
J. Phys. G :  Nucl. Phys. 13 (1987) 1089- 1097. Printed in the UK 

Deuteron formation mechanism 

Stanistaw Mrowczynski 
High Energy Department, Institute for Nuclear Studies, 00-681 Warsaw, Hoza 69, Poland 

Received 15 August 1986, in final form 4 February 1987 

Abstract. The microscopic mechanism of deuteron formation in high-energy collisions with 
nuclei is discussed. The formula for the deuteron emission cross section is derived in two 
ways: in the first the wavefunction description is used, while in the second we apply the 
density matrix formalism. 

1. Introduction 

According to the widely accepted picture, most deuterons produced in high-energy 
collisions with nuclei are formed by final-state interactions of nucleons with small relative 
momenta. In spite of an extensive literature on this problem (see, e.g., the review [ 11) some 
aspects of the microscopic mechanism leading to deuteron formation have not been 
worked out. There is confusion related to the fact that the elastic interaction of two on-shell 
nucleons cannot lead to deuteron production because of conservation of four-momenta. In 
the pioneering paper by Butler and Pearson [2] it was assumed that the nucleons interact 
with an external optical potential of the nucleus, which makes deuteron formation possible. 
However, this solution does not agree with the experimental data [ l ]  because of the 
momentum-dependent coefficient present in the formula for the deuteron production cross 
section (see below). In the phenomenological coalescence model [ 31 the nucleons are 
assumed to form a deuteron if their relative momentum is smaller than the critical value po  
(coalescence radius), which is a free parameter of the model. The problem presented above 
is not taken into account at all. 

The important point that has not been exposed in the literature is the following. The 
nucleons produced in high-energy collisions with nuclei are emitted from the finite 
space-time region S Z .  So, their four-momenta are not precisely determined due to the 
uncertainty principle. Because the time interval of deuteron formation and the deuteron 
radius are close to the respective parameters of S Z ,  the uncertainties of energy AE and 
momentum Ap are comparable with the values of AE and Ap caused by the off-shell effect 
in a deuteron. Therefore the uncertainty of nucleon four-momenta allows deuteron 
formation, and no additional third body is needed?. 

In fact the above picture of deuteron formation follows from the calculations by Sat0 
and Yazaki [4], and from the formalism developed by Remler and coauthors [5], though it 
was not explicitly expressed there. 

t An essential role of the uncertainty principle in bound-state formation has been pointed out to me by 
L L Nemenov. 
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In 0 2 the formula for the deuteron formation cross section is derived in terms of 
wavefunctions. In 0 3 we apply the more appropriate density matrix formalism used earlier 
in references [4,5]. In 0 4 we discuss the results. 

2. The wavefunction description 

A fast projectile interacts with a nucleus and nucleons are emitted from the interaction 
region 52. How many deuterons are there among the neutron-proton pairs? To answer this 
question one has to project the nucleon-pair wavefunction onto the deuteron wavefunction. 
The matrix element of interest is expressed as 

where @(rl, r2, t )  and ~ ) ~ ( r ~ ,  r2,  t )  are the time-dependent wavefunctions of the nucleon 
pair and the deuteron, respectively. Spin indices are suppressed. We take the limit t+ co 
since we are interested in the deuteron fraction in the outgoing asymptotic nucleon-pair 
wavefunction. The problem of the time evolution of the matrix element from equation (1) 
has been studied by Remler and coauthors [ 5 ] t .  In this paper we, in fact, omit this problem 
by means of the following simplified argument. We assume that the neutron-proton pair 
can be treated as an isolated system after the time t = 0 when the pair leaves the interaction 
zone 52. This is, of course, an idealisation of the real situation. This idealisation, however, 
justifies the wavefunction description used in this section. The neutron-proton potential, 
which is responsible for the time evolution of the pair wavefunction, is time independent. 
Therefore the pair wavefunction can be expanded in a series of energy eigenfunctions with 
time-independent coefficients. Because the deuteron wavefunction is an energy 
eigenfunction the scalar product in equation (1) is time independent for t > 0, and the limit 
t+ co is trivial. 

We calculate the matrix element for the time t = 0 when the nucleons are emitted from 
the interaction region. Then the parameters of the pair wavefunction are related to the 
space-time characteristics of 51. We use the non-relativistic approximation, where the 
centre-of-mass motion of two particles can be separated from the relative motion. The 
relativistic generalisation is discussed at the end of the section. The wavefunctions from 
equation (1) can be expressed in the form (the time variable is further suppressed) 

1 
*D (rl , r2 ) = - exp(iPR)pD (r) @ 
*@I 9 r2 1 = @K ( R b k  ( 4  

R = i ( r l  +rz )  r=rl  -r2 

( 2 )  

where q D ( r )  is the deuteron wavefunction of the relative motion and @K(R), pk(r) are the 
wave packets of the centre-of-mass motion and the relative motion of the nucleon pair. K 
and k denote the respective average momenta. V occurs because of the plane-wave 
normalisation of the centre-of-mass wavefunction of the deuteron. Substituting (2) in (1) 
one finds 

(3) 
A=-.- 1 6 ( P - K )  Jd3rpE(r)p(r)  

@ 
t Remler et al [ 5 ]  have, in fact, studied the time evolution of the matrix element involving the density matrices 
rather than wavefunctions, 
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6(P-  K )  = d3R exp(iR)QK(R). 

The cross section for deuteron production is (see appendix) 

i' 
danP V d 3 P  (I d3p1 d 3 p 2 1 A 1 2  d3p,d3p2) (4) 

where danP/d3p, d3p2 is the inclusive cross section for the emission of a neutron and 
proton with momenta pi and p 2 ,  respectively. Vd3P/(2n)3 is the deuteron phase-space 
element, and 

K=p, +P2 k=i(pi  -p2). 

The cross section donP/d3p, d3p2 describes neutron-proton pairs including deuterons. 
Because the n-p pair is treated as an isolated system the cross section does not include 
pairs from heavier fragments like H, He etc. If donP/d 3p1 d 3pz depends weakly on k and 
K when compared with 2, the cross section taken at K= P and k = 0 can be placed in 
front of the integral (4). The validity of this assumption is discussed briefly below. Keeping 
in mind the normalisation condition of the wavefunction 6 ( P )  one easily finds 

d a  danP 
d3P d3p, d3p2 
---=A 

withp, =p2 = P/2 and 

The coefficient $ comes from averaging over the polarisations of the nucleon pair and 
summing over the deuteron polarisations. In other words, it hns been assumed that the 
nucleons emitted from the interaction region SZ are unpolarised The wavefunctions from 
equation (6) are spin independent. 

The result of Butler and Pearson [2] is similar to that of equation ( 5 )  but the factor A 
depends on the deuteron momentum as Pd2 .  

If one assumes that 

1 do" doP 
d3pi d3p2 U' d3p1 d3p2 

=--- donP 

where U' is the total inelastic cross section, the formula ( 5 )  coincides with that of the 
coalescence model [ 1 , 31. 

Let us discuss the practical meaning of formulae ( 5 )  and (6). The essence of this result 
is the proportionality of the cross section for deuteron production to the cross section for 
emission of an n-p pair with respective momenta of the nucleons. It should be stressed that 
the value of the coefficient A is, in fact, unpredictable, since the wavefunction pk(r) is 
unknown. To determine this function the complete scattering problem should be solved, 
which is far beyond our capabilities. This function, in particular, describes primordial 
deuteron production, which is the result of dynamical correlations among neutrons and 
protons. For example, such correlations can occur when the neutron-proton pair interacts 
coherently with a projectile. If one neglects correlations the wavefunction pdr) is 



1092 S Mro wczyriski 

determined by the size of the interaction region SZ. Then we can parametrise this function, 
for a time t = O  when the nucleons leave the interaction zone SZ, in the following gaussian 
form: 

Choosing the analogous parametrisation for the deuteron wavefunction qD(r) we get 

A = 6n3”/(B + B 2,)3/2 

The parameters BD and should be associated with the size of the deuteron and the 
interaction region from which the nucleons are emitted. 

In deriving formula ( 5 )  we have assumed that the cross section of the n-p pair 
emission depends weakly on the nucleon momenta when compared with the matrix element 
squared IJZl2.  The validity of this assumption can be easily verified for the n-p pair cross 
section expressed through the one-particle cross sections. Then for the gaussian form of all 
functions of interest one gets the condition B -2 Q mTo, where m is the nucleon mass and 
G is the slope parameter (often called the effective temperature) of the proton spectra. This 
parameter depends strongly on the emission angle and consequently it is easier to fulfil the 
above condition for the deuterons emitted forwards than those emitted backwards. 
Because the cross section danP/d3pl d3p2 contains the short-range (in momentum space) 
correlations, the assumption that this cross section depends weakly on the nucleon relative 
momentum is, in any case, incorrect. As briefly discussed in 0 4 the formula (6) is modified 
if one takes into account the short-range neutron-proton correlations. 

As has been argued, the uncertainty of nucleon four-momenta plays an essential role in 
deuteron formation. Therefore the nucleons have to be described by means of wave 
packets. Let us observe that if one uses a plane wave to describe the relative motion of the 
neutron and proton the fictitious normalisation volume V will remain in the final formula. 
It has a simple physical interpretation. The probability that the neutron and proton, which 
are not initially localised (because of the plane wave), form a deuteron is inversely 
proportional to the box volume V in which the particles are confined. 

On the other hand, it is not important for the problem of deuteron formation whether 
the centre of mass of the nucleon pair is localised or not. One can check that the formulae 
( 5 )  and (6) will remain unchanged if one uses the plane wave to describe the motion of the 
centre of mass of the nucleon pair. 

The relativistic generalisation of formulae ( 5 )  and (6) is not trivial because of the well 
known difficulties in the proper relativistic treatment of bound states. We will now use 
simple arguments to modify ( 5 )  and (6) to include relativistic effects, but our reasoning is 
far from rigorous. 

In general the factorisation of the two-particle wavefunction into parts describing the 
relative motion and the centre-of-mass motion is invalid in a relativistic approach, 
although, if the relative motion is non-relativistic in the centre-of-mass frame, this 
factorisation is approximately correct as long as we are not interested in the processes of 
high momentum transfer. For such processes the high momentum tails of the 
wavefunctions are of principal importance and the form of the deuteron wavefunction 
given in equation (2) is incorrect. Because the momentum transfer in the process of 
deuteron formation is of the order of the inverse deuteron radius, and this momentum 
transfer is small, one can use the deuteron wavefunction in the form (2). Then the only 
relativistic effect is the Lorentz contraction of the wavefunctions of relative motion of the 
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nucleon pair and the deuteron. The simple calculation shows that the coefficient A should 
be multiplied by the Lorentz factor y related to the deuteron motion. Using the Lorentz- 
invariant cross sections one can write down the relativistic analogue of the formula ( 5 ) :  

with E, = E2 = E/2 and p1 =p2 =P/2, which is the well known result of the coalescence 
model [ 13. 

3. The density matrix formalism 

The neutron-proton pair is part of a very complex system created in a high-energy 
collision with a nucleus. Therefore the density matrix formalism used in the papers by Sat0 
and Yazaki [4] and by Remler and coauthors (51 is more appropriate than the 
wavefunction description used in the previous section. 

The probability of finding a deuteron among the n-p pairs is 

where p ( r l ,  r{ ; r2, ri ; t )  is the two-particle density matrix. As in the previous section the 
problem of the time dependence of the matrix element from equation (8), studied in [ 5 ] ,  is 
simplified here by the assumption that after the time t = 0 of the emission of nucleons from 
the interaction zone s1, the density matrix describes the free expansion of nucleons, 
deuterons, tritons, etc, not interacting with one another. Then the matrix element present in 
(8) is time independent, and we calculate it for t = O .  The time dependence will now be 
suppressed. Expressing the deuteron wavefunction in the form (2) and using the centre-of- 
mass variables R and r, the formula (8) can be rewritten as 

d3rd3r’d3Rd3R‘p(r,  r’; R, R’) e x p [ i P ( R - R ’ ) ] ~ ~ ( r ’ ) ~ ~ ( r ) .  (9) V 

The Wigner transformation of the density matrix provides the quantum-mechanical 
analogue of the distribution function, i.e. the probability density of finding an np pair with 
centre-of-mass momentum K and relative momentum k, and centre-of-mass position X and 
relative distance x. This probability density is expressed as 

P ( x , X ,  k, K ) =  d3ud3Uexp(iKU+iku)p(x-fu,x+ f u ; X - $ J , X +  ;U). (10) J 
It is normalised as 

Assuming that 9 (x, X ,  k, K )  can be expressed in the form 

~ ( ( x , X ,  k,K)=D(x,X)G(k, K)  
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and inverting the formula (10) one gets 

d 3 k  d 3 K  
x J-- exp[ -ik(r-r’)-iK(R -R’)]G(k, K).  

( 2 4 3  ( 2 4 3  

Substituting the expression (1 1) into (9) one finds 

Formula (1 2) is significantly simplified if one assumes that the function G(k, K )  depends 
weakly on k and K when compared with the Fourier transform of the product pDD. Then 
the function G(k, K )  taken at k=O and K = P  can be placed in front of the integral (12). 
Now we can perform the integrations over k and K which provide the delta functions 
( 2 ~ ) ~  8(3)(r’-r) and ( 2 ~ ) ~  8‘3)(R’ - R )  respectively. After the trivial integrations over r’ 
and R’ we get 

i’ 

J (13) 

1 
V 

W = -  G(k=O,K=P) d3rd3RIcpD(r)J2D(r, R). 

Since Id3RD(r, R ) g D ( r )  is the probability density of the relative distance of the neutron 
and proton of the pair, we finally find 

1 
V 

W= - G(k= 0, K = P )  d 3  rl (oD(r)l ’D(r). 

Expressing G(k,K) through the cross section of nucleon pair emission one gets from 
equation (13) the formula for the deutron production cross section 

d o  danp  
d 3 P  -‘ d3(P/2)d3(P/2) 
-- 

with 

As previously, the coefficient has been introduced because of averaging over nucleon-pair 
polarisations and summing over the final spin states of the deuteron. In the respective 
formula from reference [4] there is the additional coefficient Z3, which arises from the 
momentum per nucleon used in the paper [4]. The np-pair cross section from equation (14) 
differs from that used in equation (4). The cross section here describes all neutron-proton 
pairs including deuterons and heavier fragments. On the other hand the cross section given 
by the formula (14) describes only deuterons and not the n-p pairs in heavier 
fragments. 

Let us discuss the approximation used that G(k,K) depends weakly on k and K.  
Treating the function G(k, K )  as a constant in equation (1 1) one finds 

p(r, r’; R, R’)=D(r, R)G(k, K)8c3)(r’-r)6(3)(Rr-R). 
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So, the approximation that leads to equations (14) and (15) is equivalent to the statement 
that the density matrix of np pairs is diagonal. 

The physical interpretation of equation (1 5) is transparent. The deuteron formation 
cross section is proportional to the overlap of the deuteron wavefunction modulus squared 
and the probability distribution of the distance between the neutron and proton in R. One 
should remember that the distribution D(r)  contains, apart from information on the size of 
the emitting source, the dynamical correlations among the neutrons and protons. 
Therefore, by parametrising the function D(r)  in, say, gaussian form and comparing the 
formulae (14) and (15) with the experimental data, one finds the ‘effective’ radius of the 
interaction zone. 

Using the arguments given in the previous section we get the relativistic generalisation 
of equation (14), which is identical to equation (8) but with C instead of A .  

4. Discussion and conclusions 

It is interesting to compare the results found on the basis of the wavefunction description 
and those from 0 3. 

Let us rewrite the integral (6) in the form 

A = d 3  k d 3 r d 3  r‘qk(r)qf(r’)qz(r)qD (I.!) .  i’ 
Now we can try to perform the integration with respect to k. Because the wave 
packets qk(r) are not the momentum eigenfunctions this integral does not equal 
[ (2~)~/V]8(~) (r’ -r ) .  However, it is reasonable to assume that 

I’ d3rA(r)= 1 .  

This corresponds to the statement that the density matrix is diagonal. If A(r)=D(r) we 
recover equation (1 5) by substituting (1 7) in (1 6). 

In the case of deuteron formation the bound-state radius is close to that of the 
interaction region R from which nucleons are emitted. Let us now briefly consider the 
process of bound-state formation when the radius of the bound state is much smaller than 
that of R, and also the opposite case. As explained above, in the first case bound-state 
formation due to final-state interaction is strongly suppressed because the off-shell effect 
greatly exceeds the uncertainty of the particle four-momenta. On the other hand our results 
(9, (6) and (14), (15) are invalid in this case because the momentum dependence of the 
particle production cross section cannot be counted as weak, and consequently this cross 
section cannot be placed in front of the integral (4) or (12). 

The formation of pionium (the Coulomb bound state of Z +  and Z-) in high-energy 
collisions provides an example of the case when the radius of the bound state is much 
greater than that of R. Then the formulae (6) and (15) (without spin factors) give 

A = c = IqB(r = 0 ) 1 * .  
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It is seen that in this case the coefficients A and C depend only on the bound-state 
wavefunction qB (r). The same result has recently been found by Nemenov [ 61 on the basis 
of considerations somewhat different to ours. 

The cross section danp/d3pld3p2 is not available experimentally, and it is usually 
expressed through the one-particle nucleon cross sections. Then this cross section is 
weakly dependent on the relative nucleon momentum, as has been assumed in our 
considerations. However, donP/d3p1 d3p2 contains the short-range n-p correlations and it 
should be written in the form 

1 d a ”  daP 
(1 + ibl -P2)>. 

da”P - 
d3p,d3p2 u0 d3p,  d3p2 

The momentum dependence of the correlation function Z(g) is not weaker than that of the 
deuteron wavefunction, and equations (6) and (15) should be modified as 

C+C+ :(2;lr)3 d3rd3r’z(r-r’)qT,(r’)qo(r)D J’ 
where f(k) is the Fourier transform of the function z(r). 

As noted by Sat0 and Yazaki [4] the formulae (14) and (15) can be used to determine 
the size of the interaction region from which the nucleons are emitted. However, one has to 
calculate the correlation function f ( p )  to make this procedure fully quantitative. This 
problem will be discussed in our next paper where, in particular, we apply the formulae 
derived here to antideuterons produced in proton-proton collisions. 

We conclude the considerations presented in this paper as follows. The uncertainty in 
the four-momenta of the neutron and proton emitted from the interaction region SI allows 
deuteron formation without an additional third body. The formula for the deuteron 
emission cross section can be derived in the wavefunction language or by means of the 
density matrix formalism. In the first case it is important to use wave packets instead of 
plane waves to describe the nucleon motion. An interesting feature of the density matrix 
calculations is the fact the coalescence formula for the deuteron emission cross section 
relates to the diagonal density matrix of neutron-proton pairs. 
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Appendix 

We present here the derivation of equation (4). 
The amplitude for deuteron production (in Dirac notation) is 



Deuteron formation mechanism 1097 

where (il is the initial state and (D, XI is a state with a deuteron. We introduce the 
complete set of states (np, YI, where np denotes a neutron-proton pair. Then 

Now we perform the decomposition 

(D, XI = (DI (XI (np, YI = (npl (YI, (A.2) 

which demands the independence of the np pair from other particles in the state. Such 
independence is approximately realised in multiparticle states such as those in high-energy 
collisions with nuclei. Substituting (A.2) into (A. 1) and performing the summation over Y 
quantum numbers we find 

6 = c (Dlnp)d$  
np 

where 

d:p = (np, XlSli). 

If one assumes that the amplitudes of different np characteristics do not interfere with 
one another (which is the case for multiparticle final states) we get 

161’ =I I(Dlnp) l 2  Id$(’. 
nP 

One easily finds the inclusive cross section for deuteron production, which is proportional 
to C X ~ F X ~ ~  since Cxl.d$I’ can be expressed through danp/d3p,d3p,. 
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