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Editor: F. Gelis The three-body approach to hadron-deuteron correlations is shown to turn into a two-body approach if the three

particle hadron-deuteron wave function factorizes into the deuteron wave-function and the wave function of a 
hadron motion relative to the deuteron. Then, the hadron-deuteron correlation function is as in the two-body 
approach only the source radius somewhat changes. For this reason, as we argue, the two-body approach works 
well for kaon-deuteron correlations but it fails for proton-deuteron ones in case of small sources. Applying the 
three-body approach generalized to the case where the radius of the hadron source is different from the nucleon 
source radius, we derive the source radius formula which used in the two-body approach gives the correlation 
function as in the ‘factorized’ three-body one. The formula is discussed in the context of existing and future 
experimental data.

1. Introduction

Femtoscopic correlations of light nuclei produced in heavy-ion colli

sions have been studied for years at collision energies of tens to hundreds 
of MeV per nucleon in fixed-target experiments, see the reviews [1,2]. 
In the theoretical description of the correlation functions, light nuclei 
are treated as point-like objects which is justified for sufficiently large 
sources of nuclei, larger than a deuteron or alpha particle. The observed 
correlations are due to the interaction of light nuclei in the reaction final 
state.

Measurements of hadron-deuteron correlations in proton-proton col

lisions at 
√
𝑠 = 13 TeV [3] have caused a revision of the theoretical 

approach to the femtoscopic correlations. Deuterons produced in these 
collisions are not fragments of incoming nuclei, but are genuinely pro

duced -- the kinetic energy of colliding protons is converted into the 
masses of nucleons which form deuterons. Even more significant is the 
fact that the source of particles in proton-proton collisions is signifi

cantly smaller than a deuteron.

It has been realized [4] that deuterons from proton-proton collisions 
cannot be considered as structureless point objects, and that the inter

action responsible for the observed correlation occurs simultaneously 
with the deuteron formation process. The understanding of these two 
facts has led to the formulation of the three-body approach to hadron

deuteron correlations [4]. Subsequently, the approach has been general

E-mail address: stanislaw.mrowczynski@ncbj.gov.pl.

ized to 𝑝-3He and deuteron-deuteron correlations where one deals with 
the four-body problem, see [5,6] and the review [7].

We emphasize that the necessity of using the three-body approach to 
the proton-deuteron correlations in proton-proton collisions results not 
only from the questionable applicability of the two-body approach, but 
also from the qualitative failure of this approach in describing the ex

perimental correlation function [3]. Only sophisticated three-body cal

culations [8] with the realistic nucleon-nucleon potential and properly 
antisymmetrized three-nucleon wave function allow one for a correct 
reproduction of the 𝑝-𝑑 correlation function.

It should be also noted that, in contrast to the proton-deuteron case, 
the two-body approach works well in describing the kaon-deuteron cor

relation function in proton-proton collisions [3]. The approach also 
works for kaon-deuteron, proton-deuteron and deuteron-deuteron cor

relations in Pb-Pb or Au-Au collisions, see [9] and [10]. The approach 
has been recently refined [11,12] to better describe the experimental 
data. However, its applicability remains questionable.

The aim of this paper is twofold. First, we intend to explain why the 
two-body approach works well for kaon-deuteron correlations in proton

proton collisions, but badly fails for proton-deuteron correlations. The 
three-body approach turns into the two-body approach if the three

particle hadron-deuteron wave function factorizes into the deuteron 
wave-function and the wave function of a hadron motion relative to 
the deuteron [4]. Then, the hadron-deuteron correlation function is as 
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in the two-body approach only the source radius somewhat changes. 
We argue that the factorization is justified even for small sources for the 
kaon-deuteron system, but in the case of the proton-deuteron pair the 
source must be sufficiently large.

Our second goal is to generalize the three-body approach to hadron

deuteron correlations to the case where the radius of the hadron source 
is different from the nucleon source radius. This problem is particularly 
important when studying pion-deuteron correlations. Since femtoscopic 
correlations occur between particles moving with almost the same ve

locity, the momenta of pions correlated with deuterons are much smaller 
(due to the large mass difference) than the momenta of nucleons con

stituting a deuteron. Consequently, the pion source is much larger than 
that of nucleons, see e.g. [13].

Although hadron-deuteron correlations have been successfully mea

sured in proton-proton collisions at the LHC [3], measuring deuteron

deuteron correlations is much more difficult. Since deuteron produc

tion is a rare event, production of two deuterons is even rarer. Such 
data are not available yet and there is no experimental information on 
single-particle source of deuterons which is required by the two-body 
approach. In such a case, the hadron-deuteron correlation is described 
in terms of a hadron-deuteron relative source which is a convolution of 
the single-particle hadron and deuteron sources. The radius of the rel

ative source is obtained by fitting a theoretical correlation function to 
the experimental one. So, a free parameter is in the two-body approach.

In the three-body approach, the hadron-deuteron correlation func

tion is determined by the hadron and nucleon source functions but not 
of the deuteron one. If the hadron and nucleon source functions are 
known, and usually they are, the hadron-deuteron correlation function 
is determined with no free parameter. For the limiting case when the 
three-body approach changes into the two-body one -- we call it the fac

torized three-body approach, we derive the relative source radius of the 
hadron and deuteron which is expressed through the source radii of the 
hadron and nucleon. Therefore, we obtain the source function which is 
needed in the two-body approach.

The formula of the relative source radius is discussed in the context 
of experimental data. In particular, we show that the kaon-deuteron 
correlations in proton-proton collisions are described equally well by 
the two-body approach and the factorized three-body one. There are 
presented predictions of the source radii to be obtained from the 𝑝-𝑑, 
𝑑-𝑑 and 𝑝-3He correlation functions.

2. Two-body approach

To set the stage for our further considerations we first formulate the 
well-known two-body approach to hadron-deuteron correlations. The 
correlation function is defined as

𝑑𝑃ℎ𝑑

𝑑3𝑝ℎ𝑑
3𝑝𝑑

= 𝐶(𝐩ℎ,𝐩𝑑 ) 
𝑑𝑃ℎ

𝑑3𝑝ℎ

𝑑𝑃𝑑

𝑑3𝑝𝑑
, (1)

where 𝑑𝑃ℎ
𝑑3𝑝ℎ

, 𝑑𝑃𝑑
𝑑3𝑝𝑑

and 𝑑𝑃ℎ𝑑

𝑑3𝑝ℎ𝑑3𝑝𝑑
are probability densities to observe ℎ, 𝑑

and ℎ-𝑑 pairs with momenta 𝐩ℎ, 𝐩𝑑 and (𝐩ℎ,𝐩𝑑 ).
If the correlation is due to final state interactions, the correlation 

function is, see e.g. [1,2],

𝐶(𝐩ℎ,𝐩𝑑 ) = ∫ 𝑑3𝑟ℎ 𝑑
3𝑟𝑑 𝑆ℎ(𝐫ℎ) 𝑆𝑑 (𝐫𝑑 )|𝜓(𝐫ℎ, 𝐫𝑑 )|2, (2)

where the source function 𝑆𝑖(𝐫𝑖) with 𝑖 = ℎ,𝑑 is the normalized proba

bility distribution of emission points and 𝜓(𝐫ℎ, 𝐫ℎ) is the wave function 
of the hadron-deuteron pair in a scattering state.

To eliminate the center-of-mass motion of the ℎ-𝑑 pair from the 
correlation function (2), one introduces the center-of-mass variables. 
Working in the center-of-mass frame it can be done in a non-relativistic 
manner as femtoscopic correlations occur between particles moving 
with a small relative velocity. Thus, one writes

{
𝐑 ≡ 𝑚ℎ𝐫ℎ+𝑚𝑑𝐫𝑑

𝑀
,

𝐫ℎ𝑑 ≡ 𝐫ℎ − 𝐫𝑑 ,

{
𝐫ℎ =𝐑+ 𝑚𝑑

𝑀
𝐫ℎ𝑑 ,

𝐫𝑑 =𝐑− 𝑚ℎ

𝑀
𝐫ℎ𝑑 ,

(3)

where 𝑀 ≡ 𝑚ℎ + 𝑚𝑑 . The wave function is of the form 𝜓(𝐫ℎ, 𝐫𝑑 ) =
𝑒𝑖𝐑𝐏𝜙𝐪(𝐫ℎ𝑑 ) with 𝐏 ≡ 𝐩ℎ+𝐩𝑑 being the momentum of the center of mass 
of the ℎ-𝑑 system and 𝐪 ≡ 𝑚ℎ𝐩𝑑−𝑚𝑑𝐩ℎ

𝑀
the momentum in the center-of

mass frame. (Actually, 𝐏 = 0 in the center-of-mass frame.) The correla

tion function gets the form of the Koonin-Pratt formula

𝐶(𝐪) = ∫ 𝑑3𝑟 𝑆𝑟
ℎ𝑑
(𝐫)|𝜙𝐪(𝐫)|2, (4)

where the relative source is

𝑆𝑟
ℎ𝑑
(𝐫) = ∫ 𝑑3𝑅 𝑆ℎ

(
𝐑+

𝑚𝑑

𝑀
𝐫
)
𝑆𝑑

(
𝐑−

𝑚ℎ

𝑀
𝐫
)
. (5)

Further on we assume that the single-particle source function is Gaus

sian

𝑆𝑖(𝐫) =
(

1 
2𝜋𝑅2

𝑖

)3∕2
𝑒
− 𝐫2

2𝑅2
𝑖 , (6)

where 
√
3𝑅𝑖 is the root-mean-square (RMS) radius of the single-particle 

source.

Using the integral formula

∫ 𝑑3𝑅 exp
[
− 𝛼𝐑2 + 𝛽𝐑 ⋅ 𝐫

]
=
(
𝜋

𝛼

)3∕2
𝑒
𝛽2𝐫2
4𝛼 , (7)

where 𝛼, 𝛽 are real numbers and 𝛼 > 0, the relative source (5) is found 
as

𝑆𝑟
ℎ𝑑
(𝐫) =

(
1 

2𝜋𝑅2
ℎ𝑑

)3∕2
𝑒
− 𝐫2

2𝑅2
ℎ𝑑 , (8)

where

𝑅ℎ𝑑 ≡
√
𝑅2
ℎ
+𝑅2

𝑑
, (9)

which is independent of particle masses.

The source radius of a given hadron type is usually obtained from 
measurements of the ℎ-ℎ correlation function. Then, 𝑅ℎℎ =

√
2𝑅ℎ. 

When the two-body approach is applied to hadron-deuteron correla

tions, the deuteron-deuteron correlation function is often not available, 
and consequently the deuteron source radius 𝑅𝑑 is not known. Then, 
one uses the source function (8) and the radius 𝑅ℎ𝑑 is treated as a free 
parameter which is obtained by fitting the theoretical correlation func

tion to the experimental one, see e.g. [9]. In the subsequent section we 
show that the three-body approach is free of this problem.

3. Three-body approach

Taking into account that a deuteron is a bound state of neutron and 
proton created due to final state interactions similarly as the ℎ-𝑑 corre

lations, the correlation function is defined as

𝑑𝑃ℎ𝑑

𝑑3𝑝ℎ 𝑑
3𝑝𝑑

= 𝐶(𝐩ℎ,𝐩𝑑 )  
𝑑𝑃ℎ

𝑑3𝑝ℎ

𝑑𝑃𝑛

𝑑3𝑝𝑛

𝑑𝑃𝑝

𝑑3𝑝𝑝
,  𝐩𝑛 = 𝐩𝑝 =

1
2
𝐩𝑑 , (10)

where except the symbols already introduced there is  which is the 
deuteron formation rate defined as

𝑑𝑃𝑑

𝑑3𝑝𝑑
= 

𝑑𝑃𝑛

𝑑3(𝑝𝑑∕2)
𝑑𝑃𝑝

𝑑3(𝑝𝑑∕2)
. (11)

The formation rate is known to be [14]

 = 3
8
(2𝜋)3 ∫ 𝑑3𝑟𝑛 𝑑

3𝑟𝑝 𝑆𝑁 (𝐫𝑝) 𝑆𝑁 (𝐫𝑛)|𝜓𝑑 (𝐫𝑛, 𝐫𝑝)|2, (12)

where 𝜓𝑑 (𝐫𝑛, 𝐫𝑝) is the deuteron wave function and 𝑆𝑁 (𝐫) is the source 
function of nucleons. The neutrons and protons are assumed to be unpo

larized and the spin factor 3∕4 takes into account the fact that there are 
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3 spin states of a spin-one deuteron and 4 spin states of a nucleon pair. 
The additional factor 1/2 is included in the formula (12) as the neutron--

proton pair can be in two isospin states 𝐼 = 1, 𝐼3 = 0 and 𝐼 = 𝐼3 = 0
while only the second one contributes to the deuteron production.

Expressing the deuteron wave function with the center-of-mass vari

ables as

𝜓𝑑 (𝐫𝑛, 𝐫𝑝) = 𝑒𝑖𝐏𝐑𝜑𝑑 (𝐫𝑛𝑝), (13)

the deuteron formation rate (12) equals

 = 3
8
(2𝜋)3 ∫ 𝑑3𝑟 𝑆𝑟

𝑛𝑝
(𝐫)|𝜑𝑑 (𝐫)|2, (14)

where the relative nucleon source 𝑆𝑟
𝑛𝑝
(𝐫) is defined analogously to 

Eq. (8). For the Gaussian single-particle source (6), it is

𝑆𝑟
𝑛𝑝
(𝐫) =

(
1 

4𝜋𝑅2
𝑁

)3∕2
𝑒
− 𝐫2

4𝑅2
𝑁 . (15)

Using essentially the same arguments that lead to formula (2), one 
finds the ℎ-𝑑 correlation function multiplied by the deuteron formation 
rate  in the following form

𝐶(𝐩ℎ,𝐩𝑑 )  = 3
8
(2𝜋)3 ∫ 𝑑3𝑟ℎ 𝑑

3𝑟𝑛 𝑑
3𝑟𝑝 𝑆𝑁 (𝐫𝑛) 𝑆𝑁 (𝐫𝑝) 𝑆ℎ(𝐫ℎ)

× |𝜓ℎ𝑑 (𝐫ℎ, 𝐫𝑛, 𝐫𝑝)|2, (16)

where 𝜓ℎ𝑑 (𝐫ℎ, 𝐫𝑛, 𝐫𝑝) is the three-particle wave function of hadron and 
deuteron.

To eliminate the center-of-mass motion of the ℎ-𝑑 pair from the for

mula (16), we introduce the Jacobi variables of a three-particle system

⎧⎪⎨⎪⎩
𝐑 = 𝑚𝑁 𝐫𝑛+𝑚𝑁 𝐫𝑝+𝑚ℎ𝐫ℎ

𝑀
,

𝐫𝑛𝑝 = 𝐫𝑛 − 𝐫𝑝,

𝐫ℎ𝑑 = 𝐫ℎ −
𝐫𝑛+𝐫𝑝

2 ,

⎧⎪⎪⎨⎪⎪⎩
𝐫𝑛 =𝐑+ 1

2 𝐫𝑛𝑝 −
𝑚ℎ

𝑀
𝐫ℎ𝑑 ,

𝐫𝑝 =𝐑− 1
2 𝐫𝑛𝑝 −

𝑚ℎ

𝑀
𝐫ℎ𝑑 ,

𝐫ℎ =𝐑+ 𝑚𝑑

𝑀
𝐫ℎ𝑑 ,

(17)

where the nucleon mass is the same for proton and neutron and 𝑀 ≡
2𝑚𝑁 +𝑚ℎ. Writing down the wave function as

𝜓ℎ𝑑 (𝐫ℎ, 𝐫𝑛, 𝐫𝑝) = 𝑒𝑖𝐏𝐑𝜓
𝐪
ℎ𝑑
(𝐫ℎ𝑑 , 𝐫𝑛𝑝), (18)

where 𝐪 is the hadron momentum in the center-of-mass frame of ℎ and 
𝑑, the correlation function from Eq. (16) equals

𝐶(𝐪) = 3
8
(2𝜋)3

 ∫ 𝑑3𝑟ℎ 𝑑
3𝑟𝑛𝑝 𝑆

𝑟
ℎ𝑁𝑁

(𝐫ℎ, 𝐫𝑛𝑝) |𝜓𝐪
ℎ𝑑
(𝐫ℎ𝑑 , 𝐫𝑛𝑝)|2, (19)

where

𝑆𝑟
ℎ𝑁𝑁

(𝐫ℎ, 𝐫𝑛𝑝) ≡ ∫ 𝑑3𝑅 𝑆𝑁
(
𝐑+ 1

2
𝐫𝑛𝑝 −

𝑚ℎ

𝑀
𝐫ℎ𝑑

)
× 𝑆𝑁

(
𝐑− 1

2
𝐫𝑛𝑝 −

𝑚ℎ

𝑀
𝐫ℎ𝑑

)
𝑆ℎ

(
𝐑+

2𝑚𝑁
𝑀

𝐫ℎ𝑑
)
. (20)

The formula (19), where the deuteron formation rate  is present, is 
the analog of the two-body Koonin-Pratt formula (4). It is the starting 
point of the full three-body calculations [8] which successfully describe 
the proton-deuteron correlations in proton-proton collisions at the LHC 
with no free parameter.

It is worth noting that the three-body approach to hadron-deuteron 
correlations is very similar to the approach to the correlations of three

particles in a scattering state that have recently been measured in case 
of 𝑝-𝑝-𝑝, 𝑝-𝑝-𝑝̄, 𝑝-𝑝-Λ [15], 𝑝-𝑝-𝐾 [16] and 𝑝-𝑝-𝜋 [17] systems. The 
starting point for calculating the three-particle correlation function is 
a formula close to Eq. (16), which after eliminating the center-of-mass 
motion becomes analogous to Eq. (19), except that the wave function 
does not describe the motion of the hadron relative to the deuteron, but 
the relative motion of the three particles. The source function (20) can 
be directly used in the calculation of the 𝑁 -𝑁 -ℎ correlation function. 

However, the studies [18,19], where the 𝑁 -𝑁 -𝑁 and 𝑁 -𝑁 -Λ correla

tion functions have been calculated, clearly show that the real challenge 
is not to find the source function, but the three-particle wave function 
that takes into account the effect of genuine three-particle forces.

4. From three- to two-body approach

When the hadron and deuteron are well separated from each other, 
the three-body approach to hadron-deuteron correlations is expected to 
change into the two-body approach. Indeed, if the hadron and deuteron 
are not only well separated but also not quantum entangled, the wave 
function of the hadron and deuteron factorizes as

𝜓
𝐪
ℎ𝑑
(𝐫ℎ𝑑 , 𝐫𝑛𝑝) = 𝜓

𝐪
ℎ𝑑
(𝐫ℎ𝑑 ) 𝜑𝑑 (𝐫𝑛𝑝), (21)

where 𝜑𝑑 (𝐫𝑛𝑝) is the deuteron wave function and 𝜓𝐪
ℎ𝑑
(𝐫ℎ𝑑 ) is that of the 

hadron and deuteron relative motion. Since the hadron and deuteron 
are part of a many-particle system, strong decoherence effects are to 
be expected, and the lack of quantum entanglement is then a natural 
consequence.

We assume additionally that the single particle source functions of 
hadron and of nucleon are of the Gaussian from (6). Using again the 
integral formula (7), one finds that the source function 𝑆𝑟

ℎ𝑁𝑁
(𝐫ℎ, 𝐫𝑛𝑝)

factorizes similarly as the wave function in Eq. (21) that is

𝑆𝑟
ℎ𝑁𝑁

(𝐫ℎ, 𝐫𝑛𝑝) = 𝑆𝑟𝑛𝑝(𝐫𝑛𝑝) 𝑆
3𝑟
ℎ𝑑
(𝐫ℎ𝑑 ), (22)

where the source function 𝑆𝑟
𝑛𝑝
(𝐫) is given by Eq. (15) and 𝑆3𝑟

ℎ𝑑
(𝐫), which 

is the relative source of hadron and deuteron in the three-body ap

proach, equals

𝑆3𝑟
ℎ𝑑
(𝐫) = 1 

𝜋3∕2(𝑅2
𝑁
+ 2𝑅2

ℎ
)3∕2

𝑒
− 𝐫2

𝑅2
𝑁

+2𝑅2
ℎ . (23)

One sees that 𝑆3𝑟
ℎ𝑑
(𝐫) differs from the analogous source function (8) in 

the two-body approach. We also note that when 𝑅𝑁 = 𝑅ℎ = 𝑅𝑠 the 
source function 𝑆3𝑟

ℎ𝑑
(𝐫) equals

𝑆3𝑟
ℎ𝑑
(𝐫) =

( 1 
3𝜋𝑅2

𝑠

)3∕2
𝑒
− 𝐫2

3𝑅2𝑠 , (24)

which is the result obtained in [4].

Substituting the factorization formulas (21) and (22) into Eq. (19), 
one finds the hadron-deuteron correlation function as

𝐶(𝐪) = ∫ 𝑑3𝑟 𝑆3𝑟
ℎ𝑑
(𝐫) |𝜓𝐪

ℎ𝑑
(𝐫)|2, (25)

where the deuteron formation rate  has canceled out.

If the factorization relations (21) and (22) hold the three-body corre

lation function (19) is of the same form as the Koonin-Pratt formula (4) 
but the source function somewhat differs. When one uses the Koonin

Pratt formula (4) with the source function (8), the two- and three-body 
formulas (4) and (25) provide exactly the same correlation function if

𝑅ℎ𝑑 =
√
𝑅2
ℎ
+ 1

2
𝑅2
𝑁
. (26)

To reliably test the formula (26), the radii 𝑅ℎ𝑑 , 𝑅ℎ and 𝑅𝑛 should be 
measured in collisions at the same collisions energy and centrality class, 
and the transverse momenta of hadrons ℎ and nucleons 𝑁 should such 
be as those in the correlated ℎ-𝑑 pairs.

5. Confrontation with experiment

As already mentioned, while the proton-deuteron correlation func

tion requires the three-body description, the kaon-deuteron correlation 
function -- both measured in proton-proton collisions at 

√
𝑠 = 13 TeV 

– is well described within the two-body approach [3]. This means that 
the factorization (21) holds for the 𝐾 -𝑑 system but not for the 𝑝-𝑑 one. 
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There is a natural explanation for this fact. The system 𝑝-𝑑 consists of 
one neutron and two protons with momenta, say, 𝐩1 and 𝐩2. When all 
three particles are localized in a small volume the 𝑝-𝑑 wave function has 
two terms. In the first one the proton with momentum 𝐩1 is bound to the 
neutron, and in the second term the proton with 𝐩2 is bound to the neu

tron. Then, the wave function does not factorize according to Eq. (21). 
The factorization is possible for a big source when one proton is signif

icantly closer to the neutron than the other proton. It is also clear that 
the assumption of factorization is easier to satisfy for the kaon-deuteron 
than the proton-deuteron system, as there is no ambiguity which parti

cle should be bound to the neutron.

The kaon-deuteron correlation function obtained in [3] has been 
well described using the Koonin-Pratt formula with the radius 𝑅exp

𝐾𝑑
=

1.35+0.04−0.05 fm. The nucleon source radius has been estimated as 𝑅𝑁 =
1.43 ± 0.16 fm [3]. The kaon source radius read from the left panel of 
Fig. 6 of the study [20] is 𝑅𝐾 = 1.0 ± 0.15 fm. The average transverse 
momentum of kaons in the 𝐾 -𝑑 measurements [3] is about 0.38 GeV 
while that in 𝐾 -𝐾 study [20] is 0.6 GeV. The difference should not sig

nificantly influence the value of 𝑅𝐾 . Substituting 𝑅𝐾 and 𝑅𝑁 into the 
formula (26) yields 𝑅𝐾𝑑 = 1.4 ± 0.2 which agrees with 𝑅exp

𝐾𝑑
. It shows 

that the kaon-deuteron correlations in proton-proton collisions are de

scribed equally well by both the two- and three-body approach.

It would be desirable to test the formula (26) in heavy-ion col

lisions where the source radii change in a sizable range. There are 
preliminary data on kaon-deuteron correlations in Pb-Pb collisions at √
𝑠𝑁𝑁 = 5.02 TeV [9]. The radius 𝑅𝐾𝑑 is obtained for three centrality 

classes but there is not enough information to check the formula (26). 
The final data on kaon-deuteron and pion-deuteron correlations are ex

pected soon and hopefully the analysis will be possible.

When correlations of light nuclei like 𝑝-𝑑, 𝑝-3He, 𝑑-𝑑 are studied, the 
three-body approach and the four-body one formulated in [5,6] allows 
one to express the source radii obtained using the Koonin-Pratt formula 
through the proton source radius as

𝑅𝑝𝑝 =
√
2𝑅𝑝,  𝑅𝑝𝑑 =

√
3
2
𝑅𝑝,  𝑅𝑝3He =

√
4
3
𝑅𝑝,  𝑅𝑑𝑑 =𝑅𝑝. (27)

Contrary to naive expectations, the relations (27) show that 𝑅𝑝𝑝 > 𝑅𝑝𝑑 >
𝑅𝑑𝑑 . In particular, we have 𝑅𝑝𝑑∕𝑅𝑑𝑑 =

√
3∕2 ≈ 1.2. To compare the 

source radii 𝑅𝑝, 𝑅𝑝𝑑 , 𝑅𝑑𝑑 , 𝑅𝑝3He to each other, the correlation functions 
should be measured in the collisions at the same energy and centrality 
class and the average transverse mass per nucleon of the nuclei under 
consideration should be also the same.

The 𝑝-𝑑 and 𝑑-𝑑 correlation functions have been recently measured 
in Au-Au collisions at 

√
𝑠𝑁𝑁 = 3 GeV [10]. The radius 𝑅𝑝𝑑 is indeed 

bigger than 𝑅𝑑𝑑 but the ratio is about 1.7 not 1.2. The collision energy 
is rather low and deuterons are fragments of incoming nuclei. Then, not 
all deuterons are formed due to final state interactions and the relations 
(27) are of limited applicability. In any case it would be desirable to test 
the relations systematically.

6. Conclusions

The three-body approach to hadron-deuteron correlations changes 
into the two-body approach if the three-particle hadron-deuteron wave 
function factorizes into the deuteron wave-function and the wave 
function of a hadron motion relative to the deuteron. The assump

tion of factorization is less restrictive for the kaon-deuteron than the 
proton-deuteron system, as there is no ambiguity which particle should 
be bound to the neutron. Presumably for this reason the kaon-deuteron 
correlations in proton-proton collisions at the LHC are successfully 
described within the two-body approach while the description of the 
proton-deuteron correlations requires the three-body approach.

The factorized three-body approach provides the same correlation 
function as the Koonin-Pratt formula if the source radius in the later 
approach is provided by the former one. The source radius formula, 
which connects the two approaches, holds if deuterons and other light 
nuclei are formed due final state interactions. The formula can be tested 
experimentally.
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