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Abstract Nuclear collisions at high energies produce a
gluon field that can be described using the Colour Glass Con-
densate (CGC) effective theory at proper times t < 1fm. The
theory can be used to calculate the gluon energy-momentum
tensor, which provides information about the early time evo-
lution of the chromo-electric and chromo-magnetic fields,
energy density, longitudinal and transverse pressures, and
other quantities. We obtain an analytic expression for the
energy-momentum tensor using an expansion in the proper
time, and working to sixth order. The calculation is techni-
cally difficult, in part because the number of terms involved
grows rapidly with the order of the t expansion, but also
because of several subtle issues related to the definition of
event-averaged correlators, the method chosen to regulate
these correlators, and the dependence of results on the param-
eters introduced by the regularization and nuclear density
profile functions. All of these issues are crucially related to
the important question of the extent to which we expect a
CGC approach to be able to accurately describe the early
stages of a heavy-ion collision. We present some results
for the evolution of the energy density and the longitudi-
nal and transverse pressures. We show that our calculation
gives physically meaningful results up to values of the proper
time which are close to the regime at which hydrodynamic
simulations are initialized. In a companion paper [1] we give
a detailed analysis of several other experimentally relevant
quantities that can be calculated from the energy-momentum
tensor.
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1 Introduction

The study of quark-gluon plasma (QGP) is of fundamental
interest because it is a means to obtain information about the
structure of the phase diagram of quantum chromodynamics
(QCD). The temporal evolution of the matter produced in rel-
ativistic heavy-ion collisions is reasonably well understood
in general terms, but there is not a lot of information about
the details of its evolution during the earliest stage. There are
no directly accessible experimental signals of this phase, and
most information about its features is lost by the time equilib-
rium is reached. Exceptions are electroweak and hard probes
which are sensitive to the full history of the spacetime evolu-
tion of the system, but are very difficult to measure or inter-
pret. The information about the system’s non-equilibrium
evolution that survives, is imprinted as initial conditions for
its subsequent hydrodynamic evolution. The development of
a quantitative description of the dynamics of the highly non-
equilibriated early-time system would allow us to calculate
the early-time distributions of energy and momentum, which
would provide the initial conditions that are the required input
parameters of hydrodynamical simulations.

A great deal of effort has been invested in this difficult and
important task.

The Glauber model was one of the first attempts, see the
review [2]. The model is based on a quantum-mechanical
description of the collision in terms of geometric parameters
such as the impact parameter and the distribution of nucle-
ons in the colliding nuclei, as well as some phenomeno-
logical constraints. Calculations of observable quantities
require sophisticated numerical techniques to perform high-
cost multi-dimensional integrals. An alternative approach
was developed in Refs. [3,4] and is called the KLN model.
The model uses the framework of high density QCD in which
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the system is described in terms of parton saturation or, in
the language of colour fields, using classical chromodynam-
ics. A scaling function is derived that describes the depen-
dence of hadron multiplicities on energy, centrality, rapidity,
and atomic number. A Monte-Carlo implementation of the
approach which includes high-rapidity fluctuations of hard
sources was developed in Refs. [5,6].

The Colour Glass Condensate (CGC) is an effective the-
ory that describes high energy nucleons and nuclei [7-9].
The theory is based on a separation of scales between source
partons with large nucleon momentum fraction (denoted x),
and classical gluon fields with small nucleon momentum
fraction. When the separation scale is fixed, the dynamics
of the small x gluons can be determined from the classical
Yang-Mills (YM) equation with the source provided by the
large x valence partons. One then averages over an ensemble
of source colour charge densities. The original McLerran-
Venugopalan (MV) model assumed a source charge density
that was infinitely Lorentz contracted and homogeneous in
the transverse plane, but it was later realized that it is neces-
sary to include a finite width of the sources across the light-
cone [10,11].

The gluonic state that is produced at very early times after
arelativistic heavy-ion collision is called a glasma. The clas-
sical gluon fields of the individual nuclei before the collision,
and the glasma fields in the post-collision system, satisfy the
YM equation. Boundary conditions connect the known pre-
collision solutions to the glasma field immediately after the
collision. In the post-collision regime, one can consider a sys-
tematic expansion of the YM equation using a power series in
the proper time t. The idea of performing an analytic T expan-
sion, also called the “near field expansion,” was proposed in
[12] and further developed in [13—16]. The convergence of
the series is determined by the time scale 7y ~ 1/Qj, where
Q; is the saturation scale. We note again that although tg is
a very early time, it may be sufficient to determine impor-
tant bulk properties of the plasma, including the distributions
of the energy, momentum, and angular momentum that are
transferred from the initial colliding nuclei to the glasma
around mid-rapidity.

A modification of this approach called the IP-Glasma
model was studied in Refs. [17,18]. The IP-Glasma model
combines the Impact Parameter Saturation (IP-Sat) model
[19,20], which is a generalization of the MV model that
describes finite systems by promoting the colour charge den-
sity to depend on the impact parameter, and the evolution
of glasma fields through classical YM equations. The essen-
tial input is the dipole cross section in proton deep inelas-
tic scattering, which is experimentally well constrained. The
result of the procedure is a “lumpy” distribution for the sat-
uration scale Q,(xT, ¥;) which describes the sub-nucleon
structure of the nucleus. Using this result, one obtains a good
description of many bulk features of distributions at RHIC
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and the LHC [21,22]. The original formulation assumed
boost invariance and was therefore effectively 1 + 2 dimen-
sional, but fluctuations in rapidity have since been included
using the JIMWLK renormalization group equation, see [23—
25], and provide a full 1 + 3 dimensional glasma picture.
Boost non-invariant systems have also been studied using
coloured “particle-in-cell” simulations [26-28]. These cal-
culations simulate the evolution of coloured point charges in
continuous phase space coupled to non-Abelian gauge fields
on a discrete lattice.

We perform a fully analytic calculation of the energy-
momentum tensor using a near field expansion, working to
sixth order in 7, and including full dependence on rapidity
and the source charge densities of each ion. The resulting
expression is so long that we will not explicitly write all
terms in this paper. We stress however that an advantage
of obtaining an analytic result, no matter how lengthy, is
that there are no issues with possible errors introduced by
a discretized numerical procedure. There are several subtle
issues associated with the calculation of correlation func-
tions and the regularization of these functions, and different
approaches appear in the literature. We discuss these issues
in some detail, and make some comparisons with methods
employed by different authors. We also discuss the valid-
ity of the near field expansion. The idea of expanding in
the proper time was proposed almost 15 years ago but there
are only a few calculations in the literature that make use
of the method, and its convergence has never been studied.
We compare results at different orders in the expansion and
show that the sixth order expressions are reliable to about
T ~ 0.05 fm. We also address the question of whether or
not the classical picture that is inherent in the formulation
of the CGC approach we are using, is valid for these short
times. We show that the region of validity of the near field
expansion reaches far beyond the lower bound at which we
no longer trust the classical description we are using. Finally,
we comment that analytic solutions of the near field expanded
YM equation are useful in other contexts. As one example,
we have developed a method to calculate transport proper-
ties of heavy quarks in glasma [29,30], and we are currently
extending these calculations to higher orders in the t expan-
sion using the results presented in this paper.

We comment that in spite of its phenomenological success,
the CGC approach that we use does not capture completely
the QCD dynamics of a heavy ion collision. The method
has been developed in various directions, see for example
references [31-33] and the review [34].

This paper is organized as follows. In Sect. 2 we describe
some parts of the CGC effective theory that are relevant to
our work, and define our notation. In Sect. 3 we give some
details of our calculation of the energy-momentum tensor.
At sixth order in 7 the energy-momentum tensor contains a
very large number of terms, and the calculation was there-
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fore done with the help of Mathematica. The complete result
is too long to give explicitly, but is available on request to
interested readers in the form of a Mathematica or text file.
We describe some of the many checks we have performed to
verify the result. In Sect. 4 we discuss our method to regulate
the correlators of gauge potentials which enter our expression
for the energy-momentum tensor. In Sect. 5 we give some
parts of our analytic expression for the energy-momentum
tensor and present some numerical results. In this paper we
show results only for the special case of nuclei with infinite
extent in the transverse plane that are invariant under trans-
lations and rotations in the plane. In our companion paper
[1] we present a detailed analysis of various experimentally
relevant quantities that can be calculated from our full results
for the energy-momentum tensor at order 7°. In Sect. 6 we
make some concluding remarks.

2 The CGC effective theory

In this section we discuss the formalism of the CGC effective
theory that we use and present our notation. Further nota-
tional details and a collection of some useful formulas can
be found in Appendix A.

We consider a collision of two heavy ions moving towards
each other along the z-axis and colliding at # = z = 0. The
transverse degrees of freedom are denoted by the 2-vector
X, . The time and longitudinal coordinate (¢, z) can be writ-
ten in two different combinations which will both be useful:
in different situations we use either light-cone coordinates,
xt =@+ z)/ﬁ, or Milne coordinates, T = /12 — 72 =
2xtx~and n = In(xt/x7)/2.

Tensor equations, like Eq. (1), are valid in any coor-
dinate system. However, in some parts of our calculation
it will be easier to use a particular basis. All vectors and
tensors can be written in the Minkowski, light-cone or
Milne basis. For example: we can write either Agink x) =
(A%00), A%(x), A(R)), AR (x) = (AT(x), A~ (x), A(x) o
Aﬁﬂne(x) = (A" (x), AT(x), A(x)). Transformations from
one basis to another are performed using the appropriate
general coordinate transformation (see Eq. (A9)). The trans-
verse components of any vector or tensor are the same in all
three bases, and we will use indices (i, j, k, [ ...) to denote
transverse components. Individual components are some-
times written with letter indices, using an obvious notation
(for example, A’=! = A* and A'=2 = AY). In most cases
we use a specific choice of basis consistently within a given
section of this paper. In addition, in most equations it is obvi-
ous which basis is being used (for example in Eq. (6) the
superscripts on the left side make it clear that the potential
is written in the light-cone basis). In any situation where the

basis is not clear, we include a subscript stating explicitly
which basis is used.

In the formulation of the CGC effective theory that we
use, the dynamics of the small x gluons is determined from
the classical YM equation

[Dy, F*']=J" (1)
where

i .
Fuy = E[DM, Dy] and D, =9, —igA,. (2

Both J# and A* are SU(N,) valued functions that can be
written as linear combinations of the group generators 7,
for example A" = Alt,. The generators satisfy [t,, f,] =
ifabete Where fype are the structure constants of SU(N,).
The two ions moving towards each other along the z-axis
contain large x valence partons that provide the source on
the right side of Eq. (1)

JHx) = J{ (x0) + 1y (x)
Ji ) = 8"Tgpi(x 7, X1) and Jy'(x) = 8" gpo(xt, X))

3

where the indices 1 and 2 indicate the ions moving to the
right (the positive z direction) and left (the negative z direc-
tion), respectively. The partons are assumed to remain ultra-
relativistic throughout the collision, and the currents are static
(independent of the light-cone time). Physically this means
that the lifetime of the valence partons is much greater than
that of the small x degrees of freedom. We refer to the path
of ion 1 as the positive light-cone, and ion 2 moves along
the negative light-cone. Because of Lorentz contraction, both
ions have a very small but finite region of support across the
light-cone over —w/2 < xT < w/2. The limit w — 0
will be taken at the end of the calculation (see Appendix D
for details), but in intermediate steps of the calculation it is
necessary to keep w non-zero.

Our goal is to find the energy-momentum tensor in the
forward light-cone, which corresponds to the post-collision
part of spacetime. It is natural to describe this region using
Milne coordinates. We will work in the gauge A" = 0, which
is called axial gauge, or Fock—Schwinger gauge. The axial
gauge potential in the forward light-cone has the simple form

Aline = 0(D)(0, a(T, ¥1), i (T, X1)) @)

where the functions a(z, ¥ ) and &, (t, X, ) are independent
of rapidity, as is appropriate for a boost invariant system. The
YM equation and the energy-momentum tensor take a sim-
ple form in these coordinates. As will be explained in detail
below, our method is to expand in 7, solve the YM equation
order by order in the T expansion, and obtain expressions that
depend on the initial potentials o (0, X1 ) and &, (0, X ).
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The initial potentials must then be connected to the source
terms that represent the currents of the two colliding ions. To
do this, we need to write the gauge potential in light-cone
coordinates, where we can separate the regions of spacetime
that correspond to the pre- and post-collision fields. Using
the general coordinate transformation in (A9), one finds that
in light-cone coordinates the axial gauge condition AT = 0
takes the form

xTAT+xTAT =0. 3)
We use the following ansatz for the gluon potential [35,36]

AT(x) = 0O H)xTa(r, x1)

A (x) = —O0GNHOG )x"alt, X1)

A'(x) = 0O r ) (t,51)
+O(—xHOE B (7, ¥1)
+ONO(—x )AL (T, ¥1) (6)

which satisfies Eq. (5) in all regions of spacetime. The theta
functions separate the glasma potentials in the post-collision
part of spacetime, determined by the functions « and &,
from the pre-collision potential of each ion, denoted ,5 1
and Bg. In the post-collision part of spacetime, the four-
component vector potential is represented in terms of three
independent scalar functions. In each of the pre-collision
regions there are only two independent functions, which can
be thought of as a convenient use of residual gauge freedom.

3 Methods

Our ultimate goal is to calculate the energy-momentum ten-
sor in the post-collision region of spacetime. There are four
main steps:

A. The post-collision gauge potentials satisfy the YM equa-
tion (1) with the source term on the right side set to zero.
‘We work in Milne coordinates with the ansatz (6), expand
the functions «(t, X ) and & | (7, X ) to sixth order in 7,
and solve the YM equation for the coefficients of these
expansions.

B. Using the solutions obtained in step A, we find the
energy-momentum tensor in the post-collision region in
terms of the initial potentials «(0, X,) and a (0, X))
and their derivatives. We perform a coordinate transfor-
mation to convert our result for the energy-momentum
tensor from the Milne basis to the Minkowski basis.

C. We apply the boundary conditions that connect the
potentials «(0,x,) and @, (0,X,) to the potentials
El (x~,x1) and /§2 (x*, X1) in the pre-collision region.
Using these results we rewrite the Minkowski space
energy-momentum tensor that was obtained in step B
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in terms of pre-collision potentials for each ion, and their
derivatives.

D. The pre-collision potentials ,3{ (x~,X,) and ﬂé(x"’, X1)
are generated by the individual incoming nuclei and
we find these potentials by solving the YM equation in
the pre-collision region. These solutions depend on the
source charge distributions (3), which are not known.
An important input to the CGC approach is the assump-
tion of a Gaussian distribution of colour charges within
each nucleus. One then calculates correlation functions of
pre-collision potentials by averaging over these Gaussian
distributions. We rewrite the energy-momentum tensor
obtained in step C in terms of correlations of pre-collision
potentials, and calculate these correlators by averaging
over the source distributions.

3.1 Forward light-cone potentials

All equations in this section are written in Milne coordinates.

In this section we solve the sourceless YM equation in the
forward light-cone in Milne coordinates. The sourceless YM
Eq. (1) can be written

g7 [VolVyu, V1] =0 (N

where the covariant derivative in this equation includes both
the gauge field contribution, and the Christoffel symbols
that describe the curvature in Milne coordinates (see Egs.
(A18, A19)). The ansatz for the gauge potential (6) contains
only three functions « and & in the forward light-cone (due
to the gauge condition), and therefore the four components
of the YM equation are not all independent. We use the three
equations obtained from setting v € (1, 2, 3) and find ana-
lytic solutions for the three ansatz functions by expanding in
the proper time and solving for the coefficients of the expan-
sion. We write

a(t, %) = aQF ) + 1V G + 2@ GED) + -

=Y "™ (FL) ®)
n=0
and similarly
aL(r.i) =Y r"al"(F). ©)
n=0

It can be shown using a recursion relation that all of the coef-
ficients multiplying odd powers of t are zero [15]. The coef-
ficients @@ (¥ ) and &(f) (x1) are found in terms of @ (X | )
and @© (X)), the coefficients «® (¥ ) and &T) (X 1) are then
found in terms of @ (¥ ), &(f) D), a©i ) and &f) (xX1),
etc. The process is tedious but perfectly straightforward and
can be carried out to any order using Mathematica. As a con-
sistency check, we verify that the solution obtained satisfies
the YM equation with v = 0.
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The results can be written in compact form in terms of the
fields at lowest order in the 7 expansion. The only non-zero
components of the electric and magnetic fields at T = 0 are

E=E“0,X1) = —2a(0,x1)
B = B%0,%1) = 0"} (0,%1) — 3 ) (0,X1)
—iglar] (0,X1), o} (0, ¥1)]. (10)

To fourth order, the even coefficients in the series in Egs.
(8, 9) are (omitting all arguments)

o@ %[Df, (D7, 0O

a® = i—geij [[Di, a9, D/, B]]
48

Lk ok i i o ©)
+192[D,[D,[D,[D,a 1111

. .. .
2
af)=ze'f[DJ,B]

0 = B [o15). 8] e [ [ [ 5]

+% @, [P'a®]], (1)

where we define
D' =9 —igal (0,%1) (12)

and the notation €%/ represents a matrix with values €!! =

e =0ande'? = -2 = 1.

3.2 Energy momentum tensor in the forward light-cone
The field-strength tensor is

Fu = é[Vﬂ, Vul. (13)

Using Egs. (4, 8, 9) and the solutions found in the previous
section, we obtain a lengthy expression for the field-strength
tensor in Milne coordinates that depends only on the initial
potentials o? (¥ ) and &j?) (X1) and the expansion parame-
ter 7.

The energy-momentum tensor can be written in terms of
the field-strength tensor as

1
T = 2Tr[F*F,Y + i g FP Fog
1
= FMFY + Zg“”Fgﬂ Fupa (14)

where we have used the definition obtained by adding a total
divergence to the canonical result to produce an expression
that is gauge invariant, conserved, symmetric and traceless.
The two field-strength tensors in Eq. (14) are actually cal-
culated at different points, denoted x = (xT,x7, %) and
y=(y",y~,¥1),and we take (x — y) — O at the end of the
calculation. In this section we do not write these arguments

explicitly. The entire calculation can be done with Mathe-
matica. We have checked our method by verifying that the
resulting expression is symmetric and has zero divergence
[0, TH" —Th,T* — FfmTW]milne =0. (15)
The energy-momentum tensor in Minkowski space can then
be found using the coordinate transformation M given in
equation (A9):
v off
T =MiM ‘:9 T

mink milne *

(16)

A useful expression for the energy-momentum tensor in
terms of the electric and magnetic fields is given in Appendix
B.

3.3 Boundary conditions

The expression for the energy-momentum tensor obtained at
the end of the previous section depends on the initial poten-
tials «© (X ) and &f) (¥1), which are related to the pre-
collision potentials B (x~, X.) and Bp(x*, ¥1) through a
set of boundary conditions. The energy-momentum tensor
also depends on potentials that depend on the y coordinates,
because we have not yet taken the limit (x — y) — 0, but
everything in this section can be extended trivially to poten-
tials that depend on y instead of x.

We need to use boundary conditions that connect the ini-
tial potentials in the forward light-cone with those in the pre-
collision regions. These conditions were originally obtained
by matching terms from the pre- and post-collision regions
that are singular on the light-cone [35,36]. We work with
sources with small but finite width, and the limit that this
width goes to zero cannot be taken until after the bound-
ary conditions have been used. These boundary conditions
should therefore be obtained by integrating the YM equa-
tion across the light-cone. Some details of this calculation
are given in Appendix C. The boundary conditions are

i(0)

o 0.51) = oV F1) = lim (B F0) + BH(T L 70))
@0.51) =a® ) = -7 lim [pjG. 50, G ED)]
(17)

where the notation limy,_, o indicates that the width of the
sources across the light-cone is taken to zero. As explained
in Sect. 3.4, the pre-collision potentials depend only on
transverse coordinates in this limit. Using equation (17) it
is straightforward to rewrite the energy-momentum tensor
obtained at the end of Sect. 3.2 in terms of pre-collision
potentials only.

@ Springer
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3.4 Correlation functions of pre-collision potentials

The result obtained at the end of the procedure outlined in
section 3.3 is a lengthy expression for the energy-momentum
tensor in terms of products of pre-collision potentials. A
generic term has the form

Bl (7, X )BY, (T X B (x T L) .

Bl DB G DB 0T T (18)

The pre-collision potentials can be expressed in terms of the
ion sources by solving the YM equation in the pre-collision
region. These colour charge distributions are not known, and
an important input to the CGC approach is the use of an
averaging procedure based on the assumption of a Gaus-
sian distribution of colour charges within each nucleus. A
product of colour charges is replaced by its average over
this Gaussian distribution (which will be denoted with angle
brackets). We make the assumption that sources from dif-
ferent ions are un-correlated, or equivalently that correlation
functions of products of sources from different ions can be
set to zero. This means that we need to consider only aver-
ages of the form (p1p1...p1) and (202 ... pp2) where all
sources are from the same ion. This approximation is justi-
fied because the pre-collision distributions are independent
from each other due to causality, and they remain uncorre-
lated post-collision because the CGC approach we are using
assumes that the color sources are static. We comment that the
assumption of static sources is a standard component of most
CGC calculations, but it necessarily means that the method
does not capture the QCD dynamics of a heavy ion collision
completely.

Local fluctuations are assumed proportional to the colour
charge density. For the first ion we denote the colour charge
density A;(x~, X ) and define

(po1(x ", XxD)p1(y~, y1))
= g2 (T, X80 —y )8 (FEL — 1) (19)

where Aj(x7,X1) = h(x7)u1(X1) with A(x™) a sharply
peaked non-negative function with width w around x~ = 0
which is normalized to one. Integration gives

/dx— MG, RL) = /dx— hG) (R = G
20)

where w1(X1) is a surface colour charge density. We make
the analogous definitions for the second ion, and the width
w is taken to zero at the end of the calculation. The average
over a Gaussian distribution of colour densities which are
independent random variables can be rewritten as a sum over
the averages of all possible pairs, a result known as Wick’s
theorem, and therefore the average over any product of colour
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sources can be written in terms of the fundamental correlator
in Eq. (19).

A product of pre-collision potentials, like the generic term
in Eq. (18), must be expressed as some average over a prod-
uct of source functions. Products of pre-collision potentials
can be written as products of Wilson lines and source func-
tions (see Appendix D for details). The Gaussian averaging
of products of this form have been studied by many authors
[37-41]. These calculations are very involved, and the diffi-
culties increase rapidly as the number of potentials grows.

In this paper we use the approximation that Wick’s the-
orem can be applied to light-cone potentials directly, which
is sometimes called the Glasma Graph approximation [42].
Correlations of any even number of potentials from the same
ion are written as products of correlators of pairs of poten-
tials. The only correlator that must be calculated is the 2-point
correlator of pre-collision potentials from the same ion. We
define

SapBY (F1, Y1) = lim (B ,(x™, ¥1)Bi,(y™, ¥1)

SapBY (F1,31) = lim (5, (x ", X)BJ, v, F0)). 2D

lim
w—0
Our calculation of the functions By (X1, y1) and By (X1, y1)

is in Appendix D. Using the index n € {1, 2} to indicate the
two ions, the result is

B/ (E1,51)
e ([ r ]
= —— exp AL, YL | —
gZNan(xJ_’ yJ_) 2 "
9Ly Pn(FL, T1) (22)
with
Ca(¥1,51) =271, Y1) — V(XL X1) — Pu(F i, Y1)
(23)
and
WXL, y1) = /dZZJ_ un(Z) G(XL —Z21)G(yL —71).
(24)

We note that the expressions for the correlators Bi’ (X1,51)
and By (X1, ¥1) will be different only if the charge distri-
butions of the corresponding ions, 141(Z1) and u»(Z1), are
different.

All higher order correlators are obtained from the results
in Eqgs. (21, 22). For example, the average of four potentials,
two from each ion, is

Tim (8], (L BT, (07 ) B G T DBY 0 S

= Sapdea BY(31,51) B™ (31, 51). (25)
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When one of the potentials is differentiated with respect to a
transverse coordinate we have, for example,

Jim (5B}, (™ FB] (7 T L) = Sapdf BY (L T0)
(26)

The average of the product of six potentials, two from the first
ion and four from the second ion, is (omitting arguments)

(BiB] BSBY BEBS)
= (BIB) ((BLBY ) (BS B5) (B BX) (B )+ (BABS) (BB . (2T7)

In the limit that the width w is taken to zero, each of the 2-
point correlators on the right side of Eq. (27) can be rewritten
using Eq. (21).

We close this section with a comment about the Glasma
Graph approximation. This approximation has been used in
all previous near-field calculations, and we use it throughout
this paper. However, it is important to note that our calcula-
tion in fact provides a way to test its validity. We will discuss
this in Sect. 5.2.

4 Regulation and physical scales

The result of the previous section is an expression for the
energy-momentum tensor in terms of the 2-point correlation
function BY (X1, y, ) which is given in Egs. (22, 23, 24) and
(D5). The last step in the calculation is to take the limit that
the relative coordinate ¥ = X, — y; — 0. This limit
produces a divergence that must be regulated. This is not
unexpected since the CGC model we are using is classical
and breaks down at small distances. An infra-red regulator
is also needed to define the Green’s functions from which
the potential correlators are constructed. In this section we
give a general discussion of the parameters that are needed
to regulate the energy-momentum tensor, and their relation
to the physical scales in the problem.

4.1 Infra-red regulator

In Eq. (D5) we introduced an infra-red regulator which we
called m. To obtain more insight into how this regulator
should be chosen, we expand the Green’s function in (D5)
around m = 0 which gives

Ze_yE

m

Gmr) =~ Lln <£> with L = (28)
2 r

where yr &~ 0.577 is Euler’s constant. Since the valence

parton sources come from individual nucleons, confinement

tells us that their effects should die off at transverse length

scales larger than 1/Aqcp, and the Green’s function should

therefore be defined with boundary conditions so that it van-

ishes at r 2 1/Aqcp. From Eq. (28) we see that we should
choose m ~ Aqcp.

4.2 Ultra-violet regulator

In this sub-section we discuss how to take the limit that the
relative coordinate 7 goes to zero. We start with a quick
review of some of the notation that has already been intro-
duced. In Eq. (19) we introduced the colour charge density
for the first ion Aq(x~, X ), which enters the Green’s func-
tion ¥y (x~, X1, y1 ) that is defined in Eq. (D16). After taking
the limit that the width of the sources across the light-cone
goes to zero (see Appendix D), these functions are effectively
replaced, respectively, by ;1 (X 1) and 71 (X1, 1), which are
defined in Egs. (20, 24).

The two transverse coordinates x| and y; can be writ-
ten in terms of the relative and average coordinates as x| =
R+7/2and ¥ = R — F/2 (see Eq. (A4)). The original
MV model made the simplifying assumption that the col-
liding nuclei are infinitely large in the transverse directions
and invariant under rotations and translations, which means
that the functions w1 and u, are assumed constant. We have
calculated the energy-momentum tensor using non-constant
colour density functions, and we study in detail the effects
of these functions in our companion paper [1]. In this paper
we present results only for the simpler case of homogeneous
nuclei, and we write ;£ (X1 ) = u2(X1) = ji. In this approxi-
mation the Green’s functions 71 (X1, y.) and y» (X, ¥, ) are
equal to each other and depend only on the magnitude of the
relative coordinate r = |X| — ¥, |, and will both be denoted
y (r). Using this notation Eq. (22) becomes

o8 Ne @)=y _ 1

g*Ne (¥ (r) — 7(0))

BY(G.,51) =g ( ) L7y (29)
with

y(r) = —rKiomr). (30)
T

Substituting (30) into (29) one sees immediately that the cor-
relator BY/ diverges logarithmically when » — 0.

One approach to regulate this divergence, and the diver-
gences that appear in derivatives of the 2-point correlator, is
to expand in r and regulate any factors involving inverse
powers of r, or logarithms of r, by making the replace-
ment r — 1/Q;. In this paper we use a different method
[14] which is more suitable for a calculation of the energy-
momentum tensor, where we want to take the relative coor-
dinate r strictly to zero. We rewrite the function y (r) as a
momentum integral

I_L _ de ei?-l:
rKi(mr) = p
drm (2m)? (k2 + m2)2

y(r) = (31)
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and then substituting (31) into (29) we obtain
d* Kk
(2m)? (k2 + m2)2

B = 00 k3
- aug?i/ dk——. (32
47 Jo (k2 + mz)

lim B (G150 = o2t /
r—0

In the last line we have used k'k/ — 8/ /2 which follows
from the integration over the angular variables. We introduce
a momentum cutoff which we call A to regulate the logarith-
mically divergent integral in equation (32), which gives

y - A?
lim BY(¥,,y,)=6"g"— (LN - —— 33
lim B (x1, y1) 85, ( A2+m2> (33)

where we have defined
A2
m

The derivatives of correlators can be calculated the same
way. After integrating over the angular variables, products
of odd numbers of unit vectors k give zero and products of
four and six unit vectors are replaced with sums of products
of delta functions using

NN 1
RRFR = 3 ((Sil(Sjk + ik + 5ij5kl)

AAAAA

+8;0k10mn + 8indj18km + 618 jnSkm
+8im8j18kn + 8i18 jmSkn + 8ind jkdim
+8ik8 jnSim + 8ijSknSim + im0 jkOin
+38ik8 jmbin + 8ijSkmbin + 8i18 jkSmn + 8ik8j18mn ) -
When two derivatives act on the 2-point correlator we obtain
lim 8} 8™ B (X1, 71)
r—0 M7

2 -
= (_1)"1+"2+1 f6u [(81181711 + Sil(sjm
T

o A? AZm?
81m8/l (— _ 2LN —>
+ o smy "INt e
. 3g 5 A4 2LNA?
slmsii > = (LN -
* 8 * (A2 +m?)? A2+ m?
(35)

where we use the notation that the index n; is 1 if the trans-
verse derivatives are with respect to x| and 2 if the transverse
derivatives are with respect to y ;. We note that the leading
order contributions to Eq. (35) should agree with equation
(27) in Ref. [14], but we have a different sign for the last
term in that equation.

We comment that although one might expect that the alter-
native regularization scheme described above Eq. (31) would

@ Springer

give very similar results, this is not always true. For some cor-
relators the only difference is a redefinition of the mass scale
which appears in the argument of a logarithmic factor, but in
some cases the two regularization methods give parametri-
cally different results. We consider as an example the biggest
contribution to (35) with n; = 1 and n, = 2 which is

2= A2
o T

(36)

XS]

If we start from Eq. (29), take the derivatives, expand in r,
and regulate divergences using r — 1/ Qy, the leading order
contribution is
[3)15 3 BY (%1, h)]
. g2am’LG
- 167

where we have introduced the definitions

alternate

(878" + 88/ 4 5ot (37)

LG = In[(7/Qy)?] and i = %eyﬁ% . (38)

Comparing Egs. (36, 37) we see that when we write the
correlator as a momentum integral with an ultra-violet cut-
off, the regulated result is ~ AZ, but if we expand in r and
make the replacement r — 1/Q; the regulated expression
is ~ m?2. The expansion method would therefore replace the
ultra-violet regulator with the infra-red regulator.

In Ref. [15] both of these regularization methods are used,
depending on which correlator is being calculated. In our cal-
culation we consistently regularize by writing each correlator
as a momentum integral, differentiating as needed, taking the
limit » — 0, and calculating the regulated momentum inte-
gral. We note also that we treat both the 1-point correlator
BY(%1,X1) and the 2-point correlator B/ (X, , y,) in the
same way.

4.3 The MV scale

The charge density provides another dimensionful scale
which is usually called the MV scale and defined in our nota-
tion as g2./ft. This scale is related to the saturation scale
Q;, although the exact relationship between them cannot be
determined within the CGC approach, as discussed in many
papers (see for example [43,44]). Expanding in mr < 1
Eq. (23) gives

[P (EL T luy = ﬂg (2 () +27e -1+ 0 (mn?))

(39
and using (38) we rewrite Eq. (39) as
-2
[FGL Iy = 5= (Lo —2+0(G@r?)) . @o)
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Substituting (39) into (22) we obtain

. 2 ..
BY(X.,y ~ Y1 —s5¢ 41
[BY (L. Yy ~ o8 [1 - 6] @1
where we have defined two dimensionless parameters

4
N.

§=ir <1 and €= gg—‘;zrz. (42)
T

The resultin (41) can be used to argue that the MV scale is
proportional to the saturation scale [10]. For € < 1 we have
1 —8° =~ —¢Ind and (41) becomes

[BY (1, §Iwy ~ == —5" In(m?r?). (43)
T

For € > 1 we have 1 — §€ ~ 1 and (41) takes the form

[BY (31, y )My ~ . (44)

The condition € < 1 corresponds to small transverse
distances, or momentum scales k| = &/ with @ =
g>/N./(8x). The opposite case € > 1 means transverse
distances that are large (but still much less than 1/Aqcp), or
momentum scales that satisfy a /it > k1 > Aqcp. From
the Fourier transforms of Eqs. (43, 44) we see that at small
transverse distances, or large momentum scales, the corre-
lation function falls like 1/ kf_ (perturbative behaviour) and
at large transverse distances, or small momentum scales, the
correlation function rises like ~ In(k_ ). The number of glu-
ons in arange dk about some k| is related to the trace of the
gluon propagator in Eq. (41), multiplied by the phase space
factor k| . The peak occurs approximately at the momentum
scale that corresponds to € = 1, which divides the growing
and falling regions of the distribution function. Therefore the
typical transverse momenta of gluons, or the saturation scale,
satisfies

= ZnaschrZ[L . (45)

€lr~1/0; ~170, =1

which gives Qf ~ g*[i. As mentioned above, the proportion-
ality factor cannot be determined within the CGC approach.
We define

0l =¢". (46)

In the next section we obtain numerical results for the energy
density and transverse and longitudinal pressures using this
definition. The ratios of these quantities as functions of ¢
give information about the equilibration of the system, but
the numerical values of the energy and pressures themselves
should only be considered order-of-magnitude estimates.

5 Results and discussion
5.1 Analytic results

The energy-momentum tensor has the form

TOO TOl 0 0

TlO Tll 0 0
0 0 T2 0
0 0 o 713

T = (47)

To fourth order in t the non-zero components can be written

T = & + (2 — cosh(2n))&E> 2 + (3 — 2 cosh(2n))Ext?

—T" = & + 2+ cosh(2n)&E> 2 + (3 + 2 cosh(2n)) Eat?

T2 =73 = & +2& 2+ 3541'4

T =710 = cosh(n) sinh(n)Cz‘E2 + cosh(n) sinh(r])C47:4.
(48)

For simplicity we give our analytic results for the coefficients

in Eq. (48) by expanding in m/A and including m depen-
dence only in the arguments of the logarithms. We have

< 3g%a%In?% (A/m)
S=—="—"—-—~—""

72
- 1 2
=% (1 - 21n<A/m>)
- A2 1
&= _50[41n (A/m) (1 " 2In (A/m))
+3g4,tlln(A/m) (1 ~ 1 )3}
T 21In(A/m)
- A? 3
b= 80|:641n(A/m) (1 + 2ln(A/m))
183g* A2 X 1 2
1287 ( B 21n(A/m)>
13767g8 22 In2(A/m) . 1 4
204872 ( B 21n(A/m)) }

C2=r§0

a7 (1 sy
| 2In (A/m) 2In(A/m)
6g*In(A/m) (1 1 )3}

T 21In(A/m)

_I_

C4=c§0

= < ; )
I+
| 161n(A/m) 2In(A/m)
442 2
n 183g" A <1 B 1 )
327 21In(A /m)

N 13767g8 22 In2(A/m) . 1 4
51272 21In(A/m) '

(49)

At sixth order the expressions are very lengthy and will not
be given explicitly.
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5.2 Accuracy of the Glasma Graph approximation

Throughout this paper we have used the Glasma Graph
approximation which allows us to use Wick’s theorem to
calculate products of light-cone gauge potentials. In spite of
the fact that we have used this approximation consistently
throughout, we can still obtain a quantitative measure of its
validity in our calculation.

The initial longitudinal magnetic field in Eq. (10) is rewrit-
ten using the initial condition (17) as

B =B0,%)) = F'G) + FF(x))
+ige[BL(RL), BLGELI. (50)

If we use the fact that the pre-collision potentials are pure
gauge (see equations (D9, D11)), equation (50) can be written
as

Bpe = ige[BI(F1), B} (G 1)]. (51)

We should find that our averaging procedure gives (B) =
(Bpe) or (FH) = (F3') = (F/?) = (F)?) = 0. We con-
sider the field-strength from the first ion, and suppress the
subscript 1. Expanding out all terms we have

FR2G) =0l p*(F0) — 028" G —ig' G B> (FL)
+igB2 (B (L), (52)

The expectation value of this expression is obviously zero
because the averaging procedure involves a trace over colour
indices. In fact it is zero even before the colour trace is taken,
since the first two terms have only one potential (all terms
with an odd number of potentials are set to zero), and the
third and fourth term give zero using Eq. (33).

Next we consider the expectation value

(FR(E0}8' (1)) - (53)

This should also give zero, since we have F 2x) =0
directly from equation (D9). The terms with three potentials
are set to zero, and the terms with two potentials give

lim (F'2(¥1)d28" (1))
r—0
= lim SN2 — 1) (000282 151 - 2078 G )
r—02 ¢ oy ' Y ’
(54)

Equation (35) gives that the right side of (54) is not zero.
This apparent contradiction is related to the Glasma Graph
approximation, which sets all correlators with odd numbers
of potentials to zero.

In Eq. (B3) we gave expressions for the field components
to order # in terms of the lowest order magnetic field. We
have just shown that, using the Glasma Graph approxima-
tion, the result for the energy-momentum tensor will be dif-
ferent depending on whether we use the expression for B in

@ Springer

€ [GeV/fm?]

2000

1500

1000

500 -
n P S S S S S B S U BP /O T [fm]
0.01 0.02 0.03 0.04 0.05 0.06

Fig. 1 Theenergy density as a function of t atn = 0. The blue (dotted),
green (dashed) and red lines are, respectively, the results to order 72,
74 and 7°

Egs. (50) or (51). We can therefore test the approximation by
comparing the final expressions for the energy-momentum
tensor obtained from the two different forms of the lowest
order magnetic field. Some numerical results from this com-
parison are presented in the next section. We note that the
results in Egs. (48, 49) were obtained using Eq. (50).

5.3 Numerical results

The units for energy and pressure are GeV and for lengths
and times we use fm (we use natural units 7 = ¢ = 1).
Unless stated otherwise, weuse g = 1, N, = 3, m = 0.2
GeV and A = Q; = 2 GeV. We use always the expressions
for the energy-momentum tensor obtained using Eq. (50),
except when we explicitly say otherwise.

In Fig. 1 we show the energy density as a function of
7. The initial energy density is £ = 2080 GeV/fm> and we
note that although this number is only an order-of-magnitude
approximation, as discussed at the end of Sect. 4.3, it is not
far from the estimate from Ref. [29] for the fraction of the
collision energy that goes into particle production.

Next we want to study the possible equilibration of the
system. At T = 0T the energy-momentum tensor has the
diagonal form

& 0 0 0

initi 0 =& 0 0
Tk =| o o & o (55)
0 0 0 &

The longitudinal pressure is large and negative and the sys-
tem is far from equilibrium. We look at the evolution of the
energy density and pressure as functions of time. We define
the normalized longitudinal and transverse pressures as

11 22 33
PL Tmink d pr — l(Tmink + Tmink)

E T E 2 79

mink mink

(56)



Eur. Phys. J. A (2022) 58:5

Page 11 of 19 5

prle and p;/e

1.07

0.5F

Fig. 2 The normalized longitudinal and transverse pressures to order

74 versus 7 at n = 0. The blue (solid) line shows the result obtained

using Eq. (51) and the red (dashed) line is the result from Eq. (50). The
green (dotted) lines are the leading order approximation. In each case
the lower line is py, /€ and the upper line is pr/E

If the system approaches equilibrium, the longitudinal
pressure must grow as the system evolves. The energy-
momentum tensor is traceless at all times (T’,ﬁ = 0) and
therefore the normalized transverse pressure must decrease
as the normalized longitudinal pressure increases.

In Fig. 2 we show the normalized longitudinal and trans-
verse pressures to order 74, as functions of the dimensionless
variable T = Q. The red (dashed) and blue (solid) lines
are the results obtained using, respectively, Egs. (50) and
(51), and the closeness of these results is an indication of the
validity of the Glasma Graph approximation. One sees that
the system starts to equilibrate, but the normalized pressures
move apart again at T ~ 0.5, which is consistent with the
breakdown of the 7 expansion observed in Fig. 1. We can
also compare our fourth order results with those obtained in
Ref. [15] where the authors included only terms that they
identify as leading order in A. The green (dotted) line shows
this leading order result to fourth order in 7.!

In Fig. 3 we show the normalized longitudinal and trans-
verse pressures to order 7# and 7°. One sees that the expan-
sion breaks down at later times when terms to order t© are
included, and the system moves closer to the isotropic state
before the breakdown occurs.

The authors of Ref. [46] suggest that the evolution of the
glasma can best be studied using the quantity
App = 3(pr — pL) 57)

2pr + pL
which takes the value A7, = 6 at 7 = 0 (using Eq. (55)) and
would be zero in an equilibrated plasma. In figure 4 we show
A7y as a function of T and 5 at order t# using the leading
order approximation of Ref. [15], and without approximation
but using the two different results for the magnetic field in

1 We are able to obtain the leading order analytic results of Ref. [15]
but we cannot reproduce their Fig. 5.

pr/e and p,/e

1.01

05f

Fig. 3 The normalized longitudinal and transverse pressures versus T
at n = 0. The red (dashed) and black (solid) lines are respectively the
results to order # and 7°. The lower lines are p; /€ and the upper lines
are pr /€

Egs. (50) and (51). One sees that the results obtained using
Egs. (50) and (51) are fairly close to each other, but the lead-
ing order approximation does not agree well. We note that
the appearance of the saddle structure in the right panel indi-
cates the breakdown of the near field expansion. In Fig. 5 we
show A7y at order T and 7°. In the left panel we see, from
the appearance of the saddle, that the fourth order calculation
breaks down at T ~ 0.4. The right panel shows clearly that
when sixth order terms are included the region for which
the expansion is valid is extended, and the system evolves
significantly closer to the equilibrium state.

Our calculation is based on a classical description and
we can estimate the regime of validity of this description by
looking at the constraint imposed by the uncertainty princi-
ple. The classical description requires A E At >> 1. Since the
energy released in the collision is extremely large, as seen in
Fig. 1, the lower bound for the range of times that satisfy the
constraint will be very small, which is the idea that justifies
the near field expansion. To obtain a quantitative approxi-
mation for this lower bound we estimate the initial energy
as AE = £ SAt where & ~ 2000 GeV/fm? is the initial
energy density, and S & 150 fm? is the transverse area of
overlap of the colliding nuclei. From these numbers we obtain
At > 1//ES ~ 8 x 107* fm. From Figs. 1, 2 and 3 we
estimate that in our calculation the t expansion breaks down
for values T 2 0.05 fm. We see therefore that the region
of validity of the near field expansion reaches far beyond
the lower bound at which we no longer trust the classical
description we are using.

In Ref. [13] a different method was suggested to extract
physics from the T expanded expression for the energy. The
authors propose that the ultra-violet regulator A should be
considered an unphysical scale that is related to the inverse
lattice spacing in a numerical calculation. In the limit that
the lattice spacing goes to zero, lattice calculations show that
the energy density is ~ [In(7)]? [45]. We can recover these
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Fig. 4 The quantity A7 in Eq. (57) at order t*. The vertical axis shows 1 and the horizontal axis is 7. The left panel shows the leading order
approximation of Ref. [15], the centre panel shows the result obtained using Eq. (51), and the right panel is the result using Eq. (50)

Fig. 5 The quantity A7y in Eq.
(57) at order t* (left panel) and
order 7 (right panel). The
vertical axis shows 1 and the
horizontal axis is 7
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features from our results by fitting the energy to a function
with the appropriate form. We denote the energy to order 7"
as £ and define the corresponding fitted function

A" ?

mr(1+ 300

M =A|ln (58)

20y

where the symbol Og') represents a polynomial of order
2i in the three scales A, Qg and m. For example, with
n = 2, the only term in the sum is (’)52) = c1A? +
o AQ;+c3 Q? +4caAm +c5Qgm + cgm?, where the coef-
ficients (cy, ¢2, ¢3 ... cg) are determined as described below.
When n = 4 there are two terms in the sum, (’)54) (which
has the same form as (’)52) with different coefficients), and
O = ¢7A* + cgA3Q, + ...m™. The function (58) satis-
fies limp — o0 Eé?) ~ (In(1))?, as desired. The coefficients
(denoted by the ¢’s) are chosen so that the function matches
our analytic result when it is expanded in 7. In Fig. 6 we show
the results of this fitting procedure. The graph demonstrates
the rapid convergence of the expressions defined in Eq. (58),
and the convergence of the original T expanded results to the
same curve.
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Fig. 6 The energy density versus 7. The blue (solid), green (dashed)
and red (dotted) lines show the results at order 72,74, and 7°. The cyan
(dot-dashed) line is Sé%) and the thin black line just below the cyan line

is Sf(l‘:). The curve corresponding to Séf) is directly on top of the black
line and is not shown
6 Conclusions

We have used a Colour Glass Condensate approach and
obtained an analytic expression for the energy-momentum



Eur. Phys. J. A (2022) 58:5

Page 13 of 19 5

tensor to sixth order in an expansion in the proper time. We
have shown that our calculation gives physically reasonable
expressions for the energy density, and the longitudinal and
transverse pressures.

The idea of a proper time expansion, also called the “near
field expansion” was proposed almost 15 years ago as a way
to obtain analytic information about the properties of the
plasma system in the very early stages after a heavy-ion col-
lision. However, there are only a few calculations in the lit-
erature that make use of the method, and its convergence has
never been studied. Our results clearly demonstrate the valid-
ity of the near field expansion as an approach to describe the
early time behaviour of heavy-ion collisions.

Our expression for the energy-momentum tensor can also
be used to obtain information about energy flow, elliptic flow,
angular momentum, and other observable quantities. In our
companion paper [1] we give a detailed analysis of various
experimentally relevant quantities that can be calculated from
the energy-momentum tensor.
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Appendix A: Notation

We use at different times three different coordinate systems.
Minkowski, light-cone, and Milne (or co-moving) coordi-
nates. The collision axis is defined to be the z-axis. The two
transverse coordinates are always the last two elements in the
position 4-vector and will be denoted X | . We will write the
position 4-vector as

I -
Xmink = (t,z,x1)

Xfe = (xt,x7, X))

Xhie = (T, 1, X1) (A1)
with the usual definitions
t t—
B . (A2)

V2 V2
1 +
T =2 =2 = V2xTx and n=In <x—) . (A3)
X

We define the relative and average transverse coordinates

- S - - 1 -
r=x; —y; and RIE(yJ_—i‘XJ_). (A4)

We will write unit vectors as # = 7/|F| = F/r and R =
R/|R| = R/R and use standard notation for derivatives like
; 0 ; 0
00 =——— and 3, = ———. A5
* ax' k oR! (A3)
In light-cone coordinates we have
0 0
9T = — and 9" = —. A6
ox~ an axt (A6)
We note that the chain rule gives
; 0 1 0
—3’ = — -
TS + 29R!
gm0 10 (A7)
Y9t 209RV

The metric tensors in these three coordinate systems are
gmink = (1, =1, =1, —1)qiag and

0 1 0 0 1 0 0 O
_|tr 0 0 0 o lo—<20 0
8lc = 0 0 —1 0 , 8milne = 00 —10
0o 0 0 -1 00 0 -1
(A8)
The coordinate transformations are
1 1
—= — 0 0
“ V22
.X'LL~ — MMX Mﬂ — dxmink _ % _% 0 0
mink Ve v dxlvc 0 0 1 0
0 0 0 1
dx".
I iz M k
Xmink = MVXiine - My = dxf;mn
milne
cosh(n) tsinh(n) 0 O
| sinh(n) zcosh(n) 0 O
- 0 0 1 0 (A9)
0 0 0 1

We define a 4-dimensional gradient operator where the
transverse components are derivatives with respect to the
average coordinate R defined in Eq. (A4). We can transform
this gradient operator from Milne to Minkowski coordinates
by taking the inverse of the transpose of (A9). This gives

sinh(n) 9

cosh(n)%— T on

gmink — | sinh(n) g + 2 5 : (A10)
_811e
_312e
The generators t, of SU(N,) satisfy
[ta, tp] = ifabcte
Tr(tatp) = %&zh

fave = =2iTr(taltp, 1]) . (Al11)
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Functions like A, J;., p and A are SU(N,) valued functions
and can be written as linear combinations of the SU(N,) gen-
erators. In the adjoint representation we write the generators
with a tilde as (7))pe = —i fape.

The covariant derivative is defined as D, = 9, —igA.
In the adjoint representation this becomes D, 4p = 84p9y —
8fabe Ay c. Gauge transformations are written

U(x) = explit,0,(x)]

U(x) — U)W (x)

AR () = LUT )" U () + UT AR ) U(x)  (A12)
g

Dy (x) = UT(x)D,(x)U (x)
Fuy(x) = UT(x) Fup (0)U (x) .

(A13)
(A14)

We will use two specific gauge transformations (see equa-
tions (D8, D10))

X

—00

Ui(x~,X1) = Pexp |:i8/ dZ_Ala(Z_,iL)ta]

Xt

—0o0

Ua(x*,X1) = Pexp [igf dZ+A2u(Z+,£L)ta:| (A15)

where we use the “left later” convention for path ordering.
In the adjoint representation we write

X

Wi(x~,X1) = Pexp |:ig/

—00

dZ_Al a(z_’ )_C)J_) ;ll:|

xT

—00

Wa(xt, %) = Pexp |:ig/ dZ+A2a(Z+»£L)fa:| .(A16)

These matrices satisfy the usual identity

Ut1,U = Wapty = W, . (A17)

Covariant derivatives in Milne coordinates include both
the gauge field contribution and curvature terms. Products of
covariant derivatives acting on a scalar function ¢ are written

V,u, ¢ = Du (b
VuVy¢ = (DD, —T},Dy) ¢
VoV Vo ¢ = (Do V) Vy = Tg, VeV = T35,V Vo) ¢
(A18)
The connection I /)lv can be calculated from the metric tensor

(A8) and one easily shows that the only non-zero components
are

Fo—raMFl—Fl—l (A19)
11 — 01 — 10_,['
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Appendix B: Energy-momentum tensor in terms of fields

Our result for the energy-momentum tensor in Eq. (16)
can be written in terms of electric and magnetic fields. To
obtain this expression we transform the field-strength ten-
sor to Minkowski space and then extract the components
of the electric and magnetic fields. We remind the reader
that in our notation a Minkowski space 4-vector is writ-
ten v = (0,07, 0%, 0Y) = (%, v%, 1) and the field-
strength tensor therefore takes the form

0 —E° —E% —EY
E* 0 —-BY B*
v
Fmink = EX BY 0 _B? (Bl)

EY —B* B? 0

The energy-momentum tensor can then be written in terms
of field components using Eqgs. (14, B1). Since the energy-
momentum tensor is symmetric we only need to give the
components on the upper half triangle which are

1 :
Toink = 5 (E3E} + EEq + EGE; + B} B}

+B; By + B;BY)
Toink = Ea By — E;BJ
Toink = E3B; — EjB;
Tovw = EXB) — E, B}

mink —
T =~ (ELEY — EVE} — EZES + BLB)
—B; By — B.B})
Tk = —EJ Ed — B, By
T = ~ELE; — BB

1

T = 5 (B4 E; — EaEq + EE; + BB,
—Bi B + B;B;

Tow = —EJE: — B, B}

mink —

mink —

1 :
33 4 nkd
T, ?@q+wm—%ﬁ+m@

+B)B) — B:BY). (B2)

We then transform our result for the field-strength tensor
in Milne coordinates into Minkowski coordinates, and then
extract the field components. All field components at T > 0
can be written in terms of the lowest order components in
Eq. (10). We remind the reader that our notation is £ =
E*(0,%1), B = B%(0,X1)and D' = 8’ —iga', (0,%,). The
transverse field components E 1 and B 1 have contributions
only at orders that correspond to odd powers of 7 and the
longitudinal components E? and B get contributions only
from even powers of t. Our results are

P I . 4 1 ., _
E(1y(¥1) = =3 sinh([D', E]— Z€"/ cosh(m[D’, B]
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. 1 .. . 1 .
B{yy(F1) = 5€” cosh(n[D’, E] — = sinh(i)[D", B]
E% = LD 1D E

2) — Z[ ’ [ ’ ]]

1 ..
B, = 4[D.[D. B]]

. 1 . . .
E(3) = —1¢ Sinh(nID', [P/, (D, ET]]
—% cosh(n)e'/[D/, [DX, (DX, B]I]

—<% cosh(n)(IE. [D', E1] — [B.[D". B]))

_%g sinh()e” [E, [D/, B]]
By = L cosmet (D4, (0%, (2%, 211
_% sinh()[D', [D?, [P/, BN
+i;‘; sinh (7)€’ ([E, [D/, EN] - B, [D/, Bl])
_%g cosh(n)[E, [D', B]]
£, = 6_14[91‘, (D', [D, (D!, ENN]
_,_i;‘éeif[[p", El, [D/, B]]
B, = 6‘_4[pf, (D', D/, [DY, BN

318 ijrrpyi j
+ 2D BL (D). Bl)
/ .s . . 2
—;%elf[[b‘, EL[D/, ET - §—4[E, (E, B]].
(B3)

We comment that these results have somewhat different form
compared to Ref. [15] but are equivalent.

Appendix C: Initial conditions
1. Preliminaries

In this appendix we will derive the initial conditions for the
differential equations that give the gauge potentials in the for-
ward light-cone. These conditions were originally obtained
by working with sources with zero width across the light-
cone that are represented with delta functions, by matching
singular terms [35,36]. We work with sources with a small
but finite width, and therefore the boundary conditions should
be obtained by integrating the YM equation across the light-
cone. We start from the YM equation in the adjoint represen-
tation which has the form

A0t AL — 0,0 Al + gfupe ((0,A})AY

—2(3, AP AL + (0" A))Apc)

+g2fabcfcmnAp,bA£f1A,1; - J; =0. (C1)

We can find boundary conditions that relate the ansatz func-
tions in different regions of spacetime by integrating the YM
equation across the lines that separate the different regions.

2. First boundary condition

In the case of singular sources, the first boundary condition
is obtained by matching singular terms in the YM equation at
the point x* = x~ = 0 at the tip of the light-cone. To obtain
the corresponding condition for sources of finite width, we
consider the integral of the YM equation over a small dia-
mond shaped area centered on the tip of the light-cone. Taking
v = i (one of the transverse spatial indices) we calculate the
integral

w/2 w/2
lim dx~ / dx™ (YM equation) = 0 (C2)

w—0J_w/2 —w/2

where the zero on the right of the equation is from the fact
that the potentials in all regions of spacetime satisfy the YM
equation. The contribution to the left side of (C2) from most
terms in the YM equation is trivially zero, but there are some
terms that do not automatically give zero. The conditions
that force the sum of these terms to be zero are the boundary
conditions we are looking for.

The densities p; (x~, X1 ) and pp(x ™", X1 ) diverge as 1/w
when w — 0, but the pre-collision potentials in light-cone
gauge remain finite, which can be seen from Egs. (D8-D11).
It is straightforward to show that there is only one term in the
integrand that gives a non-zero contribution to the integral.
This term is 379~ A% (x T, x~, ¥, ) and gives

w/2 w/2 )
0= f dx_/ dxTatam AL (x T, x 7, X))
—w/2 —w/2
= Al (W/2,W/2,%1) — AL (W/2, —w/2,X1)
— AL (—w/2,w/2,%1) + AL (—w/2, —wW/2,X1) .

Taking the limit w — 0T and using equation (6) we obtain
o ,(0.51) = lim (B, (7,80 + By, 50)  (©3)

which is the first boundary condition in Eq. (17), written in
the adjoint representation.

3. Second boundary condition

When singular sources are used, the second boundary condi-
tion is obtained by matching singular terms in the YM equa-
tion across the positive branch of one of the light-cone vari-
able axes. To obtain the corresponding condition for sources
of finite width, we consider the integral of the YM equation
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across a small strip centered on the positive x ~ axis. We set
the free index v in the YM Eq. (C1) to v = — and calculate

w/2
lim dx* (YM equation) = 0.

w—0J _w/2

(C4)

The only non-zero contributions come from terms with a
derivative with respect to x*. Two of these terms that give
zero are

w/2
f =/ dx+A:(xJ“,x_,)?L)B_A;(x"’,x_,J?L)
—w/2
_ w/2
< Aj[ dxt 9T A, (xTxT, X))
—w/2

w/2
2‘22/ dxt A7 (T xT X0 A (et x T X))
—w/2

_ w/2
< A;/ /zdx+ A (T X7, X))
—W

where A} and A indicate the maximum value of the corre-
sponding potential on x* € [—w/2, w/2]. For the first term,
the integral is finite but the prefactor goes to zero, using (6).
For the second term, the the prefactor is finite but the integral
goes to zero, again using (6). Collecting the non-zero terms
Eq. (C4) becomes

w/2 .
0= / dx* [23*3*A;(x+,xi@) +8 " AL(x T, x T, X))
—w/2
+8fape Al (x T, xT, ¥ AL X7 X)) — U (o Jﬁ)} .
(C5)
The first term is straightforward to integrate and gives

lim term; = 2 lim (07 A, (w/2,x7,%1)
w—0 w—0

—0T A, (—w/2,x7,%1)) = —2a(0,%1)
(C6)

where we used (6) in the last step. The results of the previous
section tell us that

AL x T R ) = Bl (T F ) + B (T X ) 4+ O(w)

for xT e [—w/2, w/2] (Ch
from which we find that the second term of (C5) gives
w/2 o
lim term, = lim dxto79' By, (xt, X1). (C8)
w—0

w—0 —w/2

The limit of the third term in (C5) can be written using Eq.
(C7) as

lim termjs
w—0

. w/2 .
= gfupe lim (B, 71) / dxt o ALt x 7))
w—0 —w/2
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w/2 ) .
+f dx™ ﬁgb(xﬂﬁ)a—A;(xﬂx—,h)) . (C9)
2

—w/

The first term on the right side of (C9) is
lim terms, = g fape lim B}, (¢, %1) (ALW/2,27, 1)
w—0 w—0
B} EL)
= gfupe lim B, (x 7, X)L (xT,%1) (C10)
w—0

where we have used Eq. (6) in the first step and Eq. (C7) to
obtain the second line. The second term on the right side of
(C9), using (C7), is

lim termsy,
w—0

w/2 ) )
— ¢fupe lim / dxt B, (e, R0 B (L EL)
w—0 —w/2

(C11)
Collecting these results Eq. (C4) with v = — now has the
form
lim [terml + termy + termjy, + termsyp
w—0
w/2
—/ dxﬂ‘(xﬂh)} =0. (C12)
—w/2

It is straightforward to show that the piece limy_o[termy +
terms, — ff\{iz dxTJ~(xT, X1)] is just the integral of the
YM equation for the pre-collision potential 8; in the absence
of the source corresponding to ion 1, and can therefore be set

to zero. Using Eqgs. (C6, C10) the surviving terms give

000, %0) = 2 fae Tim By F0BL G FD)
w
(C13)

which is the second boundary condition in Eq. (17), written
in the adjoint representation.

Appendix D: 2-potential correlation function

In this appendix we give the derivation of the 2-point cor-
relation function defined in Eq. (21), the result for which is
given in Egs. (22, 23, 24). The result has appeared previously
in the literature, and we present it here for completeness, and
to explain our notation.

The pre-collision potentials can be expressed in terms
of the ion sources by solving the YM equation in the pre-
collision region. This is done most easily by making a gauge
transformation. The ansatz (6) together with the boundary
condition (17) expresses the pre-collision potentials in terms
of the transverse components ﬂi and /35 which are conven-
tionally called light-cone gauge potentials. We can transform
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these potentials without violating our chosen gauge condi-
tion (5) by exploiting residual gauge freedom. Furthermore,
since the two pre-collision regions to the left and right of the
forward light-cone are not causally connected, we can work
in different gauges in each of these regions.

First we discuss ion 1. The pre-collision potential can be
transformed so that the light-cone gauge form

By (x™,X1) =B (x",%¥)=0and Bj(x",X1) #0

(D1)
becomes
Bleoy® ™, %1) = Bl ooy (x 7, X1) = 0and
Bl @7, X1) = A1(x™, %1). (D2)
The new potential satisfies ,8{".,, = 8~ B{.,, = 0 and

is conventionally called the covariant gauge potential. In
covariant gauge the YM equation has the simple form

VIAI(T, X)) = —p1(x 7, X1) (D3)
which can be easily solved to obtain
MG = [P GG -Eo a0 R b
with
- 1 -
G(x1) = 2—K0(MIM|)- (D5)
b4

The function K is a modified Bessel function of the second
kind, and m is an infra-red regulator whose definition is dis-
cussed in Sect. 4.1. In exactly the same way we obtain the
covariant gauge solution for the second ion
Ao(xt,%1) = /dzu G —Z) ;T Z1). (D6)
Next we must find the residual gauge transformation that
allows us to obtain the light-cone gauge potentials from

our covariant gauge solutions. For ion 1 we must solve
By (x~,X1) = 0 with

_ . i _ . _ .
B (x ,x¢)=§U1T(x L XDTUN (T, X))

HU (7, 0B T EDU (T, R ).
(D7)

The solution is

-

Upy(x—,%1) = Pexp[ig/ dz"A1(z7,X1)] (D8)
—0Q0

where the lower limit on the integral is chosen to give retarded

boundary conditions. The transverse components in light-

cone gauge therefore satisfy

S i R . R
Bi(x ,xL>=§UI(x XU (T, R (D9)

For ion 2 we proceed in the same way. The covariant gauge
potential is defined as

Breoy® T, X1) = By, (xT.X1) = 0and
BT X1) = Ap(xT,X1),

the corresponding residual gauge transformation is

N
dzt Azt X)),

X

Us(xT,%)) = Pexp[ig/

—00

(D10)

and the light-cone gauge transverse potential is obtained from
the covariant potential as

BT, F1) = ~US G, F DI UG F ). (D11)
8
A more convenient expression for the light-cone gauge
potential can be constructed from these results. For ion 1 we
use Egs. (D1, D2) to obtain

FH(x, %) =0"Bl(x",71)

F"ri

lcov

(X7, %) = =3 Aj(x7, %1) (D12)

which gives
BI(x~,X1)

-

_ / de™ Fyfie, 70
—0oQ
X s

=/ dz U/ (z7, X)) F (27 X )Ui(2, X1)
—0Q

X
—f dz~ UIT(Z_,iL)H;Al(Z_,)?J_)U1(Z_,fJ_)

—00

X7 .
—/ dz” O A1a(Z, X)) (WDap(Z™, X1,

—00

(D13)

where we use W to denote the Wilson line in the adjoint
representation (see Appendix A). An analogous result for
the light-cone gauge potential from the second ion can be
obtained in the same way and we do not write it explicitly.

Now we calculate the correlator in the first line of Eq.
(21), and we suppress the index 1 that indicates that poten-
tials and sources are those of the first ion. The calculation
of correlators for the second ion is exactly analogous. Using
Eq. (D13) we have that the correlator we want to calculate
can be written

(B, X0B (v, 51)
— /x dz™ /} dw™ l‘cl‘d(WeC(Zi,)_fJ_)

Wra(w™, ¥1))8L0) (Ae(z™. XA (w™, 51)). (D14)
We define the function y using the equation

8ab 2 8(x™ —y )y (x T, X1, Y1) = (Aa(x T, XA, Y1)
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(D15)
and y is obtained from equations (D4, 19) as

YR 5 = /d% M I GG —21) GGL —Z).
(D16)

The correlator of Wilson lines has been calculated in Ref.
[38] where it is shown that

Scd (Wac(x™, X D) Wpa(y™, 1))

g4Nc X~
= S.peXP T/ dz_(Z)/(z_,n,yi)
—00

—y@E XL X)) —y(@E Ly, h))] . (D17)

Using Egs. (D15, D17) we find that Eq. (D14) can be written
in the adjoint representation as
(By(x ™ B (7 F1)
X Y Lo
—sug® [ de [ awse - w)alaly e R
AN [T .- .-
eXp[gT / dv™(2y (v, X1, Y1) — vy (v, XL, X))

-y, ¥1, h))] . (D18)

Next we take the limit that the width of the source current
p(x~, X1) across the light-cone goes to zero. Using Eq. (20)
we rewrite (D16) as

YT XL, Y1) =hGT) YL Y1) (D19)

where
7(X1,y1) = /dzZL @ GEL—Z1)G(L —71)-
(D20)
We define the functions I'(¥ 1, ¥, ) and T'(X 1, 1) as

C(z7, X1, y0) =2y ,X1,y1) —y(@ . X1, X1)
—y (@™, YL, V1)
TGy =27GL, Y1) — 7GEL X)) — 70, Yu) .
(D21)

Using these definitions we rewrite the exponential in (D18)
as

4NC .. - I
exp[ --- | =exp |:gT F(XJ_,yJ_)\/ dv_h(v_)] .

(D22)

We need to substitute (D22) into (D18) and take the limit
that the width of the source distributions goes to zero. The
function 4 (z7) behaves like a delta function in this limit, and
it appears therefore that the calculation should be simple.

@ Springer

However, we must proceed carefully to be sure that the delta
functions in the integrand have support. We define

X
Fa) = f dzh(z") and g(FL,51)
—00
4
Ne ~ o o
=T y0) (D23)
so that Eq. (D18) becomes
(BL(x™, ZBLG, TL))
= Sap g I(x ™,y 7, X0, 1) L8] 7 (31, Y1) (D24)

where
T(x7,y7, X1, y1)

x~ v o )
:/ d27‘/ dw™ 8(z~ —w*)h(Z*)eg(M_.yJ_)f(z )
o oo

1 o ¥ 9 oL i
= —=—> / dz™ / dw™ §(z7 — w_)ieg(xidl)f(z )
8(x1,y1) Jowo 0 9z~

in(x=,y7)
:éf‘“‘” Y de- 8GN

gLy Jowo 9z~
1

- [e8(2 T minG™ ™) _ ]
8(x1,y1)

(D25)

Taking the limit that the width of the function 4 (z™) goes to
zero so that f(min(x_, y_)) — 1 [see Egs. (20, D23)] gives

llm I(xf, yi, )_EJ_, 51’J_) = [eg(iLs;L) _ 1] .
w—0

g(X1,y1)
(D26)
Combining Egs. (D23, D24, D26) we write

Tim (B (x" XA T) = 6apBY (LT (D27)

with
BU(%,.5,) = 2 <ex [g4N” FGELY )]4)
BT N G 2 e
AL PELTL). (D28)

The calculation of correlators for the second ion is exactly
analogous and Eqs. (D27, D28) can be used for either the
first or the second ion by using the charge density (X1 ) or
u2(X1) in Egs. (D20, D21).
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