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Abstract

We derive a sum rule satisfied by the correlation function of two particles with small relative momenta, which results from

the completeness condition of the quantum states.

The correlation functions of two identical or non-
identical particles with ‘small’ relative momenta have
been extensively studied in nuclear collisions for bom-
barding energies from tens of MeV [1] to hundreds of
GeV [2]. These functions provide unique information
about space-time characteristics of particle sources in
the collisions. We show in this paper that the correla-
tion function integrated over particle relative momen-
tumn satisfies a simple relation due to the completeness
of the particle quantum states. A preliminary account
of this work has been presented in [3].

The correlation function R is defined as

dn dn dn
—— =R(p1.p2) 7———
dp1dp2

dpy dpy
where dn/dpidp, and dn/dp; is the two- and one-
particle momentum distribution normalized to unity.
It has been repeatedly argued [4] that the correlation
function R can be expressed in the source rest frame
in the following way

R(p|,p2) =/d3r1dt]/d3r2dt2
x D(ry, 11)D(ry, 12) [ (x),v))]?, (2)
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where the source function D(r,t), which is normal-
ized as | d*rD(r,t) = 1, gives the probability to emit
a nucleon from a space-time point (r, ) 2. ¢ is the
final state wave function of the pair; ¥} = r; — v;1;,
i = 1,2 with v; being the particle velocity relative to
the source.

Eq. (2) determines the two particle correlation
function as an overlap of the source function and the
final state wave function squared of the two particles.
The pair is assumed to be isolated from the rest of the
system not only in the final state, but starting from the
moment of emission or freeze-out when, due to the
system decay or expansion, the (strong) interaction
is switched off*. (If the long range Coulomb force
is important after the ‘strong’ freeze-out, the pair
motion in the external electromagnetic field shouid

21t should be understood here that the coordinates (r,t) deter-
mine the position of a particle wave-package center.

3 The pair cannot be treated as isolated even for the pair, which
does not interact with the rest of the system, in the case many
identical particles. Then, the wave function of the system does not
factorize into the pair wave function and the wave function of the
rest, since the complete wave function must be (anti-)symmetrized
with respect to all particles. However, the effect is significant only
when the density of the identical particles is large. It does not
happen at the currently available energies of nuclear collisions [5].
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be considered [6].) The overlap from Eq. (2) is
computed at the freeze-out, which for the pair equals
max(#y,t2), and then is averaged over f; and f,.
Thus, the correlation function carries the information
on the system only at the moment of freeze-out and
not at earlier times when the pair of the particles still
interacts with the rest system.

Since we are interested in the correlations of parti-
cles with ‘small’ relative momenta, one can factorize
the center-of-mass and relative motion of the two par-
ticles in the essentially nonrelativistic manner. Then,
after eliminating the center-of-mass motion, Egs. (2)
can be rewritten as

R(q) =/d3rdr Dy(r.1) g ()2, (3)

with D,(r,t) being the distribution of the relative
space-time position of the two particles,

D,(r,1) = /d3R dT D(R+r/2,T +1t/2)

x D(R—r/2,T —1/2) .

Pq( r’) is the nonrelativistic wave function of the rela-
tive motion with g denoting the particle momentum in
the center-of-mass frame of the pair. While the particle
relative motion is nonrelativistic, the center-of-mass
motion with respect to the source is, in general, rela-
tivistic. Therefore, the particle relative distance mea-
sured in their center-of-mass frame r’ is obtained by
means of the Lorentz transformation i.e.

r'=r+ (y—1)(rn)n — yvt , (4)

where v is the pair velocity with respect to the source,
n = v/|v| and y is the Lorentz factor of the center-
of-mass motion relative to the source. The correlation
function (3) also depends on the total momentum of
the pair. This dependence, which is irrelevant for our
considerations, did not show up.

Let us consider the correlation function integrated
over the relative momentum. Since R(q) — 1 when
q — oo, we rather discuss the integral of R(q) — 1.
Using Eq. (3) one immediately finds

[ G (e 1)

d*q

= 3 N

_/d rdt Dr(l',t) /@r—)—g (|¢q(r )| 1) .
(5)

The wave functions satisfy the completeness condi-
tion

d3q *(pr *
E ¢q(r)¢q(r)+za:¢a(r)¢a(r)
=5(3)(r—r') :i:5(3)(r+r') , (6)

where ¢, represents a bound state of the two particles.
When the particles are not identical the second term
in the r.h.s of Eq. (6) should be neglected. This term
guarantees the right symmetry of both sides of the
equation for the case of identical particles. The upper
sign is for bosons while the lower one for fermions.
The wave function of identical bosons (fermions)
¢bq(r) is (anti-) symmetric whenr — —r, and ther.h.s
of Eq. (6) is indeed (anti-)symmetric when r — —r
or ¥ — —r'. If the particles of interests carry spin,
the summation over the spin degrees of freedom in the
Lh.s of Eq. (6) is implied.

When the integral representation of SCNr —r')is
used, Eq. (6) can be rewritten as

&3 ' ,
/(27‘§_3 (¢q(r)¢;(f') _ glatr—r ))
* Z¢a(r)¢;(r’)

=+6¥(r+r) .

Now we take the limit r — r’ and get the relation

d? ,
G (2P = 1)
=+ 89) - lda (v (7)

When Eq. (7) is substituted into Eq. (5), we get
the desired sum rule

[ (R 1)

o
=+— [ dt D, (vt/y,t) — A s (8)
" / vi/y Z;
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where A, is the formation rate of a bound state a { 7]

A, = (277-)3/d3rdt D,(r, 1) e (F)]?,

which connects the cross section to produce the bound
state « carrying the momentum P with that one of the
two particles with the momenta P/2 as

do* A do
aP - 7 ap/2yd(P2)

The tilde means that the short range correlations are
removed from the two-particle cross section, which is
usually taken as a product of the single-particle cross
sections.

If the particles are emitted simultaneously (more
precisely, if (r?) > (v?*#%)) the source function is
expressed as D,(r,t) = D,(r) 6(¢), and the sum rule
simplifies to

/d3q (R(q) - 1) = iﬂ; D(0) ~ " A .

The completeness condition is, obviously, valid for
any inter-particle interaction. It is also valid when the
pair of particles interact with the time-independent ex-
ternal field, e.g. the Coulomb field, generated by the
particle source. Thus, the sum rule (8) holds under
very general conditions as long as the basic formula
(2) is justified, in particular as long as the source func-
tion D,(r,t) is q-independent and spin independent.
The validity of these assumptions can be only tested
within a microscopic model of nucleus-nucleus col-
lision. Below we consider three examples of the sum
rule (8).

1) The correlation function of identical pions. In
this case the sum rule reads

3
/d3q (Rm,(q) - 1) =\ ”7 /dt D,(vi/v.1)
)

where we have introduced ad hoc the chaoticity pa-
rameter A. As well known, the interferometric formula
(2) gives A =1 in conflict with the experimental data
which provide A < 1. The sum rule (9) was earlier
found by Podgoretzky [9] who used the free wave
function of pions and then explicitly integrated the
correlation function.

The relation (9) is approximately satisfied by the
experimental correlation function. The point is that
the data are well described by the free wave func-
tions of the two pions (with the Coulomb correction
included) [2], which form the complete set of the
quantum states.

2) The p-p and n-n correlation function. The sum
rule (8) for the identical nucleons is

3
[ (Ruvta) =1) = -Z [arn, oy
Y
(10)

This relation, which, in particular, predicts exactly the
same (negative) value of the integral of the n-n and
p-p correlation function, is not satisfied by the experi-
mental data [8]. The reason is probably the following.

The integration over q runs in the sum rule (10) to
infinity. Thus even a small deviation of Ryx(q) from
unity at ‘large’ g can provide a sizeable contribution
to the integral (10). On the other hand, it is a seri-
ous problem to normalize the experimental correlation
function, and one usually assumes that Ryy(q) =1
at ‘large’ q. Consequently, the sum rule (10) can be
then easily violated.

3) The n-p correlation function. The sum rule (8)
now reads

[éa (Rupta =1) = =4a.

where the correlation function is averaged over spin.
As expected, the number of correlated n-p pairs is di-
rectly related to the number of the produced deuterons.
As in the previous case the sum rule is not satisfied by
the data [8], and the reason is presumably the same.
We conclude our considerations as follows. Due to
the completeness of the quantum states, the correlation
functions satisfy the simple relation which, in particu-
Jar, connects the number of correlated neutron-proton
pairs with the number of deuterons produced in nu-
clear collisions. It appears difficult to apply the sum
rule to the experimental data, however the relation is
useful, at least, to test theoretical calculations.

I am grateful to P. Danielewicz, A. Deloff, V. Lyu-
boshitz and S. Pratt for the discussions on the sum rule
presented here.



396 S. Mréwczyriski / Physics Letters B 345 (1995) 393-396

References [5] S. Pratt, Phys. Lett. B 301 (1993) 159.

[6) Y.D. Kim, R.T. de Souza, C K. Gelbke, W.G. Gong, and S.
Pratt, Phys. Rev. C 45 (1992) 387,
B. Erazmus, L. Martin and R. Lednicky, Phys. Rev. C 49
(1994) 349,

R. Lednicky, V.L. Lyuboshitz, B. Erazmus and D. Nouais,

[1] D.H. Boal, CK. Gelbke and B.K. Jennings, Rev. Mod. Phys.
62 (1990) 553.

[2] B. Lérstad, Int. J. Mod. Phys. A 4 (1989) 2861.

[3] St. Mréwczynski, in: Proceedings of International Workshop

on Multi-Particle Correlations and Nuclear Reactions
“Corinne I1”, Nantes, September 5-9, 1994, in print.

[4} G.I. Kopylov and M.L. Podgoretsky, Yad. Fiz. 18 (1974)

656 (Sov. J. Nucl. Phys. 18 (1974) 336); 19 (1974) 434
(19 (1974) 215);

G. Cocconi, Phys. Lett. B 49 (1977) 459,

G.1. Kopylov, Phys. Lett. B 50 (1974) 412,

S.E. Koonin, Phys. Lett. B 70 (1977) 43;

M. Gyulassy, S. Kauffmann and L.W. Wilson, Phys. Rev. C
20 (1979) 2267,

R. Lednicky and V.L. Lyuboshitz, Yad. Fiz. 35 (1982) 1316
(Sov. J. Nucl. Phys. 35 (1982) 770);

S. Pratt, Phys. Rev. Lett. 53 (1984) 1219.

[7

in: Proceedings of International Workshop on Multi-Particle
Correlations and Nuclear Reactions “Corinne II”, Nantes,
September 5-9, 1994, in print.

H. Sato and K. Yazaki, Phys. Lett. B 98 (1981) 153;

E. Remler, Ann. Phys. 136 (1981) 293;

St. Mréwczynski, J. Phys. G 13 (1987) 1089,

V.L. Lyuboshitz, Yad. Fiz. 48 (1988) 1501 (Sov. J. Nucl.
Phys. 48 (1988) 956);

St. Mréwczyiiski, Phys. Lett. B 248 (1990) 459; B 277
(1992) 43;

P. Danielewicz and P. Schuck, Phys. Lett. B 274 (1992) 268.

[8] B. Jakobsson et al., Phys. Rev. C 44 (1991) R1238.
[9] M.I. Podgoretsky, Yad. Fiz. 54 (1991) 1461.



