program to build a thermonuclear
reactor are related to various instabilities experienced by a plasma, which make the
system’s behavior very turbulent, hard to predict, and hard to control.

There exists a large variety of instabilities; the history of plasma physics is said
to be a history of discoveries of new instabilities. Plasma instabilities can be divided
into two general groups: (a) hydrodynamic instabilities, caused by coordinate space
inhomogeneities, and (b) kinetic instabilities due to the nonequilibrium momentum
distribution of plasma particles.

The hydrodynamic instabilities are usually associated with phenomena occurring
at the plasma boundaries. In the case of the QGP, this is the domain of highly nonper-
turbative QCD, where the non-Abelian nature of the theory is of crucial importance.
Then, the behavior of the QGP is presumably very different from that of the EMP,
and thus we will not speculate about possible analogies.

The kinetic instabilities are simply the collective modes with positive 
ω, intro-
duced in Section 3.2 and found in Section 3.2.1 in the specific case of the two-stream
system. Thus, we have longitudinal (electric) and transverse (magnetic) instabilities.
In the nonrelativistic plasma, the electric instabilities are usually much more impor-
tant than the magnetic ones, as the magnetic effects are suppressed by the factor v2/c 2,
where v is the particle’s velocity. In the relativistic plasma, both types of instabilities
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are of similar strength. As we discuss below, the electric instabilities occur when the
momentum distribution of plasma particles has more than one maximum, as in the
two-stream system. A sufficient condition for the magnetic instabilities appears to be
an anisotropy of the momentum distribution.

3.3.1. Mechanism of electric instability. Let us consider a plane wave for the
electric field, with the wave vector along the z-axis. For a charged particle, which
moves with a velocity v = pz/Ep equal to the phase velocity of the wave vφ = ω/k, the
electric field does not oscillate, but is constant. The particle is then either accelerated
or decelerated depending on the field’s phase. For an electron with v = vφ , chances of
being accelerated and decelerated are equal, as the time intervals spent by the particle
in the acceleration zone and in the deceleration zone are the same.

Let us now consider electrons with velocities somewhat smaller than the phase
velocity of the wave. Such particles spend more time in the acceleration zone than
in the deceleration zone, and the net result is that the particles with v < vφ are
accelerated. Consequently, energy is transferred from the electric field to the particles.
The particles with v > vφ spend more time in the deceleration zone than in the
acceleration zone, and thus they are effectively decelerated. Energy is transferred
from the particles to the field. If the momentum distribution is such that there are
more electrons in a system with v < vφ than with v > vφ , the wave loses energy
that is gained by the particles, as shown in the left graph of Figure 3. This is the
mechanism of the famous collisionless Landau damping of the plasma oscillations.
If there are more particles with v > vφ than with v < vφ , the particles lose energy
that is gained by the wave, as in the right graph of Figure 3. Consequently, the wave
amplitude grows. This is the mechanism of electric instability. As explained above,
it requires the existence of the momentum interval where fn(p) grows with p. Such
an interval appears when the momentum distribution has more than one maximum.
This happens in the two-stream system discussed in Section 3.2.1 or in the system of
a plasma and a beam, shown in Figure 4.
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3.3.2. Mechanism of magnetic instability. Because the magnetic instabilities ap-
pear to be relevant for QGPs produced in relativistic heavy-ion collisions (see below),
we discuss them in more detail. Let us first explain following Reference 44 how the
unstable transverse modes are initiated. For this purpose we consider a plasma sys-
tem that is homogeneous, but where the momentum distribution of particles is not
of equilibrium form—it is not anisotropic. The system is on average locally neutral
[〈 jμ(x)〉 = 0] but current fluctuations are possible, and thus in general the correla-
tor 〈 jμ(x1) j ν (x2)〉 is nonzero. Because the plasma is assumed to be weakly coupled,
the correlator can be estimated neglecting the interaction entirely. Then, when the
effects of quantum statistics are also neglected, the correlator is

Mμν (t, x)
def=〈 jμ(t1, x1) j ν (t2, x2)〉 =

∑
n

q 2
n

∫
d 3 p

(2π )3
� pμ pν

E2
p

fn(p)δ(3)(x − vt), 59.

where v ≡ p/Ep and (t, x) ≡ (t2 − t1, x2 − x1). Owing to the average space-time
homogeneity, the correlator given by Equation 59 depends only on the difference (t2−
t1, x2 − x1). The space-time points (t1, x1) and (t2, x2) are correlated in the system of
noninteracting particles if a particle travels from (t1, x1) to (t2, x2). For this reason, the
delta function δ(3)(x−vt) is present in Equation 59. The sum and momentum integral
represent summation over all particles in the system. The fluctuation spectrum is
found as the Fourier transform of Equation 59; that is,

Mμν (ω, k) =
∑

n

q 2
n

∫
d 3 p

(2π )3

pμ pν

E2
p

fn(p)2πδ(ω − kv). 60.

To further study the fluctuation spectrum, the particle’s momentum distribution
must be specified. We present here only a qualitative discussion of Equations 59 and
60, assuming that the momentum distribution is strongly elongated in one direction,
which is chosen to be along the z-axis. Then, the correlator Mzz is larger than Mxx

or Myy . It is also clear that Mzz is at its largest when the wave vector k is along the
direction of the momentum deficit. In such a case the delta function δ(ω − kv) does
not much constrain the integral in Equation 60. Because the momentum distribution
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is elongated in the z-direction, the current fluctuations are at their largest when the
wave vector k is in the x-y plane. Thus, we conclude that some fluctuations in the
anisotropic system are large, much larger than in the isotropic one. An anisotropic
system has a natural tendency to split into the current filaments parallel to the direc-
tion of the momentum surplus. These currents are seeds of the transverse unstable
mode known as the filamentation, or Weibel, instability (43), which was found in the
two-stream system discussed in Section 3.2.1.

Let us now explain in terms of elementary physics why the fluctuating currents,
which flow in the direction of the momentum surplus, can grow in time. The form
of the fluctuating current is chosen to be

j(x) = j êz cos(kx x), 61.

where êz is a unit vector in the z-direction. As seen in Equation 61, there are current
filaments of the thickness π/|kx |, with the current flowing in opposite directions in the
neighboring filaments. The magnetic field generated by the current from Equation
61 is given as

B(x) = 4π
j

kx
êy sin(kx x),

and the Lorentz force acting on the particles, which fly along the z-direction, is

F(x) = qv × B(x) = −4πqvz
j

kx
êx sin(kx x),

where q is the particle’s electric charge. One observes (see Figure 5) that the force dis-
tributes the particles in such a way that those that contribute positively to the current
in a given filament are focused in the filament center, whereas those that contribute
negatively are moved to the neighboring one. Thus, the initial current is growing
and the magnetic field generated by this current is growing as well. The instability
is driven by the energy transferred from the particles to fields. More specifically, the
kinetic energy related to the motion along the direction of the momentum surplus is
used to generate the magnetic field.

3.3.3. Role of instabilities. As mentioned above, there exists a large variety of plasma
instabilities that strongly influence numerous plasma characteristics. Not much is
known of the hydrodynamic instabilities of the QGP, and if they exist, they belong
to the highly nonperturbative sector of QCD, which is still poorly understood. As
explained in Section 3.3.1, the electric instabilities occur in a two-stream system,
or more generally, in systems with a momentum distribution having more than one
maximum. Although such a distribution is common in EMPs, it is rather irrelevant
for QGPs produced in relativistic heavy-ion collisions, where the global as well as
local momentum distributions are expected to monotonously decrease in every di-
rection from the maximum. The electric instabilities are absent in such a system,
but a magnetic unstable mode, which has been discussed in Section 3.3.2, is possi-
ble. The filamentaion instability was first argued to be relevant for the QGP pro-
duced in relativistic heavy-ion collisions in References 44–46. A characteristic time of
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instability growth was estimated (45, 46) to be shorter or at least comparable to other
timescales of the parton-system evolution. The mechanism of instability growth was
also clarified (44). The early arguments were substantiated in the forthcoming analytic
calculations (47–49) and numerical simulations (50–54).

A main consequence of instabilities is a fast equilibration of the weakly coupled
plasma. The problem is of particular interest because the experimental data on heavy-
ion collisions, where QGP production is expected, suggest that an equilibration time
of the parton system is below 1 fm/c (55). A whole scenario of instabilities-driven
equilibration is reviewed in Reference 56. Here we mention only the main points,
starting with an observation that collisions of charged particles are not very efficient
in redistributing particle momenta, as the Rutherford cross section is strongly peaked
at a small momentum transfer. One needs either many frequent but soft collisions or a
few rare but hard collisions to substantially change a particle’s momentum. As a result,
the inverse time of collisional equilibration of the QGP is of the order g4ln(1/g)T
(16), where T is the characteristic momentum of quarks or gluons. It appears that the
momentum distribution approaches isotropy owing to instabilities within the inverse
time of order gT (57). If 1/g � 1, the collisional equilibration is obviously much
slower. As discussed in Section 4, the situation changes in strongly coupled plasmas.

When the instabilities grow, the system becomes more and more isotropic (46,
57) because the Lorentz force changes the particle’s momenta, and the growing fields
carry an extra momentum. To explain the mechanism, let us assume that initially
there is a momentum surplus in the z-direction. The fluctuating current flows in the
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z-direction, with the wave vector pointing in the x-direction. Because the magnetic
field has a y-component, the Lorentz force—which acts on partons flying along the
z-axis—pushes the partons in the x-direction where there is a momentum deficit. The
numerical simulation (52) shows that growth of the instabilities is indeed accompanied
by the system’s fast isotropization.

The system isotropizes not only owing to the effect of the Lorentz force, but
also owing to the momentum carried by the growing field. When the magnetic and
electric fields are oriented along the y- and z-axes, respectively, the Poynting vector
points in the x-direction along the wave vector. Thus, the momentum carried by the
fields is oriented in the direction of the momentum deficit of particles.

Although the scenario of instabilities-driven equilibration looks very promising,
the problem of thermalization of QGPs produced in heavy-ion collisions is far from
being settled. Schenke et al. (58) showed that interparton collisions, which have been
modeled using the BGK collision term (10), reduce the growth of instabilities and thus
slow down the process of equilibration. The equilibration is also slowed down owing
to expansion of the QGP into vacuum (59, 60), which is a characteristic feature of
QGPs produced in relativistic heavy-ion collisions. Finally, the late stage of instability
development, when non-Abelian effects are crucially important, appears to be very
complex (61, 62), and it is far from being understood.

As already mentioned, instabilities influence various plasma characteristics. In
particular, turbulent magnetic fields generated in the systems, which are unstable
with respect to transverse modes, are responsible for a reduction of plasma viscosity
(63). Then, an anomalously small viscosity, which is usually associated with strongly
coupled systems, can occur in weakly coupled plasmas as well. Recently, it has been
argued (64, 65) that the mechanism of viscosity reduction is operative in the unstable
QGP.

3.4. Energy Loss

A charged particle that moves across the plasma changes its energy owing to several
processes (2). When the particle’s energy (E) is comparable to the plasma tempera-
ture (T ), the particle can gain energy owing to interactions with field fluctuations.
(In context of the QGP, the problem was studied in Reference 66) A fast particle with
E � T loses energy, and dominant contributions come from collisions with other
plasma particles and from radiation. In the following we discuss the energy loss of
a fast particle, as the problem is closely related to jet quenching, which was sug-
gested long ago as a signature for QGP formation in relativistic heavy-ion collisions
(67, 68).

Let us start with the collisional energy loss. The particle’s collisions are split into
two classes: hard, with high-momentum transfer, corresponding to the collisions with
plasma particles, and soft, with low-momentum transfer dominated by the interac-
tions with plasma collective modes. The momentum is called soft when it is of order
of the Debye mass, mD, or smaller, and it is hard when it is larger than mD.

The soft contribution to the energy loss, which can be treated classically, is of-
ten known as plasma polarization. It leads to the energy loss per unit time given by the
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formula (
dE
dt

)
soft

=
∫

d 3x j(x)E(x), 62.

where E is the electric field induced in the plasma by the particle’s current j, which is
of the form j(x) = qvδ(3)(x−vt). The field can be calculated by means of the Maxwell
equations. After eliminating the magnetic field, one finds the equation[

εij(k) − k2

ω2

(
δij − ki k j

k2

)]
E j (k) = 4π

iω
ji (k).

Because we consider equilibrium plasma, which is isotropic, one introduces the
longitudinal (εL) and transverse (εL) components of εij. Then, Equation 62 can be
manipulated to(

dE
d x

)
soft

= −4π ie2

v

∫
d 3k

(2π )3

{
ω

k2εL(k)
+ v2 − ω2/k2

ω[εT(k) − k2/ω2]

}
, 63.

which gives the energy loss per unit length. This formula describes the effect of
medium polarization. However, three comments are in order here:

1. Equation 63 includes the charge self-interaction signaled by the UV divergence
of the integral from Equation 63. The self-interaction is removed by subtracting
from Equation 63 the vacuum expression with εL = εT = 1.

2. Poles of the function under the integral from Equation 63 correspond to the
plasma collective modes as given by the dispersion from Equation 49. There-
fore, the explicit expressions of εL and εL are not actually needed to compute
the integral in Equation 63. The knowledge of the spectrum of quasi-particles
appears to be sufficient.

3. Equation 63 is derived in the classical approximation, which breaks down for a
sufficiently large k. Therefore, an upper cutoff is needed. The interaction with
k above the cutoff, which, as already mentioned, is of order of the Debye mass,
should be treated as hard collisions with plasma particles.

The energy loss per unit length due to hard collisions is(
dE
d x

)
hard

=
∑

i

∫
d 3k

(2π )3
ni (k) [flux factor]

∫
d�

dσ i

d�
ν, 64.

where the sum runs over particle species distributed according to ni (k), ν ≡ E − E ′ is
the energy transfer, and dσ i/d� is the respective differential cross section. Combining
Equations 63 and 64, one finds the complete collisional energy loss. The calculations
of the energy loss of a fast parton in the QGP along the lines presented above were
performed in References 69 and 70. Systematic calculations of the collisional energy
loss using the hard thermal loop resummation technique were given in References 71
and 72, with a result that is infrared finite, gauge invariant, and complete to leading
order. Recently, the calculations of the collisional energy loss have been extended to
anisotropic QGPs (73).

It was realized that a sizeable contribution to the quark’s energy loss comes from
radiative processes (74). The problem, however, appeared to be very complex because
the quark’s successive interactions in the plasma cannot be treated as independent
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from each other, and there is a destructive interference of radiated gluons known as
the Landau-Pomeranchuk-Migdal effect (75). There are numerous papers devoted
to the radiative energy loss, and the whole problem is reviewed in Reference 76. A
general conclusion of these studies is that the energy lost by a fast light quark depends
quadraticaly (not linearly) on the path traversed in the QGP, since the radiative energy
loss dominates over the collisional loss. Recent experiments at RHIC show (77, 78),
however, that heavy quarks, whose radiative energy loss is significantly suppressed,
are strongly decelerated in the QGP medium. It may suggest that the collisional
energy loss should actually be enhanced as predicted theoretically in Reference 79.

4. STRONGLY COUPLED PLASMAS

Our discussion of the collective phenomena presented in Section 3 was limited to
weakly interacting plasmas, with the coupling constant much smaller than unity.
However, the QGP produced in ultrarelativistic heavy-ion collisions is presumably
strongly coupled quark-gluon plasma (sQGP), as the temperature is never much
larger than �QCD, and the regime of asymptotic freedom is not reached. The QGP
is certainly a strongly interacting system close to the confinement phase transition.
There are indeed hints in the extensive experimental material collected at RHIC
(80–83) that the matter produced at the early stage of nucleus-nucleus collisions
is in the form of sQGP for a few femtometers per speed of light. In particular,
the characteristics of elliptic flow and particle spectra, which are well described by
ideal hydrodynamics, seem to indicate a fast thermalization and small viscosity of
the plasma. Both features are naturally explained assuming a strong coupling of the
plasma (55, 84–87).

Although a fast thermalization (56) as well as a small viscosity (64, 65) can also
be explained by instabilities, the idea of sQGP must be examined. However, the
theoretical tools presented in Section 2 implicitly or explicitly assume a small coupling
constant, and they are of limited applicability. A powerful approach, which can be
used to study sQGP is the lattice formulation of QCD (for a review, see Reference 88).
However, lattice QCD calculations, which are mostly numerical, encounter serious
problems in incorporating quark degrees of freedom. It is also very difficult to analyze
time-dependent plasma characteristics.

Strongly coupled conformal field theories such as supersymmetric QCD can be
studied by means of the so-called AdS/CFT duality (89). Although some very inter-
esting results on the conformal QGP were obtained in this way (see, e.g., Reference
90 and references therein), the relevance of these results for the QGP governed by
QCD—not supersymmetric QCD—is unclear. Thus, the question arises: What we
can learn about sQGP from strongly coupled EMPs?

We first note that most EMPs in nature and technological applications are weakly
coupled. That is, the interaction energy between the plasma particles is much smaller
than their thermal (kinetic) energy. This is because strongly coupled plasmas require a
high particle density and/or low temperature, at which usually strong recombination
occurs and the plasma state vanishes. Exceptions are the ion component in white
dwarfs, metallic hydrogen, and other states of dense warm matter in the interior
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of giant planets; short-living dense plasmas produced by intense laser or heavy-ion
beams; or in explosive shock tubes, dusty (or complex) plasmas, and two-dimensional
electron systems in liquid helium (91–93). Therefore, it is a real challenge to study
strongly coupled EMPs both theoretically and experimentally.

In nonrelativistic EMP, the interaction energy is given by the (screened) Coulomb
potential. The Coulomb coupling parameter defined by

� = q 2

aT
65.

distinguishes between weakly coupled, � � 1, and strongly coupled, � � 1, plas-
mas. Here, q is the particle charge, a the interparticle distance, and T the kinetic
temperature of the plasma component (electrons, ions, charged dust grains) under
consideration. In the case of a degenerate plasma, for example, the electron compo-
nent in a white dwarf, the kinetic energy T is replaced by the Fermi energy. Owing
to the strong interaction, the plasma can behave either as a gas or a liquid, or even a
solid (crystalline) system.

The case of a one-component plasma (OCP) with a pure Coulomb interaction (a
single species of charged particles in a uniform, neutralizing background) has been
studied in great detail as a reference model for strongly coupled plasmas using simple
models as well as numerical simulations (91). For � > 172, the plasma was shown
to form regular structures (Coulomb crystallization) (94). Below this critical value,
the OCP is in the supercritical state. For values of � larger than ∼50, it behaves like
an ordinary liquid, whereas for small values below unity, it behaves like a gas. Only
if � is large enough does the usual liquid behavior (Arrhenius’ law for the viscosity,
Stokes-Einstein relation between self-diffusion and shear viscosity, etc.) appear owing
to caging of the particles (a single particle is trapped for some period of time in the
cage formed by its nearest neighbors). For values of � smaller than approximately 50,
caging is not sufficiently strong and the system shows complicated, not yet understood
transport properties. However, the short-range ordering typical for liquids shows up
already for � > 3 (95). A gas-liquid transition requiring a long-range attraction and
a short-range repulsion, for example, Lennard-Jones potential, does not exist in the
OCP with particles of like-sign charges.

In realistic systems with a screened Coulomb interaction (Yukawa potential), the
phase diagram can be shown in the �-κ plane, where κ = a/λD is the distance
parameter, with λD being the Debye screening length. Numerical simulations based
on molecular dynamics lead to the phase diagram shown in Figure 6 (96).

The first quantity of interest of sQGP is the coupling parameter. In analogy to
nonrelativistic EMP, it is defined as (97)

� = 2Cg2

4πaT
= 1.5 − 5, 66.

where C is the Casimir invariant (C = 4/3 for quarks and C = 3 for gluons), a �
0.5 fm is the interparticle distance, and T � 200 MeV is the QGP temperature
corresponding to a strong-coupling constant g � 2. The factor 2 in the numerator
comes from taking into account the magnetic interaction in addition to the static
electric (Coulomb) interaction, which are of the same magnitude in ultrarelativistic
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plasmas. The factor 4π in the denominator comes from using the Heaviside-Lorentz
system in QCD, as discussed in the Introduction. The distance parameter κ of the
QGP under the above conditions is rather small, typically between 1 and 3 (98).

Note that we have assumed here a classical interaction potential corresponding to
one-gluon exchange. However, an effective potential that takes into account higher-
order and nonperturbative effects may be much larger. This may be related to the fact
that experimental data suggest a cross-section enhancement for the parton interac-
tion by more than an order of magnitude (see below). Hence, the effective coupling
parameter may be up to an order of magnitude larger than Equation 66.

As discussed above, comparison to the OCP model as well as experimental data
suggests that QGPs close to the confinement phase transition could be in a liquid
phase. The question arises whether there is a phase transition from a liquid to a gaseous
QGP, as sketched in Figure 7. For such a transition, a Lennard-Jones-type interaction
between the partons is required. However, the parton interaction in perturbative
QCD is either purely repulsive or attractive in the various interaction channels, for
example, in the quark-antiquark or diquark channels. Owing to nonlinear effects
caused by the strong coupling, however, attractive interactions can arise even in the
case of like-sign charges (see, e.g., Reference 99), leading to Lennard-Jones-type
potentials. Hence, a gas-liquid transition in the QGP with a critical point, proposed
in Reference 87, cannot be excluded and deserves further investigation.

An important quantity, which is very useful in theoretical and experimental studies
of strongly coupled systems on the microscopic level, in particular in fluid physics
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(100), is correlation functions. In particular, the pair-correlation function and the
static-structure function provide valuable information on the equation of state of
the system (100). The extension of the approach to the QGP has been proposed in
Reference 98.

The static density-density autocorrelation function is defined for a classical system
as (91, 100)

G(r) = 1
N

∫
d 3r ′〈ρ(r + r′, t)ρ(r′, t)〉,

where N is the total number of particles and

ρ(r, t) =
N∑

i=1

δ(3)(r − ri (t))

is the local density of point particles, with ri (t) denoting the position of i-th particle at
time t. The density-density autocorrelation function is related to the pair-correlation
function, which is defined as

g(r) = 1
N

〈
N∑

i, j,i 	= j

δ3(r + ri − r j )

〉

by the relation G(r) = g(r) + δ(3)(r). The static-structure function, defined by

S(p) = 1
N

〈ρ(p)ρ(−p)〉,

with the Fourier-transformed particle density

ρ(p) =
∫

d 3rρ(r)e−ip·r,

is the Fourier transform of the density-density autocorrelation function

S(p) =
∫

d 3re−ip·rG(r)

The static-structure function S(p) is constant for p 	= 0 for uncorrelated particles
(2). The typical behavior of the function in an interacting gas and in a liquid is
sketched in Figure 8. The oscillatory behavior is caused by short-range correlations,
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corresponding to a short-range ordering typical for liquids. In the case of an OCP,
the oscillations appear for � > 3, indicating a liquid behavior (albeit with nonstandard
transport properties) of the supercritical phase already for rather low values of � (95).

The static-quark structure function can be related to the longitudinal gluon-
polarization tensor containing only the quark loop (Figure 1) via

S(p) = − 12
πg2n

∫ ∞

0
dω
�L(ω, p)coth

ω

2T
,

where n = N/V = 〈ρ(r)〉 is the average particle density in a homogeneous system.
As a reference for the strong-coupling regime, the static-quark structure function has
been calculated in the weak-coupling limit by resumming the polarization tensor in
the high-temperature limit (Equation 7), leading to (98)

S(p) = 2Nf T 3

n
p2

p2 + m2
D

, 67.

where m2
D = Nf g2T2/6 is the quark contribution to the Debye screening mass.

The static-structure function given by Equation 67 starts at zero for |p| = 0 and
saturates at the uncorrelated structure function S(p) = 2Nf T 3/n for large |p|. Such
a structure function corresponds to an interacting Yukawa system in the gas phase
(see Figure 8). Indeed, the pair-correlation function, following from the Fourier
transform of S(p) − 1, is

g(r) = − Nf T 3

2πn
m2

D

r
e−mDr ,

and it reproduces the Yukawa potential.
To compute the structure function in strongly coupled plasmas, molecular dynam-

ics is used (91). Although QGP is not a classical system, as the thermal de Broglie
wave length is of the same order as the interparticle distance, molecular dynam-
ics may be useful as a first estimate (87). Using molecular dynamics for a classical
sQGP (101–103), the expected behavior described above has been qualitatively ver-
ified (101). In strongly coupled dense matter, where quantum effects are important,
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quantum molecular dynamics based on a combination of classical molecular dynamics
and density functional theory has been applied successfully (104). A generalization
to the relativistic QGP has not been attempted so far. As an ultimate choice, lattice
QCD could be used to calculate the structure or pair-correlation functions. This
would provide a test for the state of sQGP as well as for the importance of quantum
effects by comparing lattice results to classical molecular simulations.

As a last application, we consider the influence of strong coupling on the cross
sections entering transport coefficients (shear viscosity), stopping power, and other
dynamical quantities of the plasma. Besides higher-order and nonperturbative quan-
tum effects, there is already a cross-section enhancement on the classical level. The
reason is that the Coulomb radius, defined as rc = q 2/E for particle energy E, is
of order of the Debye screening length—or rc is even larger than λD in a strongly
coupled plasma. Hence, the standard Coulomb scattering formula must be modi-
fied because the interaction with particles outside of the Debye sphere contributes
significantly. Consequently, the inverse screening length cannot be used as an in-
frared cutoff. This modification leads, for example, to the experimentally observed
enhancement of the so-called ion drag force in complex plasmas, which is caused by
the ion-dust interaction (105).

In the QGP at T � 200 MeV, the ratio rc /λD equals 1–5. It may enhance a parton
cross section by a factor of 2–9 (97) compared with perturbative results. An enhanced
cross section reduces the mean free path λ and consequently reduces the viscosity η

as η ∼ λ. An enhancement of the elastic parton cross section by more than an order
of magnitude compared with perturbative results also explains the elliptic flow and
particle spectra observed at RHIC (106). An infrared cutoff smaller than the Debye
mass provides a natural explanation for this enhancement. Also note that if the cross
section is enhanced, the collisional energy loss grows. However, the radiative energy
loss is expected to be suppressed in the sQGP by the Landau-Pomeranchuk-Migdal
effect (75).

Finally, we mention two examples of strongly coupled systems that have not been
considered in QGP physics but that may be of relevance. Strongly coupled plasmas
such as two-dimensional Yukawa liquids (107) and dusty plasmas are non-Newtonian
fluids. That is, the shear viscosity depends on the shear rate (flow velocity), as is
observed in ketchup (shear thinning). The second example concerns nanofluidics. The
expanding fireball in ultrarelativistic heavy-ion collisions has a transverse dimension
of approximately 20 interparticle distances (approximately 10 fm). Fluids consisting
of such a low number of layers exhibit properties different from large fluid systems.
For example, the shear flow does not show a continuous velocity gradient but jumps
owing to the adhesive forces between two layers. Such a behavior has been observed,
for example, in complex plasmas.
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