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Nuclear matter with delta isobars is considered in the framework of the mean-field Walecka model and a phenomenological 
extension of it. Particular attention is paid to the role of the finite delta decay width. It is found that even at normal nuclear 
density up to 0.05 of the baryon charge may be carried by deltas. 

Del ta  isobars play an impor tan t  role in nuclear  
matter ,  in part icular ,  at densi t ies  higher than the nor-  
mal one. The p rob lem has been s tudied in numerous  
papers  [ 1 -3] ,  for a review see refs. [ 4 - 6 ] .  Since the 
delta  is a meson-nuc leon  resonance, it  usually ap- 
pears in calculat ions as an in te rmedia te  state o f  nu- 
c leon-nuc leon  interact ion dr iven by a meson ex- 
change [ 1,2,4-6 ]. The delta decay width is not  much 
smaller  than the mass difference between deltas and  
nucleons, and  consequent ly  one should take into ac- 
count an imaginary  par t  o f  the del ta  mass, or  ore pre- 
cisely, of  the delta self-energy. This energy can be self- 
consistently calculated within the boson-exchange 
model,  as has been done in ref. [ 4 ]; however,  the 
whole approach becomes very complex.  

There are models  o f  nuclear mat ter  [ 2 ], where delta 
isobars are t reated in the same way as nucleons, i.e., 
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the deltas are real part icles and  not  only in termedia te  
states o f  nucleon interactions.  In ref. [ 2 ] deltas have 
been assumed to be stable particles,  but  as ment ioned  
above,  this is not  quite just if ied.  Deltas  with finite 
decay width have been considered to some extent  in 
ref. [ 3 ] in such a model.  

The aim of  this paper  is to propose a simple 
Walecka-type model  [7 ] of  nuclear  matter ,  where 
par t icular  a t tent ion is pa id  to the finite del ta  decay 
width.  We use an approach ini t ial ly discussed in the 
context  o f  classical ( nonqua n tum)  t ranspor t  theory 
[ 8 ], where resonances are t reated as stable part icles 
with a mass dis t r ibut ion descr ibed by a profile func- 
tion. This function is uniquely expressed through the 
resonance format ion  cross section and the resonance 
width due to an uni tar i ty  condit ion.  It has been later 
proved [ 9 ] that  in the case o f  equi l ibr ium systems, 
the approach [ 8 ] provides  results equivalent  to those 
ob ta ined  in the D a s h e n - M a - B e r s t e i n  formula t ion  o f  
statist ical  mechanics,  where a par t i t ion  function is 
expressed through S-matr ix  elements. In fact, this 
equivalence holds for classical systems. Since nuclear  
mat te r  at low tempera ture  is essentially a quan tum 
system, we modi fy  here the approach  ofref .  [ 8 ] tak- 
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ing into account the resonance mass and width de- 
pendence on nuclear matter density and temperature. 

The model discussed in this paper can be very use- 
ful for the description of heavy-ion collisions, where 
one deals with nuclear matter in a wide temperature 
range, and an application of the sophisticated models 
mentioned above [4,5] is cumbersome. However, a 
reasonable treatment of  deltas is very important here 
because a big fraction of experimentally observed 
pions from these collisions come from delta decays. 

Our model is formulated in two steps. At first we 
treat the deltas as stable particles, which we incorpo- 
rate in the Walecka [ 7 ] model following ref. [ 3 ]. One 
should remember that the deltas are spin 3/2 parti- 
cles and consequently are described by Rari ta-  
Schwinger spinors. As the analysis performed in ref. 
[ 3 ] shows, the delta dispersion relation in nuclear 
matter is analogous to that of nucleons as long as we 
work in the mean-field approximation. Then, one also 
observes that the deltas contribute in the same way 
as nucleons to the equations describing the genera- 
tion of vector and scalar fields. 

In the second step, we take into account the finite 
decay width of the deltas. We average thermody- 
namical characteristics found in the mean-field ap- 
proximation over the delta mass spectrum as has been 
proposed in refs. [ 8,9 ]. In order not to limit our dis- 
cussion to a specific model, we follow ref. [ 10 ] and 
construct a class of thermodynamically consistent 
models which is a phenomenological extension of the 
mean-field Walecka model and contains it as a lim- 
iting case. 

The basic formulae of the model are written for any 
temperature. The thermodynamic consistency is also 
discussed for this general case. The numerical calcu- 
lations, however, have been performed only for zero- 
temperature symmetric nuclear matter. We intend to 
present predictions of  our model for the best known 
case. 

The nuclear matter energy density and pressure are 
expressed as 

E(//, T) =TN I d3k (-~n) 3 (kZ + M~2),/2 [fN( k) + f s (  k) ] 

+ Ya f d3k dM~x 
(2n)------- 3-  ~ (MY,) (k2 + M ~  2 ) ,/2 

PB 

×~(k)+A(k)l+½C~p~+ ~ daB, U(pB,), (l) 
0 

p(p,  T) 

I" d3k 
= - TyN J ~ {In[ 1 --fN(k) ] +In[  1 - f s ( k )  ] } 

- TYa f d3k dM-------~ ~ (M~) 
(2 /0  3 

X {ln[1 - f a  (k) ] +ln[1 - A ( k )  l } 

pB 

I p 2 ~ 2  -~,-~sVs +pBU(pB)-- dpB' U(pw) , (2) 
0 

where/~ is the chemical potential associated with the 
baryon density PB; T=  B-  ' is the temperature; 7N and 
7a are the numbers of  nucleon and delta internal de- 
grees of freedom; f m s ) ( k )  and f , ,(x)(k) are the 
distribution functions of (anti-) nucleons and of 
(anti-) nucleons and of (anti-)deltas which are 

1 
fN(fq)(k) = exp{fl[ (k2+M~2) 1/2+ _ U(pB) -T- # ] } +  1 ' 

1 
fa(a) (k) = exp{fl[ (I2+MY`2) '/2+ _ U(pB)-T- # ] } +  1 ' 

(MY`) is the delta isobar profile function defined 
as 

F* 
M* - M ~ )  N(MY`)=~ (M~_ffI~,)2+F.2/4 0( /, 

(3) 

where/-* and )k/Y, are the delta width and average 
mass in nuclear matter; the parameter ~ is deter- 
mined by the normalization condition 

oo 

f dMy` ~ (My`) • 
0 

the effective nucleon mass M~ and the average effec- 
tive delta mass A/~ are 
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M~=MN-C2ps ,  M~=M~x-C2ps, 

where M s  and 3~rz~ are the respective vacuum values; 
Ps is expressed as 

d3k M~ 
Ps=YN (2~z)3 (k2+M~2),/2 [fN(k)+fs(k) ] 

d3k dM_____~ 
+7a j ~ ( M ~ )  

M~ 
(2n) 3 (k2+M~2) 1/2 

X [fa(k) + ~ ( k )  ] ; (4) 

and the baryon density Pn equals 

f d 3k 
PB =YN j ~ [fN(k) - f s ( k )  l 

d3kdMx ~(M~)[f .~(k)- f~(k)]  • (5) 
+Ya (2n)------- W-  

for the Walecka model U(pB) = C~pn, and Cs, Cv are 
parameters related to the coupling constant of  the 
baryon fields with the scalar and vector fields, re- 
spectively. In our considerations deltas and nucleons 
are coupled to the meson fields with the same con- 
stants (C s = C~ and C~N =C~) .  

Let us briefly discuss the form of the profile func- 
tion given by eq. (3). We have used the standard 
Breit-Wigner parametrization, which is cut off for 
masses smaller than the effective nucleon mass. In the 
case of  a delta decaying in the vacuum, it seems rea- 
sonable to cut the mass spectrum at a mass equal the 
sum of the nucleon and the pion mass. When a delta 
is produced in nuclear matter, then it can disappear 
due to the process A N ~ N N .  The existence of this 
process suggests a cut-offmass equal t o M ~  ~ 

The delta decay width in nuclei differs from the 
value observed in vacuum. In fact, there are several 
competing mechanisms responsible for this differ- 
ence [6]. However, the process A N - , N N  seems to 
dominate [ 6 ]. Therefore, we parametrize the effec- 
tive decay width as function of the baryon density in 
the following way: 

~ This value is obviously incorrect in the limit of zero baryon 
density. However, our results are sensitive to the value of the 
cut-offmass only when the delta decay width substantially ex- 
ceeds the vacuum value. This only happens at high densities. 

r *  (pB ) = r + ,~r pB , (6) 
Po 

where F =  115 MeV is the delta decay width in vac- 
uum and P0 is the normal nuclear density. The value 
of/-* atpo we identify with that one measured in pion- 
nucleus scattering [ 11 ]. The largest value of about 
320 MeV has been observed in the interaction with 
an iron nucleus [ 11 ]. For heavier nuclei the decay 
width seems to saturate, or even to decease. We take 
/-* (P0) = 320 MeV, which gives 8F=205 MeV. 

The delta width observed in pion-nucleus interac- 
tions should be treated rather as an upper limit (lead- 
ing to maximal effects discussed below) of the intrin- 
sic decay width of a delta in nuclear matter. The point 
is that elastic pion-nucleon scatterings provide a sig- 
nificant contribution to the delta width broadening 
in pion-nucleus collisions [ 6 ]. The delta width found 
in photon-nucleus interactions, where these elastic 
scatterings are absent, is smaller than that in pion-  
nucleus collisions [3,6]. 

As long as we deal with a nuclear-matter model di- 
rectly derived from a field-theory lagrangian, the 
model is thermodynamically self-consistent, i.e., 
thermodynamical identities are satisfied. The phe- 
nomenological potential U(pa) is also introduced in 
eqs. ( 1 ), (2) in a self-consistent way, see ref. [ l 0 ]. 
However, if one introduces other modifications, in 
particular, if one takes into account a finite delta de- 
cay width, the consistency of the model might be bro- 
ken. Let us briefly discuss this problem. 

The thermodynamic quantities given by eqs. ( 1 ), 
(2) and (5) must be related to each other by the 
equations, see e.g. ref. [ 12 ], 

~ = T  - -  + /4oB-P ,  (7) 

Because the effective nucleon and delta masses are 
density and temperature dependent dynamical quan- 
tities, they must maximise the pressure, i.e., 

dp 
( ~ ) r . u  = 0 ,  ( ~ a - a ) r ,  = 0 .  (9) 

I f  the delta decay width is also a dynamical quantity 
then 

329 



Volume 243, number 4 PHYSICS LETTERS B 5 July 1990 

0 

A direct calculation shows that the quantities given 
by eqs. ( 1 ), (2),  (4)  and (5) indeed satisfy eqs. ( 7 ) -  
(9) ,  if /-* is a fixed parameter. When one uses the 
parametrization (6) the consistency requirements are 
violated, and to restore them one needs to modify the 
energy density and pressure. Such modifications are 
not considered in this paper. It is interesting to ob- 
serve that the thermodynaical consistency of eqs. 
( 1 ) -  (5)  requires the equality of the constants C~ and 
Ca. In this case the difference between the effective 
masses of deltas and nucleons is density and temper- 
ature independent, and it equals Ma - M N .  If this dif- 
ference is not a constant, eqs. ( 1 ) -  (5)  are not ther- 
modynamically consistent because, formally 

speaking, the normalization coefficient ~ depends on 
T and #. 

We have performed numerical calculations for zero 
temperature symmetric (~N=4, ~,a=16) nuclear 
matter with the potential U(pB) in the form 

2 2 1/3 U (pB ) = CvPs - C dPB , 

which is discussed in detail in ref. [ 13 ], see also ref. 
[ 14 ]. When Cd = 0 one deals with the Walecka model. 
The parameters Cs, Cv and Cd have been chosen to 
reproduce the binding energy W=_ ~/PB--MN = --16 
MeV at the saturation density PB =P0 =0.16  fm-3. 
However, this condition does not fix the parameters 
completely and we have considered several sets of 
them, presented in table 1 together with the corre- 
sponding values of the incompressibility 

Table 1 
The effective nucleon mass, the incompressibility and the fraction of the baryon charge carried by deltas at normal nuclear density for 
several sets of the model parameters C 2, C 2, C~ and four values of the effective delta decay width/~.  

C~ C~ C~ 1* M~/ MN Ko PalPB 
(GeV -2) (GeV -2) (MeV) (MeV) 

286.0 377.6 0 0 0.543 553 0 
286.0 377.6 0 1 0.543 553 2.2× 10 -4 
290.9 382.5 0 115 0.537 552 2.5X 10 -2 
297.3 388.8 0 320 0.529 552 5.8× 10 -2 

235.2 291.8 0.191 0 0.640 291 0 
235.2 291.8 0.191 1 0.640 291 1.9X 10 -4 
236.5 291.5 0.199 115 0.640 280 2.1X 10 -2 
238.2 291.1 0.210 320 0.640 267 4.8× 10 -2 

227.1 279.8 0.211 0 0.654 265 0 
227.1 279.8 0.211 1 0.654 265 1.8× 10 -4 
228.3 279.5 0.218 115 0.654 255 2.0× 10 -2 
230.0 279.2 0.228 320 0.654 243 4.7X 10 -2 

220.0 269.6 0.227 0 0.666 244 0 
220.0 269.6 0.227 1 0.666 244 1.8 × 10 -4 
221.2 269.4 0.234 115 0.666 235 2.0× 10 -2 
222.7 269.1 0.242 320 0.666 224 4.7× 10 -2 

203.7 247.0 0.260 0 0.693 203 0 
203.7 247.0 0.260 1 0.693 203 1.7 × 10 -4 
204.8 246.8 0.266 115 0.693 196 1.9× 10 -2 
206.1 246.5 0.273 320 0.693 187 4.4× 10 -2 

170.4 203.1 0.312 0 0.746 141 0 
170.4 203.1 0.312 1 0.746 141 1.6× 10 -4 
171.2 203.0 0.317 115 0.746 137 1.8× 10 -2 
172.3 202.8 0.322 320 0.746 131 4.2× 10 -2 
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the effective nucleon mass, and the fraction o f  bar- 
yon charge carded by deltas in the ground state ( T =  0, 
pB=po). We have chosen four values o f  the delta de- 
cay width: / -* = 0, / -* = 1 MeV,/-* = l 15 MeV corre- 
sponding to decays in vacuum and/-* = 320 MeV. The 
analysis o f  the experimental data suggests a value o f  
the incompressibility coefficient o f  about 300 MeV 
[ 15 ] and of  the effective mass o f  about 0.7MN [ 16 ], 
both with considerable errors. 

In fig. 1 we present the energy per baryon W ( p B )  

as a function o f  the baryon density for several sets o f  
the parameters f rom table 1. In fig. la the Walecka 
model (Ca = 0) predictions are shown, while in fig. 
lb  the model with Ca # 0 is considered. In both cases 
we present the models with no deltas and the predic- 
tions corresponding to deltas with i '* = 320 MeV. One 
observes that the equation o f  state is rather insensi- 
tive to the presence o f  deltas. In fact, this is no longer 
true if  the coupling constants of  nucleons and deltas 
are not equal to each other [2 ]. However, the case of  
equal delta and nucleon coupling constants is privi- 
leged in our approach, since it automatically leads to 
a thermodynamical ly self-consistent model. 

In fig. 2 we present the ratio o f  delta density [the 
second term in eq. (5) ] to baryon density as a func- 
tion o f  baryon density for several values o f  the delta 
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Fig. 1. The binding energy per baryon as a function of baryon 
density in the Walecka model (a) and in its phenomenological 
extension (b) with no deltas, and with deltas of/* = 320 MeV. 
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Fig. 2. The fraction of baryon charge carried by deltas as a func- 
tion of baryon density in the Walecka model (a) and in its phe- 
nomenological extension (b) for several values of the delta decay 
width and for the decay-width parametrization (6). 

decay width. The calculations with the parametriza- 
tion (6)  are also presented. The values o f  the cou- 
pling constants are then taken as for the/-* = 320 MeV 
case. Since we do not consider any other thermodyn- 
amical functions, we can forget for a moment  about 
the thermodynamical  consistency. Fig. 2a corre- 
sponds to the Walecka model ( C d = 0 ) ,  while fig. 2b 
to the model with C a ~ O  and M ~  =0.666MN at nor- 
mal nuclear density, one sees that, in contrast to the 
equation of  state, the fraction o f  baryon charge car- 
ried by deltas strongly depends on/-*. Let us observe 
that the delta fractions calculated with the density 
dependent width (6) and with a fixed/-* = 320 MeV, 
which corresponds to the delta width observed in pion 
interactions with heavy nuclei [ 11 ], are very similar 
in the baryon density interval from 0 to 3po. At nor- 
mal nuclear density this fraction equals about 0.05. 
W h e n / ' * - -  I 15 MeV, which corresponds to the vac- 
uum value, this admixture is reduced to about 0.02. 

A comment  is in order. One may expect that the 
delta admixture depends on the effective mass o f  the 
delta, and consequently a large delta admixture found 
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in our model  is the result o f  an underes t imat ion  of  
this mass. This  is, however,  not  true. In  fact, the delta  
admixture  depends  crucially on the difference be- 
tween delta and  nucleon mass, and  not  on the delta  
mass by itself. As ment ioned  above, this difference is 
a constant  in our calculat ions because we use equal 
nucleon and delta coupling constants.  Therefore,  as 
the results presented in table 1 show, the delta  admix-  
ture depends  very weakly on the effective mass. 

Within the approach discussed here we find a strong 
increase of  the number  o f  deltas due to the finite de- 
cay width also at nonzero temperature.  This point  is 
impor tan t  for the hydrodynamic  or  the rmodynamic  
descr ipt ion of  nuclear collisions, where the number  
of  secondary pions equals the number  of  pions plus 
the number  o f  deltas present  in the system at the 
freeze-out density, when the system decouples into 
noninteract ing particles.  The respective calculations 
will be presented elsewhere. 

Let us summarize  our considerat ions.  A model  to 
study unstable deltas in nuclear mat ter  has been pro-  
posed. After discussion of  its the rmodynamica l  con- 
sistency the model  has been appl ied  to zero temper-  
ature symmetr ic  nuclear  matter .  The fraction of  
baryon charge carr ied by deltas strongly depends  on 
their  decay width while the equat ion of  state appears  
rather insensit ive to the presence o f  deltas in the sys- 
tem. We have shown that  there are si tuations,  where 
the zero-width approx imat ion  for the delta reso- 
nances seems completely inadequate.  
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