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Time evolution of near membrane layers
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Abstract. The near membrane layer is a region where the concentration of the substance transported across
the membrane is significantly decreased. Its thickness is defined as a length over which the concentration
drops k times with k being an arbitrary large number. The time evolution of such a layer is studied
experimentally by means of the laser interferometric method. It is shown that within the experimental
errors the thickness of the near membrane layer grows in time for any k as a

√
t with the coefficient a

being independent of the initial concentration and the membrane permeability. Time evolution of the
near membrane layers is also analyzed theoretically. The regularities found experimentally are naturally
described within the model which has been earlier developed by one of us. In particular, a scales as
erfc−1(1/k).

PACS. 66.10.Cb Diffusion and thermal diffusion – 82.65.Fr Film and membrane processes: ion exchange,
dialysis, osmosis, electroosmosis

1 Introduction

The transport in membrane systems is of great interest
in several fields of technology [1], where the membranes
are used as filters, and biophysics [2], where the mem-
brane transport plays a crucial role in the cell physiology.
The diffusion in a membrane system is also interesting by
itself as a nontrivial stochastic problem. While the time-
dependent concentration profiles of the substance trans-
ported across the membrane give a detailed description of
the macroscopic substance motion, we are often interested
only in the regions with a sufficiently large concentration.
Such a situation occurs when the phenomenon under con-
sideration strongly depends on the concentration. For ex-
ample, the hydrodynamic stability in the membrane sys-
tems studied in [3] is controlled by the Rayleigh number,
which in turn depends on the transported substance con-
centration [4]. Therefore, it is sometimes convenient to in-
troduce the so-called near membrane layer (NML) where
the substance concentration drops k times, with k being
an arbitrary large number [5]. NML can be also treated
as a useful representation of the measured concentration
profiles which is less sensitive to the experimental inaccu-
racies. In this paper we study NML experimentally and
theoretically.

Our experimental investigation is carried out by means
the laser interferometric method. The laser light is spilt
into two beams. The first one goes through the membrane
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system parallelly to the membrane surface while the sec-
ond, reference one goes directly to the light detecting sys-
tem. The interferograms, which appear due to the inter-
ference of the two beams, are controlled by the refraction
coefficient of the solute which in turn depends on the sub-
stance concentration. The analysis of the interferograms
allows one to reconstruct the time-dependent concentra-
tion profiles of the substance transported across the mem-
brane. Further one can find how NML evolves in time. We
show that the time evolution of the NML thickness man-
ifests surprisingly simple regularities.

The time dependence can be studied using the Smolu-
chowski (diffusion) equation. However, one has to impose
two boundary conditions at the membrane surface. The
first one is provided by the substance current conserva-
tion but there is no obvious choice of the second condition.
When the membrane has a finite thickness, the diffusive
transport within the membrane is often described by the
Smoluchowski equation as well [6]. The diffusion constant
however differs from that one which is in the regions out-
side the membrane. Then, one assumes [6] that the ratio of
the concentrations at both sides of each of the membrane
surfaces equals a constant which is a free parameter. We
find this approach as not very satisfactory. Since a real
membrane is not homogeneous and its internal structure
is rather complicated, using the diffusion equation inside
the membrane is rather questionable. The boundary con-
dition, which fixes the concentration ratios, is introduced
without physical justification. When the membrane thick-
ness goes to zero, the membrane selectivity vanishes en-
tirely, and, consequently, the approach is hardly useful
for very thin membranes. In the series of papers [7–9],
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Fig. 1. The interferograms which are analyzed to obtain the
concentration profiles. There is initially uniform ethanol solu-
tion of the concentration 125 mol/m3 in the upper part of the
measurement cuvette. The interferograms are taken at several
values of time: (a) 240 s, (b) 600 s, and (c) 1200 s.

one of us has developed the approach which is also based
on the Smoluchowski equation. The boundary condition
is well motivated and the membrane can be treated as
an infinitely thin wall characterized by the permeability
coefficient. The time dependence of NML can be easily
derived and, as we show here, it naturally describes the
experimental data.

The paper is organized as follows. In Section 2 we
present the experimental procedure with the results on
the concentration profiles and the near membrane layers.
Section 3 is devoted to theoretical considerations. The so-
lution of the Smoluchowski equation is found and the time
dependence of the NML thickness is derived. The predic-
tions of our theoretical model are compared with the ex-
perimental data. We summarize our study in Section 4.

2 Experiment

The membrane system under study is the cuvette of two
chambers separated by the horizontally located mem-
brane. Initially, we fill the upper (lower) chamber with the
aqueous solution of the ethanol while in the lower (upper)
one there is pure water. Then, the ethanol diffuses to the
lower (upper) chamber. Since the concentration gradients
are in the vertical direction only, the diffusion is expected
to be one dimensional (along the axis x). In other words,
the ethanol concentrations are assumed to be uniform in
the planes parallel to the membrane.

As already mentioned, we employ the laser interfer-
ometric method to measure the time-dependent concen-
tration profiles in the membrane system. Let us note that
the measurement does not disturb the system under study.
The experimental set-up is described in [10,11]; here we
only mention that it consists of the measurement cuvette
with the membrane, the Mach-Zehnder interferometer [12]
including the He-Ne laser, TV-CCD camera, and the com-
puterized data acquisition system.

The interferograms are sensitive to the variation of
the refraction coefficient within the membrane system and

Fig. 2. The concentration profiles for C0 = 125 mol/m
3 taken

at several values of time: ◦ 240 s, � 600 s, and � 1200 s. The
permeability of the membrane from (a) is significantly smaller
than that from (b). The solid lines represent the Smoluchowski
equation solution with D = 0.76 · 10−9 m2/s and δ = 0.51 for
(a) and δ = 0.11 for (b). The theoretical curves are shifted to
the left in (a) and (b) by 0.3 mm (see text).

consequently to the concentration gradients. When the so-
lute is uniform the interference fringes are straight and
they bend when the concentration gradient appears. The
example of the interference images is shown in Figure 1.
The substance concentration at x is determined by the de-
viation d of the fringes from their straight line run. Since
the relation between the concentration C and the refrac-
tion coefficient is assumed to be linear, we have

C(t, x) = C0 + α
λd(t, x)

hf
,

where C0 is the initial substance concentration; α is the
proportionality constant between the concentration and
the refraction index, α = 3.19 ·105 mol/m3 for the ethanol
aqueous solution; λ is the wavelength of the laser light;
h denotes the distance between the fringes in the field
where they are straight lines; f is the thickness of the
solution layer in the measurement cuvette. Recording the
interferograms with a given time step one can reconstruct
the time-dependent concentration profiles.
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Fig. 3. Time evolution of the near membrane layer for
k = 12.5 and several values of the initial ethanol concen-
trations: ◦ 125 mol/m3, � 250 mol/m3, � 500 mol/m3, and
	 750 mol/m3. The solid line represents l(t) = a

√
t with

a = 6.8 · 10−5 m/s1/2.

Since the specific weight of the ethanol is significantly
lower than that of water, one observes the alcohol con-
vective motion when the ethanol is initially in the lower
chamber [11]. To deal with a diffusive regime we have fur-
ther studied only the configuration with the ethanol being
initially in the upper chamber.

We have measured the profiles for several values of the
initial ethanol concentration and for two cellulose mem-
branes of different permeabilities. The membrane thick-
ness is, respectively, 0.17 mm and 0.01 mm. In Figure 2
we present the concentration profiles taken at different
moments of time. Repeating several times the measure-
ments at the same conditions we tasted the stability of
our results. While the shape of the concentration profiles
has appeared to be rather stable, the absolute normaliza-
tion has varied by about 15%. The error bars shown in
Figure 2 just correspond to this uncertainty.

Having the profiles one can define the near mem-
brane layer (NML). When the substance diffuses across
the membrane into the pure solvent, the thickness l of
NML is defined as a length over which the concentration
decreases k times, i.e.

C(t, x = 0) = kC(t, x = l) , (1)

with x = 0 being the membrane position1.
Since k is an arbitrary number we have found the thick-

ness of NML from the earlier obtained concentration pro-
files for three values of k: 8.33, 12.5 and 33.3. As already
mentioned, our concentration profile measurements suffer
from the absolute normalization uncertainty of about 15%.
However, this uncertainty does not influence the NML
thickness because the absolute normalization coefficient

1 If the substance diffuses to the region of the nonzero initial
concentration C0, the definition (1) is generalized as C(t, 0)−
C0 = k

[
C(t, l) − C0

]
. This form can be applied to the layers

on both sides of the membrane.

Fig. 4. Time evolution of the near membrane layer for two
membranes of different permeabilities and three values of k.
The filled (open) symbols correspond to the more (less) per-
meable membrane; �, � and ◦ refer to k equal to, respectively,
8.33, 12.5 and 33.3. The initial concentration is 125 mol/m3.

Fig. 5. The k-dependence of the near membrane layers. The
data in (b) are those from (a) rescaled by a factor erfc−1(1/k).
�, � and ◦ refer to k equal to, respectively, 8.33, 12.5 and
33.3. The initial concentration is 125 mol/m3. The solid lines
in (a) represent l(t) = a

√
t with a equal to, respectively,

8.4 · 10−5 m/s1/2, 6.8 ·10−5 m/s1/2 and 6.1 ·10−5 m/s1/2. The
line in (b) corresponds to 2

√
Dt with D = 0.76 · 10−9 m2/s.
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drops out entirely in the NML defintion (1). Therefore,
the estimated errors of the data points shown in Figures 3,
4 and 5 are comparable to the size of the data point sym-
bols. As seen in Figures 3, 4 and 5, NMLs manifest the
remarkable properties. The NML thickness appears to be
independent, within the experimental errors, of the initial
concentration (Fig. 3) and of the membrane permeability
(Fig. 4). As shown in Figures 3 and 5, the thickness grows
in time as

√
t. In the next section we will discuss the NML

thickness from the theoretical point of view.

3 Theory

The concentration profile C(t, x) is expected to satisfy the
Smoluchowski equation

∂C

∂t
=

∂

∂x

(
D

∂C

∂x
+ vC

)
,

where D is the diffusion coefficient and v represents the
velocity due to the gravitational force. To keep our the-
oretical approach as simple as possible, we neglect the
second term in the right-hand side of the equation and
treat D as a constant. Then, we get

∂C

∂t
= D

∂2C

∂x2
. (2)

Since the membrane is treated as an infinitely thin, par-
tially permeable wall one needs two boundary conditions
at the wall to solve equation (2). While the first one ex-
presses the substance current conservation and reads

J(t, x = 0−) = J(t, x = 0+) , (3)

where J(t, x) = −D(∂C/∂x), there is no obvious choice of
the second condition.

Let us consider what can be learnt about the missing
condition from the experimental regularities discussed in
the previous section. The fact that the thickness of the
near membrane (1) is independent of C0 is simply due to
the linearity of the diffusion equation (2). The indepen-
dence from the membrane permeability is much less triv-
ial. One observes that the diffusion constant D is the only
dimensional parameter in equations (2,3). Consequently,
if D is indeed the only dimensional parameter in the prob-
lem, a solution of the diffusion equation (2) depends on
x2/Dt which is the only dimensionless combination of D,
x and t. Then, any length, in particular l(t), must be pro-
portional to

√
t in agreement with the experimental data

from Figures 3 and 5. However, the dimensional parame-
ter can be introduced to the problem through the bound-
ary condition. For example, the dimensional membrane
permeability parameter κ appears in the condition of the
form

J(t, x = 0) = κ
[
C(t, x = 0+)− C(t, x = 0−)

]
. (4)

Then, the solution of the diffusion equation, which satis-
fies equation (4), depends not only on x2/Dt but on other

dimensionless combinations such as κt/x. Consequently,
the thickness of the near membrane layer is no longer pro-
portional to

√
t and is κ-dependent.

We conclude the above dimensional analysis as follows.
If one assumes that the near membrane layer is strictly
independent of the membrane permeability and l(t) is
strictly proportional to

√
t the missing boundary condition

must be free of a dimensional parameter. Such a condition
has been introduced and discussed in the series of papers
of one of us [7–9]. It reads

J(t, x = 0) = (1− δ)J0(t, x = 0) , (5)

where J(t, x) is the substance current in the membrane
system while J0(t, x) denotes the current in the identical
system but with removed membrane; δ is the dimension-
less membrane permeability coefficient, 0 ≤ δ ≤ 1. The
boundary condition (5) has been deduced [8] from the
Green’s functions obtained by means of the generalized
method of images. The coefficient δ gives the probability
that a diffusing particle will pass the membrane under the
condition that it approaches the membrane.

As already mentioned, the solute concentration is ini-
tially zero in one chamber of the membrane system and it
is finite and uniform in the other one, i.e.

C(t = 0, x) =
{

C0 for x < 0 ,
0 for x > 0 .

The solution of equation (2), which satisfies the boundary
conditions (3, 5) and the above initial one, is

C(t, x) = C0

[
1− 1− δ

2
erfc

(
− x

2
√

Dt

)]
for x < 0 ,

(6)

and

C(t, x) = C0
1− δ

2
erfc

( x

2
√

Dt

)
for x > 0 , (7)

with erfc(x) being the complementary error function de-
fined as

erfc(x) =
2√
π

∫ ∞

x

dη e−η2
.

Substituting the solution (7) into the layer thickness
definition (1) we get

l(t) = a
√

t , (8)

where the coefficient a depends solely on D and k as

a = 2
√

D erfc−1
(1

k

)
. (9)

As expected, the relation (8) agrees with the experimen-
tal results shown in Figures 3, 4 and 5. Indeed, the de-
pendence on the initial concentration C0 and the mem-
brane permeability coefficient δ, which is present in the
solution (7), drops out entirely in equation (8). One also
sees that equation (9) determines the k-dependence of l(t).
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In Figure 5 we show that the near membrane layer indeed
scales with k as erfc−1(1/k).

In our previous studies [10,7] we took the diffusion
coefficient from the literature to fit the data. One sees
that our formula (8) solely depends on the diffusion co-
efficient once the k-dependence is eliminated, see Fig-
ure 5b. Therefore, D can be obtained directly from our
data by means of a single parameter fit. In this way we get
D = 0.76 ·10−9 m2/s. The diffusion coefficient is known to
be sensitive to the temperature and the ethanol concentra-
tion in water. D equals 0.84·10−9 m2/s at the temperature
283 K and grows to 1.24 · 10−9 m2/s at 298 K [13]. The
two values correspond to the zero ethanol concentration.
Since the diffusion coefficient decreases with the solute
concentration our value of D, which is measured at finite
concentration and the temperature of about 290 K, seems
to be compatible with the mentioned data.

Since the value of D is fixed, there is only one pa-
rameter δ to be fitted when the solution (7) is compared
with the experimental concentration profiles. The result-
ing theoretical curves, which are shown in Figure 2, de-
scribe the data quite well but a comment is in order here.
Our theoretical approach assumes that the membrane is
infinitely thin while the membranes which have been used
in the measurements are, obviously, of the finite thickness.
Further, there is a near membrane dead zone where the
concentration measurement is unreliable or even impossi-
ble. The dead zone appears due to the imperfection of the
cuvette edge and the small deformations of the membrane
during the measurements. The latter effect, which is much
more important for the thinner membrane, is not very well
controlled in our set-up and it leads the substance stirring
in the very vicinity of the membrane surface. To take into
account all these effects we have shifted the theoretical
curves from Figure 2 by 0.3 mm to the left. This is, of
course, not a quite satisfactory procedure and in the fu-
ture studies we intend to resolve the problem in a system-
atic way. The main objective of this study, however, are
not the concentration profiles but the near membrane lay-
ers. We have carefully checked that the time dependence
of NML is influenced insignificantly when the solution (7)
is shifted by 0.3 mm. Thus, the near membrane layers
are not only insensitive to the overall normalization error
shown in Figure 2 but to the dead zone problem as well.

4 Discussion and summary

The solution of the diffusion equation found with the
boundary condition (5) is identical with the solution which
satisfies the boundary condition

C(t, x = 0−) = γ C(t, x = 0+) , (10)

where the dimensionless parameter γ, which characterizes
the membrane, is related to δ as

γ =
1− δ

1 + δ
.

Therefore, the formula (8) can be obtained within the
boundary condition (10) as well.

Let us mention that the boundary condition (5) ap-
plies not only for a pure diffusion. When the convection
is present in the system and there is a respective term in
equation (2) one easily generalizes equation (5) [7,8] and
introduces the parameters which separately determine, as
in the Kedem-Katchalsky approach [14], the membrane
permeability with respect to the diffusion and to the con-
vection. On the other hand, we see no simple way to gener-
alize equation (10) to distinguish between the diffusive and
convective membrane permeability. Therefore, we would
like to stress that the equivalence of equations (5) and
(10) holds only for a pure diffusion regime.

We have argued that the boundary condition must be
free of a dimensional parameter if the near membrane
layer is strictly independent of the membrane permeabil-
ity and l(t) is strictly proportional to

√
t. Unfortunately,

we cannot exclude slight deviations from the regularities.
In fact, the small systematic differences between the filled
and open symbols seen in Figure 4 might signal the ef-
fect. Then, the boundary condition different than (5) or
(10) can be consistent with the data as well. We intend
to perform a careful study of the issue in future. It will
demand an improvement of the experimental procedures
and an extensive theoretical analysis. In the very recent
paper [15] we have already discussed in detail the bound-
ary condition (4) and explicitly confirmed the results of
the dimensional analysis presented here. We plan to con-
front the condition (4) and some other ones against the
data.

At the end let us summarize our study. Using the in-
terferometric method the concentration profiles have been
measured for the aqueous solution of the ethanol diffusing
across the membrane into pure water. The time evolution
of the near membrane layer has been then analyzed. The
thickness of the layer, which is defined as a length where
the concentration drops k times, appears to grow in time
as a

√
t with the proportionality coefficient a being remark-

ably independent of the initial ethanol concentration and
of the membrane permeability. While the independence
of C0 is the result of the problem linearity, the origin of
the cancellation of the membrane permeability is much
less trivial. Theoretical analysis performed within the ap-
proach proposed by one of us has shown that a depends
only on k and the diffusion constant D due to the spe-
cific choice of the boundary condition at the membrane.
We have used this fact to obtain the numerical value of
D fitting the experimental time dependence of the near
membrane layer. Then, the experimentally found concen-
tration profiles have been fitted by the solution of the
Smoluchowski equation. The membrane permeability co-
efficient δ is then a single fit parameter.
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