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The oscillations of a collisionless quark plasma are studied on the basis of the gauge covariant kinetic equations. The small 
oscillation approach provides the dispersion relations which coincide with those predicted by the finite-temperature QCD in 
one-loop approximation. 

The long range of the chromodynamic forces 
suggests a rich spectrum of collective excitations 
of QCD plasma. Such excitations have been widely 
discussed, see e.g. the review in ref. [1], by means 
of the finite-temperature quantum field theory, 
where the positions of poles of the gluon propa- 
gator provide the dispersion relations of plasma 
waves. In this paper we consider the collisionless 
plasma oscillations on the basis of kinetic equa- 
tions proposed by Heinz [2]. The derivation of 
these equations is given in ref. [3]. In fact, the 
approximation of classical collisionless plasma 
seems not very realistic for the QCD plasma be- 
cause of the high density of the deconfined phase. 
Anyway it is interesting to consider the problem 
of plasma oscillations from a point of view differ- 
ent from that of the finite-temperature perturba- 
tive QCD. On the other hand, the kinetic theory 
approach provides results of transparent physical 
interpretation, which agree with those found in 
the one-loop approximation. 

Recently Heinz [4] has attempted to study the 
quark-plasma waves in the framework of the 
variant of his kinetic theory [2,5], where the quark 
color is a continuous classical variable of the 
distribution function. However, as pointed out in 
my comment [6], the transport equations are not, 
in this case, gauge covariant. Heinz [7] and the 
authors of ref. [8] argue that the equations are 
gauge covariant because the color variable Q~, 
a = 1 . . . .  ,8, transforms under infinitesimal local 
transformations as 

Q, ~ Q~ + f~bc ~b(X)Qc, 

where wb(X) is the infinitesimal transformation 
parameter and fabc is the group structure con- 
stant. If one accepts the above transformation law, 
the color cannot be treated as an independent 
variable of the distribution function since Qa de- 
pends on a space point x [through ~0b(X)]. Then 
the kinetic equations do not determine Qa as a 
function of x. There is no quantum analog of the 
above transformation law since, in contrast to 
Heinz's statement [7], the Gell-Mann matrices do 
not change under gauge transformations. 

Let me also note that Heinz's findings [4,9] 
concerning Landau damping of the plasma waves 
are not new. It was noticed many years ago that 
the Landau damping was absent for the time-like 
waves [10]; see also the handbook in ref [11]. 

To make this paper complete we briefly present 
the color kinetic theory of quarks [2,3]. 

Let us consider the gas of quarks interacting via 
the classical non-abelian SU(3) potentials A"a(X). 
We neglect the thermal (non-virtual) gluons. For 
simplicity we treat quarks as spinless, and for the 
same reason the quarks are of one flavor only. The 
inclusion of several flavors is straightforward. 

The quark (antiquark) distribution function is a 
two-color-index tensor ~ j ( p ,  x) [~ j (p ,  x)], [p = 
(E,  p) ,  x = (t, x)] which transforms with adjoint 
representation (as octet) under gauge transforma- 
tions; the trace f~i(P, x) is gauge invariant. The 
distribution functions satisfy the transport equa- 
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tions :H 

p"D~f(p, x ) -  ½gp~,(~/Sp~){ F~(x) ,  f ( p ,  x)} 

= O, ( l a )  

pr'D~j(p, x) + ½gp~,(O/3p~){ F~'~(x), t i p ,  x) ) 

= O, (ab )  

where D r is the covariant derivative in the adjoint 
representation, F ~''= ½X"Fa ~'~ is the stress tensor 
of the chromodynamic field (h~ is the Gell-Mann 
matrix), which is generated by the color current in 
a self-consistent way, 

D . F ~ ( x )  = i f ( x ) ,  (2) 

with 

d 3 p  ~r . 

: iS(x) = f (2---~3E p x ) - L ( p ,  x) 

-½  j(fkk(P, x) ) ] .  (3) 

The color indices are suppressed in eqs. (1); (2). 
Eq. (2) can be rewritten in the form 

O~,Fa ~ - gf,~bcA~,bFf" =j;, (4) 

where 
g d 3 p  ~ - a 

x[ f i j (p ,  x) - - f i j (p ,  x)]. (5) 

The gauge covariant set of eqs. (1), (2) can be 
found from the transport equation of the quark 
Wigner function [2,3] by means of the standard 
methods [12]. 

We are looking for the solutions of eqs. (1), (2) 
describing the small oscillations around the 
thermodynamical equilibrium state. Therefore the 
choose we distribution functions in the form 

f , j (p ,  x ) = f ~ ( p ) + + ( p ,  x )x i j ( x ) ,  

f j ( p ,  x ) = f p ( p ) +  ~(p, x )~q(x) ,  (6) 

~1 In the first version of this paper we have used the transport 
equations proposed by the author where the anticornmuta- 
tor ½( F, f }  is replaced by the product Ff. Both sets of 
equations are equivalent for quasi-equilibrium plasma since, 
in this case, [F, f ]  -- 0. 

where feq and ?eq are equilibrium distribution 
functions of quarks and antiquarks, respectively: 

eq fij ( P ) = n ( p ) S i j ,  f i ~ ( P ) = Y t ( p ) S i j  • 

One sees that the equilibrium distribution func- 
tions are gauge invariant and they give zero color 
current. It is assumed that 

I+(P ,  x )Xi j (x) l  < < l ' ( p ) l ,  

and analogous relations for the antiquark func- 
tions. The factorized form of the function describ- 
ing the plasma deviation from the equilibrium has 
been dictated by the following reasoning. 

As follows from refs. [2,3], the matrices fij and 
~j  are hermitean. So are the ¢?Xu and ~Xij 
matrices. Because Xq transforms under the unitary 
local transformation U(x) as 

V(x)x(x)U*(x), 
it can be made diagonal by means of the gauge 
transformation. Therefore the distribution func- 
tion f of the form (6) can be diagonal due to the 
choice of gauge. The question arises whether the 
matrices X and ~ can be simultaneously diagonal- 
ized. We assume that it is the case (which de- 
mands [X, X] = 0), however, the question remains 
open. So the matrices fiX and ~ read o00) 
~X= 0 fl 0 , ~ =  0 . (7) 

0 0 3' 0 

Substituting the distribution functions f and f-of 
the form (6), (7) in eqs. (la), (lb) and using the 
explicit expressions of the Gell-Mann matrices 
one finds the equations 

p~3~'a+ ½g[F~'~+ (1 /v~-)F~]  W~. = 0, (8a) 

p~O~fl - ½g[F~ '~ - (1/v~-) F8 ~ ] W~. = 0, (8b) 

pyv  - ( = 0, (8c) 

and six algebraic equations which are trivially 
satisfied for the quasi-equilibrium plasma; W~.- 
p~,On/Sp'. 

The antiquark equations (9a)-(9c) can be found 
from eqs. (8a)-(8c) by means of the following 

130 



Volume 188, number 1 PHYSICS LETTERS B 2 April 1987 

replacement: 

(a,  /3, y, n, F f f )  --* (S, fl, "~, ,~, - F y ) .  

Putting f and f -of  the form (6), (7) in eq. (5) we 
get 

j ~ ( x ) = 0 ,  for a = 1 , 2 , 4 , 5 , 6 , 7 ,  

d3p ~, 

j r (x)  = 2 f  (2~r)OE p ta-/3-~ + fi),  

g d3p 

j (x) = f (2-"~E p 

× ( a  + / 3 -  2 y - S - r +  2~). (10) 

The next step in the small oscillation approach 
[11] is to assume that a, & /3, /~, y, ? and F3 "~, 
F8 ~ depend on x as e x p ( - i k x ) .  However, the 
question arises as to whether the components a, & 
/3, /~, 7, "Y oscillate with the same frequency or 
whether there are various frequencies ~0~, ~0~, wr . . .  
for each component? It is seen from eq. (8c) that 
the field F~ ~ has to oscillate with the frequency 
%. If this is so, it follows from eq. (8a) that the 
amplitude of this field vanishes because a oscil- 
lates with the frequency ~0~. Consequently y 
vanishes. In this way one proves that the compo- 
nents a, & /3, fi, y and ? have to oscillate with 
the same frequency. 

Let us now discuss eqs. (4) with the currents 
(10). We are looking for the solutions with F~ ~ 
and F8 ~ depending on x as e x p ( - i k x ) .  The solu- 
tion of this property reads 

A ~ ( x ) = 0  for a = 1 , 2 , 4 , 5 , 6 , 7 ,  

A~(x) = a~ e x p ( - i k x ) ,  

A~(x) = a~ e x p ( - i k x ) ,  (11) 

where a~ and a~ are constant four-vectors. To 
check the correctness of the above solution, one 
has to remember that [~3, )~8] = 0 and the respec- 
tive group structure constants vanish. Let us ob- 
serve that because of (11) the stress tensors F3 "~ 
and Fs~ are expressed through A~ and A~, re- 
spectively, as the electrodynamic stress tensor 
through the electromagnetic four-potential. 

We introduce the new functions 

,(p, x ) -S (p ,  x), 
x ) = / 3 ( p ,  x) ,  

cp(p, x ) = y ( p ,  x ) - Y ( P ,  x ) .  (12) 

From eqs. (8a)-(8c) and (9a)-(9c) we get the set 
of kinetic equations which we write down in the 
more familiar three-vector notation with the chro- 
moelectric and chromomagnetic field g3, E 8 and 
Bo, B 8. Then the terms (p  × B).an/Op occur. 
For the isotropic plasma considered here such 
terms equal zero [11] because On/Op is parallel to 
p. For this reason the magnetic fields play no role 
for the isotropic plasma. Therefore the set of 
kinetic equations looks like 

x r (1/v/-3)e8] .12= O, ( 0 / 0 1 - [ -  V ' V ) T / +  ~ g [  3 + 

--  1 /7 -- ( J / a t +  3 (a/v )es] 0, 

(o /at  + v .  v - = o, 

g f  d3p ( 
d i v  E 3 = P3 = 2 J (2~r )3  , n  - ~ ' ) ,  

g f d ' p  d i v E s = P 8 = - - ~ j ~ - ~ ( n + f - 2 c p  ), (13) 

where V==-p/E and 12 = (O/Op)(n + h). 
It is seen from the above equations that the 

problem of the small oscillations of the quark 
plasma closely resembles that one of the electro- 
magnetic plasma. Let us note here that analogous 
considerations for the quark plasma with SU(2) 
color group provide equations which exactly 
coincide with those of the electron-positron 
plasma. 

We introduce now the polarization vectors P3, 
/'8 defined as 

div eo = -p , ,  OP~/Ot = L ,  a = 3, 8. (14) 

and the chromoelectric inductions 

D,=E,+P~, a = 3 ,  8. (15) 

The definition (14) is self-consistent if 

Op2/Ot + div j~ = O, a = 3 , 8 ,  

which is the case because the distribution func- 
tions are assumed diagonal. The chromoelectric 
permeability tensor e~b (the indices i, j denote 
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here cartesian space axes) is defined as 

D~(k) = e~Jb(k)E{(k), a = 3, 8, (16) 

where Da(k ) and Ea(k ) are Fourier  t rans formed 
Da(x ) and Ea(k ) fields. One  sees that  

e~b(k ) = 3abeiJ(k).  

Using the definit ions (14)-(16)  and substi tut ing in 
eqs. (13) ~, ~, % E 3 and E 8 which depend on x 
as e x p ( - i k x )  [k = (`o, k)], one finds 

g2 
(17) 

(2~r) 3 k -  V ~  -- i0 + ' 

where the infinitesimal pa ramete r  0 + has been 
in t roduced to make  the integral (17) well defined 
[11]. The  chromoelectr ic  permeabi l i ty  can be split 
into the longitudinal  e L and transverse e T par ts  

8iJ = ET( ~ij- kik J / k 2  ) q'- EL kik j//k2. 

Because the equat ions of  mot ion  of the fields F~" 
and F8 ~ coincide (for small oscillations) with the 
Maxwell  equat ions of the e lec t rodynamic  fields, 
the dispersion relat ions of longitudinal  and trans- 
verse p lasma  oscillations, respectively, are defined 
by  the wel l -known equat ions [11] 

e L ( k  ) = 0, e T ( k  ) -- k 2 / ` o  2 = 0. (18) 

The  formula  (17) (with g 2 =  2e 2) is identical to 
that  of  the e lec t rodynamic  plasma.  Therefore  the 
solutions of  eqs. (18) can be found in the l i terature 
[111. 

As an i l lustration we consider the hot  p la sma  of 
massless quarks  and antiquarks.  The  dispersion 
relat ions read 

longitudinal  modes:  

`o2 = 'o02 + }1'  2 

for  ÒOZ >> k2, 

`o2 = kZ[1 + 4 e x p ( -  2k2/3`o 2 - 2)] 

for `o~<<k2, 

t ransverse modes:  

`o2=`o02+-~k2 for w02>>k 2, 

` O 2  3 2 k 2 `o0 + for ÒOZ << k 2, 

(19) 

(20) 

where the Langmui r  frequency `oo for the classical 
p l a sma  of zero ba ryon  charge of Ne flavours is 

ÒOZ = (2/3~rZ )Nfg 2Tz. (21a) 

For  the F e r m i - D i r a c  distr ibution funct ion of 
quarks  the p lasma frequency reads 

`o2 = ~_~Nfg2T 2. (21b) 

Because the longitudinal  and transverse oscilla- 
t ions are t ime-like (`o2 > k2),  the phase  velocity of 
the waves is greater than the velocity of light. For  
this reason the Landau  damping  is absent.  How-  
ever, it does not  mean  that  there is no energy 
dissipat ion of the p lasma waves. Because at the 
t empera ture  of about  200 MeV the p lasma  
frequency is much  greater  than the quark mass,  
the q u a r k - a n t i q u a r k  pair  creation can be an effec- 
tive damping  mechanism,  al though this mecha-  
n ism cannot  be  studied in the f ramework  of the 
t ranspor t  equat ions without  collision terms. 

The  formulae  (19), (20) exactly coincide with 
those found on the basis of the finite t empera ture  
Q C D  in the one-loop approx imat ion  [1,13]. Our  
value of the p lasma  frequency (21b) deviates f rom 
that  given in ref. [13] [̀OOZ = l~g(Nf + 6)g 2T2] be- 
cause the self-interactions of gluons (gluon loops) 
are neglected in our  considerations.  
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