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We discuss the potential acting between a heavy (static) quark and antiquark placed in the quark-gluon plasma using a 

plasma model, where the low-momentum parts of the gluon (and quark) spectra are cut off due to a nonperturbative 

mechanism. The Debye (screening) mass is found on the basis of a kinetic approach, and the potential is compared with 

Monte Carlo lattice data. In the case of the SU(2) gauge group, where the cut-off parameter has been fixed by fitting Monte 

Carlo data for the energy density and pressure, a very good agreement is found. The model seems to describe the SU(3) 

Monte Carlo data as well. However, the scarcity of data in this case does not allow us to draw very definite conclusions. At 

the end, we briefly discuss plasma oscillations with cut-off low-momentum modes. 

Monte Carlo lattice calculations show a specific 
behaviour of the thermodynamical functions of the 

quark-gluon plasma. Namely, the energy density 
approaches a value close to that of the ideal gas 
of pat-tons already for temperatures even slightly 

exceeding the deconfinement one, while the pressure 
strongly deviates from the ideal gas one. In the dis- 
cussion of this problem [l-3], a very simple non- 
perturbatiue model of the quark-gluon plasma has 

been recently suggested [2,3] (see also refs. [4,5]), 
which we call for convenience the (momentum) 

cut-of model. 

The high-momentum partons are assumed to be 
weakly interacting, and consequently can be treated 
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in a perturbative way. The low-momentum partons 
are supposed to interact strongly and their density is 

substantially depleted due to the formation of massive 
hadron-like modes “. In our further considerations, 
we treat quarks and gluons in the same way, although 
it is not quite clear at present whether the idea equally 
applies to quarks. Unfortunately, this issue cannot 
be clarified at present because most of the Monte 
Carlo calculations, in particular those for the inter- 

quark potential, deal with pure gluodynamics “. 
The simplest way to formulate a model based on 

the presented idea is to assume, as in refs. [2-51, that 
there are no (deconfined) partons in the system with 
the momenta smaller than a critical value K, while 

*’ The idea of existence of such modes in the quark-gluon 

plasma has been considered by several authors [6]. 
Ii2 In fact, the situation is even worse since, as shown in ref. 

[5], the modification of the quark spectrum appears impor- 

tant only in the case of a finite baryon density, which has 

not been studied in the lattice QCD due to serious difficulties 

of its formulation. 
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the partons with the momenta greater than K behave 
as in a perturbative plasma and their momentum 
distribution is given by the Bose or Fermi distribution, 
respectively. 

The cut-off model proved very successful in 
describing the Monte Carlo lattice data for the energy 
density and pressure [2-4]. And in this paper we 
continue these studies and consider the interquark 
potential, which has been recently calculated in lattice 
QCD [7,8]. Since the value of the cut-off parameter 
K has been fixed in the previous studies [2-4], our 
present calculations contain no free parameter. It is 
also important to notice that the hadron-like modes, 
the nature of which is poorly known, very weakly 
influence the interquark potential because they are 
colourless. 

The Debye screening mass, which enters the poten- 
tial, is derived in the framework of the kinetic 
approach [9,10] developed in the context of quark- 
gluon oscillation studies. We compare the potential 
with Monte Carlo lattice data for the SU(2) [7] and 
SU(3) [8] gauge group. Encouraged by a very good 
agreement we discuss further applications of the 
model. 

The potential V acting between a heavy quark and 
antiquark, which is calculated on the lattice, is a 
combination of the singlet V, and adjoint Vs [triplet 
for the SU(2) and octet for the SU(3) gauge group] 
potentials. For the SU(N) group the potential V is 
expressed as [11] 

e x p ( V ( T T )  ) = N~exp(  V1(rTT) ) 

+ - - - ~ - e x p ~  n 2 -  1 / Vs(r'T T)) ,  (1) 

where r is the distance between the quark and the 
antiquark, N is the number of colours and T is the 
temperature. In the perturbative limit the singlet 
potential is [11] 

g2 N 2_ 1 exp(--mD r) 
V,(r, T) . . . .  

4 ~r 2 N r 

--- - ( N  2 - 1) Vs(r, T), (2) 

where g is the coupling constant and mD is the 
Debye screening mass. Assuming that IT~ V~.8l >71, 
which is confirmed by the lattice data [7,8] for the 

range of r and T discussed below, one finds from 
eqs. (1), (2) [11] 

V(r,T) ( g 2 ] 2 N Z - 1  exp( -2mor)  
T = \ ~ ]  8N 2 (rT) 2 (3) 

The model discussed in this paper assumes that 
after cutting-off the low-momentum partons, the 
plasma can be treated in a perturbative way. There- 
fore, we will apply the formula (3) not only for the 
temperatures which are much greater than the 
deconfinement one (To), but also when T-~ To. It 
should be stressed here that the derivation of eq. (3) 
[11] is not altered when the low-momentum patrons 
are cut off. 

The quantity which determines all chromodynamic 
characteristics of a system, in particular the Debye 
screening mass, is the chromodynamic dielectric 
tensor, which for an isotropic medium can be decom- 
posed into its longitudinal and transversal parts. 
According to the approach of ref. [10], which is valid 
for a small coupling constant, these parts read in the 
collisionless limit 

g2 f dSp v.  k_ k . a f ( P )  
EL(k) = 1 + 2 - ~  J (2~r) 3 to - k.  v+ i0  + ap ' 

(4a) 

d3p g -  1 
Ex(k) = 1 +4to (217") 3 tO-k"  v+ i0  + 

( a f (p )  k . v  Of(p)~ (4b) 
x v. ap kZ k- 0p / 

with 

f (p )  = Nf[n(p) + ~(p)] + 2Nng(p), 

where k = (to, k) is the wave four-vector, p = (E, p) is 
the four-momentum of a massless parton and v = p~ E 
is the parton velocity, Nf is the number of quark 
flavours; n(p), fi(p) and n~(p) are the distribution 
functions of quarks, antiquarks and gluons, respec- 
tively. According to the cut-off model [2-5] we choose 
these functions in the following form: 

2 
n(p) = ~(p) - O(E - K), (5a) 

exp( E / T) + 1 

2 
ng(p) - e x p ( E / T )  - 1 0 ( E  - K), (5b) 

where the coefficients 2 take into account the spin 
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degrees of  freedom of  quarks and gluons. The plasma 
is assumed baryonless in our consideration. Because 
the hadron-like modes are colourless, they do not 
contribute to the dielectric tensor within the approxi- 
mations discussed in detail in ref. [10]. 

One can explicitly calculate both components of  
the dielectric tensor substituting the distribution func- 
tions (5) in eq. (4). The result is 

3o,0 ~ 
~L(k) ---- 1 q k2 

/ik~--2~_ o ) -  i~-O ( Ik l -  to ) ) ] ,  (6a) 

3,o20 
~x( k ) = 1 2k 2 

X - -  

(6b) 

with the plasma frequency too, which equals 

= - -  [ N I ÷ ( K / T )  + N I _ ( K / r ) ] ,  (7) 

where 
o o  

I dx x 2 exp(x) a 2 

I±(a)  = [exp(x) ± 1] 2 e x p ( a ) +  1' 
a 

One immediately notices that we have received the 
well-known formulas of  the dielectric tensor of  the 
plasma of  massless particles (see e.g. refs. [9,10,12]) 
and the only modification appears in the expression 
of  the plasma frequency (7), which for the normal 
( K = 0 )  quark-gluon plasma reads (see e.g. refs. 
[9,10]) 

to 2= ~g2T2(Nf+ 2N) .  (8) 

Obviously eq. (7) with K = 0 gives eq. (8). 
The functions I±(a) can be approximated as 

1 
I+(a) = g'rrl 2_ ~al 2, I_(a) = J'rr2-2a for-->> 1 

a 

and 

I±(a) = 2(a + 1) e x p ( - a )  for exp(a) >> 1. 

Consequently, the plasma frequency (7) can be 

rewritten as 

1 2 2 g 2 T K /  K + 2 N )  
to~=r~g T ( N f + 2 N ) - - ~ - 2  ~ N  f 

for T~ K >> 1 

and 

2 2g2T2(Nr + N )  K - T  
too-  3~2 ~ + 1  exp 

for exp >> 1. 

The screening mass is defined through the equation 
(see e.g. ref. [12]) 

eL(t0 = 0, k) = 1 + k~- 

and, then, eq. (6a) provides 

mD= ~ too. (9) 

In the further calculations, we express the coupling 
constant through the QCD scale parameter A by 
means of  the well-known formula, which for pure 
gluodynamics is [13] 

g2 61r 
4~r - ~ N In( M2/  A 2) (10) 

with the mass parameter M defined for the plasma 
as [13] 

M 2 = 4(k2), 

where (k 2) is the thermal average of  the gluon squared 
momentum ~3. In the cut-off model one finds 

M2 = ~T 2 ~ dx x4[exp(x) - 1] -1 (11) 
~ dx  x2[exp(x) - 1]-1' 

where a = K / T .  When the cut-off parameter K goes 
to zero 

(~'(5)') ,/2 T~3 .715  T. M = 4  \~-(3)/ 

,s In fact, the form of the coupling constant in thermal QCD 
and its role in perturbative expansion is presently somewhat 
controversial due to recent studies of this problem; see ref. 
[14] and references therein. 
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If  e x p ( K / T ) ~ , l  one can well approximate  the 
expression (11) as 

M2= 4 K 4 + 4 K 3 T +  12K2T2+24KT3+24T 4 

3 K 2 + 2 K T + 2 T  2 

It is important  to stress that  within the cut-off model,  
the coupling constant  (10), which governs the high- 
momentum partons,  is small even at temperatures  
close to A if K ~ T. Therefore,  the perturbative 
expansion seems appl icable  in this case. 

Let us now confront  the potential  (3) with the 
Monte Carlo lattice data. 

1. SU(2) gauge group. The cut-off model  has been 
used to describe very precise SU(2) data  for the 
energy density and pressure [3]. Since the deconfine- 
ment phase transit ion in the SU(2) quarkless plasma 
is of  the second order, it has been assumed that 
the cut-off parameter  varies with the temperature as 
( T -  To) ~, where Tc is the critical temperature.  Fitting 
the data,  the following relation has been found [3]: 

K / ~/~ \ 0 . 30  
2 c - - ~  . 9  - -  

L 

As can be seen, the parameter  K goes to zero when 
the temperature  increases and K diverges to infinity 
when the temperature  approaches  the critical one. 
Therefore,  at the critical temperature deconfined 
gluons d isappear  completely.  Substituting eq. (12) 
into eq. (7) and using eq. (9), one finds that the 
screening length (inverse Debye mass), as expected, 
goes to infinity at the critical temperature.  

To compare  the continuum potential  (3) with the 
lattice data  one has to relate the continuum QCD 
scale parameter  A to the lattice scale parameter  AL. 
It has been proved in ref. [15] that A = 57.5AL. If  
the temperature  and the scale parameter  A are 
measured in units of  the critical temperature,  which 
equals 37.9AL [3], we do not need to know the actual 
value of  AL. 

In fig. 1 we present the interquark potential  for two 
temperatures  of  the p lasma [7]. The points are the 
result of  the extrapolat ion procedure  to an infinite 
continuous system. The solid lines correspond to the 
cut-off model,  while the dashed lines represent the 
s tandard  perturbat ive calculations (K = 0). One sees 
that, in contrast  to the latter ones, the cut-off model  
describes the data  very well. And it should be stressed 
that the calculations contain no free parameter.  

Vtr, T) "F 

~O-z 

\ ~  SU t2) 

\ 
\ 

\ 
l i i 

Fig. 1. The interquark potential for the SU(2) gauge group for 
two temperatures of the pure gluon plasma. The points are 
Monte Carlo data extrapolated to an infinite system [7]. The 
solid lines correspond to the cut-off model, while the dashed 
ones represent the standard perturbative calculations (K = 0). 

2. SU(3) gauge group. In fig. 2 we present  the 
interquark potential  calculated on a 123 x 4 lattice for 
the pure SU(3) gluodynamics  [8]. Unfortunately,  the 
calculations have been performed only on a lattice 
of  one size, and consequently one cannot perform an 
extrapolat ion to an infinite system. It is also important  
to notice that the critical temperature  obeys an 
asymptot ic  scaling law only for lattices with the num- 
ber  of  sites in the time direct ion greater than about  
9 [2]. The potential  has been calculated for three 
temperatures  in ref. [8] and the authors have taken 
into account  the scaling violation when the tem- 
peratures have been expressed in the units of  the 
critical temperature.  Since a finite-size analysis of  the 
potential  has not been performed,  it seems more 
consistent, in our opinion,  to give the values of  tem- 
perature,  which neglect the scaling violation. For  this 
reason the temperatures  shown in fig. 2 differ from 
those given in ref. [8]. (Using the critical value of  the 
lattice coupl ing fl given in ref. [8], we have found 
that for the lattice with four sites in the time direct ion 
the critical temperature  equals 75.2AL. For  the lattices 
which satisfy the asymptot ic  scaling law T~ = 51.3AL 
[2].) 

The solid lines in fig. 2 represent  the cut-off model,  
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Fig. 2. The interquark potential for the SU(3) gauge group for 
three temperatures of the pure gluon plasma. The points are 
Monte Carlo data obtained on a 123× 4 lattice [8]. The solid 
lines correspond to the cut-off model, while the dashed ones 
represent the standard perturbative calculations (K = 0). 

while the dashed lines are the standard perturbative 

calculations. Because the SU(3) system undergoes a 
first-order phase transition, we expect that the cut-off 
parameter remains finite when the temperature equals 
the deconfinement one. Therefore, we have taken the 
value of K independent  of temperature and equal 
3.4Tc. This value has been found in ref. [4], where 
the pressure of the SU(3) plasma has been con- 
sidered ~4. As in the case of the SU(2) group, we have 

used the relation connecting the cont inuum QCD 

scale parameter with the lattice one. This relation for 
the SU(3) group reads A = 83.5AL [15]. 

Unfortunately,  the results presented in fig. 2 are 
not very conclusive because the Monte Carlo data 
are not corrected for finite-size effects. The analysis 
of these effects performed for the SU(2) case [7] 
shows that they are important for temperatures much 
greater than the critical one because then the volume 
of the lattice system is small, and when the tem- 
perature approaches the critical one due to the 
increase of the correlation length, which diverges at 

~4 In fact, a plasma with dynamical quarks has been discussed 
in ref. [4]. Since the comparison of the potential with the 
SU(3) data is rather crude because of the finite-size effects, 
we believe that this does not make a substantial difference. 

T =  Tc (because of the second-order phase transi- 

tion). The situation in the SU(3) case is probably 
similar to that in the SU(2) one; however, the reason 
for the large finite size effects at T near Tc is different. 
When the temperature of the plasma is higher but 

close to the critical one, it is expected (because of 
the first-order phase transition) that a metastable 

hadron phase, which can appear, affects more sub- 
stantially a small lattice system than a big one because 
the hadron-phase life-time increases when the system 
size decreases. 

Due to large finite-size effects at high T, a very 
good agreement of the cut-off model with the data 
for T = 13.7 Tc seems to be rather accidental. For such 
a high temperature one expects that the standard 
perturbative model should describe the data well. 
Then, the discrepancy seen in fig. 2 might be a 

measure of the finite size effects. The difference 
between the cut-off model and the perturbative calcu- 

lations would be reduced, if we assumed, as in the 
SU(2) case, a decrease of the cut-off parameter K 
with temperature. The highest significance has, in our 

opinion, the quite good description of the Monte 
Carlo data by the cut-off model for T =  1.59Tc, since 
we expect that the finite-size effects are smallest in 
this case. The lattice volume is rather large, and a 
possible existence of the metastable hadron phase is 
strongly damped. A substantial underest imation of 
the lattice potential by the cut-off model for T =  

1.07 Tc might be due to the metastable hadron phase, 
where a confining potential acts. 

The interquark potential obtained in the Monte 
Carlo QCD has been fitted with the formula 
e x p ( - i x r ) / r  d with /x and d as parameters in refs. 
[7,8,16] ~5. The parameter d equals about 2 for high 
temperatures as follows from eq. (3); however, it 
seems to decrease when T ~  T~. It has been suggested 
in ref. [16] that d = 1 in this case, and some theoretical 
arguments have been given in favour of such a depen- 
dence. At present it is rather premature to draw the 
final conclusion because the Monte Carlo data correc- 
ted for the final-size effects are not available yet. 
However, the cut-off model will be in trouble if indeed 

d = 1. In any case we find the results presented above, 

~5 The screening mass has been identified with //. in these 
papers, while according to our model, see eq. (3), m D equals 
½/x assuming that d =- 2. 
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in particular those concerning the SU(2) group, rather 
encouraging. Therefore, let us briefly speculate on 
further consequences of  the cut-off model. 

As discussed above, the dielectric tensor of  the 
plasma with cut-off low-momentum modes coincides, 
up to the plasma frequency, with the one of  the normal 
(K =0)  plasma. Therefore, the dispersion relations 
also coincide but the plasma frequency is (at the same 
temperature) smaller for the cut-off plasma. Let us 
also observe that a damping of  the oscillations is 
probably strongly influenced by the lack of  low- 
momentum partons. As discussed in refs. [17,10] 
the dominant  damping mechanism (in the normal 
plasma) is the plasmon decay into a gluon pair. The 
plasmon with energy COo and zero momentum (in the 
thermostat rest frame) decays into two gluons of  
energies equal Itoo. The presence of  gluons with ener- 
gies 1to0 in the plasma increases the width of  this 
decay due to the boson attraction in momentum 
space. On the other hand their presence leads to 
plasmon formation. As shown in ref. [10] the plasmon 
decay is of  order of  g and the plasmon formation is 
of  the same order. However, the net plasmon decay 
width which takes into account both loss and gain" 
processes by plasmon decay and plasmon formation 
is of  order of  g2. Consequently, the damping rate (y) 
is of  this order. 

How does this reasoning change when there are 
no (deconfined) partons with momentum smaller 
than K ?  When the plasmon energy is greater than 
2K, the reasoning remains unchanged. However, if 
½tOo is smaller than the cut-off parameter K, there is 
no boson attraction and no plasmon formation. The 
plasmon decays as in vacuum. Simple considerations 
analogous to those presented in ref. [10] show that 
the plasmon decay into gluons, or into (massless) 
quarks is of  order g4. Therefore, the plasmon-decay 
contribution to the damping rate is of  the same order 
as that of  binary collisions of  plasma partons. We 
cannot judge which is the dominant mechanism of 
the damping; however, Y seems to be of  order g4. In 
conclusion, the oscillations of  the plasma with cut-off 
low-momentum modes are probably very similar 
to those of  the normal one; however, the plasma 
frequency (the plasmon mass) is smaller and the 
low-frequency oscillations are weakly damped. 
Unfortunately, the picture of  plasma oscillation 
presented is rather speculative because it completely 

neglects the coupling of  the massive modes to colour- 
ful partons. 

Let us summarize our considerations. We have 
discussed the potential acting between a heavy (static) 
quark and antiquark embedded in the quark-gluon 
plasma using a nonperturbative plasma model, where 
low-momentum partons are converted into colourless 
hadron-like modes. In the framework of  the kinetic 
approach, we have calculated the dielectric tensor of  
such a plasma and then the Debye (screening) mass, 
which enters the interquark potential. A detailed com- 
parison with the Monte Carlo lattice data has been 
performed. In the case of  the SU(2) gauge group we 
have found a very good agreement. The model seems 
also to describe the SU(3) data; however, the com- 
parison is obscured due to the lack of  an analysis of  
the finite-size effects of  the SU(3) data. At the end, 
we have briefly discussed oscillations of  the plasma 
with cut-off low-momentum modes. 
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