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On the basis of perturbative quantum chromodynamics, we consider the bremsstrahlung energy
losses of partons traversing parton matter using the well-known quantum electrodynamical formu-
las. We find the transport equation describing the energy distribution of partons as a function of
thickness of a target. The equation is solved numerically and we briefly discuss the relevance of our
results for hadron-nucleus and nucleus-nucleus collisions at high energies.

The mechanism of energy deposition in soft hadronic
collisions at high energy is not well understood at
present. In the most popular stringlike models of hadron
interactions, see, e.g., Ref. 1, this mechanism is associat-
ed with the nonperturbative sector of quantum chromo-
dynamics (QCD). Namely, the energy is deposited due to
the string length increase and the subsequent string de-
cay. The aim of this Brief Report is to discuss the mech-
anism from the quite different point of view which is very
close in spirit to the perturbative QCD. According to
our picture the substantial energy loss of the interacting
hadron is due to multiple bremsstrahlung in parton-
parton collisions. We assume that the time scale of
parton-parton collision is much shorter than the hadroni-
zation scale, and that the hadronization is soft. In other
words, we extrapolate the scenario which is justified in
hard hadron collisions to the soft interactions. Such a
picture of hadron processes has been advocated in Ref. 2.

To make our consideration definite let us consider an
ultrarelativistic parton traversing the layer of parton
matter. The energy loss of the parton is described by the
following equation:

dE
dl

where E is the parton energy, / is the parton-matter
thickness traversed by a parton, p is the density of
scattering centers, and o, is the so-called radiation cross
section defined as

_1 do(E)
=% fw—dw do, (2)

where do(E)/dw is the cross section of emission of a
parton with energy w. It is well known in quantum elec-
trodynamics (QED), see, e.g., Refs. 3 and 4, that the radi-
ation cross section of ultrarelativistic electrons interact-
ing with a screened Coulomb potential is independent of
energy of the electron, and that the bremsstrahlung cross
section can be approximately written as

do(E) _
dow

It is also important to notice that in the ultrarelativistic
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limit the cross sections of bremsstrahlung in electron-
electron collisions and in electron interactions with exter-
nal Coulomb source with unit charge are equal to each
other, see, e.g., Ref. 4.

Since the radiation cross section is energy independent
Eq. (1) has the trivial exponential solution

E()=Eye /",

where 1/A=po,. Let us estimate the numerical value of
radiation length A for parton interactions. The expres-
sion of o, found in QED reads?

o
o,=—[4In(am)+3], 4)
m

where a is the fine-structure constant, m is the electron
mass, and a is the screening length. Substituting in (4)
a=0.5, m=300 MeV, which corresponds to the constitu-
ent quark mass, or more generally, to a typical nonper-
turbative scale in QCD and a =1 fm one finds o,=0.17
fm?2. Identifying the parton density with the number of
three valence quarks per volume of a one-Fermi-radius
sphere, one finds A=38 fm. Therefore, a parton traversing
the parton-matter layer of one-Fermi thickness loses
about 10 percent of its energy. It is a rather conservative
estimation since we have not taken into account gluons
and sea quarks when the parton density has been con-
sidered. Encouraged by the non-negligible value of ener-
gy lost due to bremsstrahlung, we propose to analyze the
suggested picture of energy deposition in more detail.

Let us start with a little more careful discussion of the
formulas (3) and (4) and values of the parameters. At first
it should be observed that the bremsstrahlung cross sec-
tion (3) seems adequate not only in the perturbative re-
gime where it is derived. As known, see, e.g., Ref. 4, the
analogous formula is found in the classical radiation
theory with no assumption of smallness of the coupling
constant. However, the interpretation of the formula is
somewhat different.

Because we consider the soft hadronic interactions it
seems reasonable to identify the mass parameter from Eq.
(4) with the constituent quark mass. In fact, the actual
values of the mass, the coupling constant, and the screen-

1077 ©1989 The American Physical Society



1078

ing length are not very important for us. It is important
that the radiation cross section is energy independent and
its value should be treated rather as a free parameter.
The above number is only a rough estimation of it.

In further analysis we treat quarks and gluons in the
same way. The assumption that the nonperturbative
gluons are massive is supported by phenomenology. It
does not alter the formula of the bremsstrahlung cross

section (3) as long as the energy of an emitted gluon is

much greater than its mass. Since we are interested in
partons which are initially ultrarelativistic, this require-
ment is easily satisfied. The slow partons are, in fact, ex-
cluded from our analysis due to the presence of a cutoff
parameter (see below).

What is the energy distribution of partons after
traversing the layer of parton matter? How thick should
the layer be to modify initial parton energy distribution?
To address these questions we have formulated the fol-
lowing transportlike equation:

df(E,l) _ do(E,)
A =p [dE, | fELD——
E 4Bl do(E,+E)
+f(E, 1) dE,
do(E)
- gott) 5

where f(E,l)dE is the number of partons with energy
from the interval (E,E +dE) after traversing the layer of
a thickness /. The terms from the right-hand side (rhs) of
Eq. (5) correspond to three processes which modify the
distribution function f(E,I). The first term describes
emission of partons with energy E, the second term cor-
responds to deceleration of partons which initially have
energy E +E, to the final energy E, and the third term is
responsible for the decrease of the number of partons
with energy E due to bremsstrahlung.

Using the standard methods of transport theory, see,
e.g., Ref. 5, one can easily prove that Eq. (5) admits the
energy conservation, i.e., dW /dl =0, where W is the to-
tal energy carried by partons, W= de Ef(E,l). Since
we work in a reference frame where the target is at rest
and the incoming partons are ultrarelativistic the energy
carried by partons well approximates the total energy.
Therefore, the equation dW /dl =0 represents the total
energy conservation.

Introducing the dimensionless variables x =E /E,,
z=1/A and using the bremsstrahlung cross section in the
form (3) we rewrite the transport equation as

1

x flx+x,,2)

df(x,z) :foldxl

1
_.+
dz X
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where f(x,z)=f(E,I)E,. The interesting feature of Eq.
(6) is that the second and the third terms of the rhs are in-
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frared logarithmically divergent if they are treated sepa-
rately from each other. When the terms are combined
the integral is finite. Due to infrared catastrophe of per-
turbative QCD (or QED) the rhs of Eq. (6) is divergent
when x goes to zero. However, one should remember
that the physically observable quantity Ef(E,!) is finite.
As is well known, the difficulty is cured if the energy
resolution is finite. A natural infrared cut appears when
one uses the numerical methods to solve Eq. (6). There-
fore, in further considerations, we will not pay any atten-
tion to this problem. However, one should notice that
the value of the cutoff parameter could not be too small.
The point is that the cross section (3) is valid for ultrare-
lativistic partons. If one considers partons from a proton
of momentum 100 GeV and the cutoff x value equals
0.05, the slowest partons of momentum 2 GeV (and of
mass 300 MeV) can be still treated as ultrarelativistic.
Note that this cutoff value is substantially greater than
the QCD scale parameter.

Let us observe a very nice feature of Eq. (6). It con-
tains no parameters. Therefore, the knowledge of only
one parameter (except E,)—the radiation length—is
needed to convert Eq. (6) into Eq. (5).

In Fig. 1(a) we present the distribution function evolu-
tion in z variable starting with the deltalike distribution
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FIG. 1. The evolution of distribution function with the target
thickness. The vertical axis units are arbitrary. (a) The initial
distribution function is deltalike. (b) The initial distribution
function coincides with the valence quark structure function of
a nucleon.
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function for z=0. One sees that the evolution is very
fast. After traversing 10 percent of the radiative length
A, the initial distribution function is significantly dis-
turbed. When z=0.6 the distribution function is close to
the limiting one which locates all partons in the first ener-
gy bin. The z evolution of the distribution function,
which at z=0 is identified with the nucleon structure
function of valence quarks

flx,z=0)~(x)""2(1—x)*,

is shown in Fig. 1(b). In these calculations the bin width
and, consequently, the cutoff parameter equal 0.05. The
changes of the cutoff value alter the shape of function
f(x,z) in the first bins only.

The question arises how the number of partons in-
creases with the target thickness? Integrating over x Eq.
(6) one finds

dn(z)

e =f1dx In(x /x¢)f(x,2) , (7)
*o

with
1
= dx f(x,z),
n(z) fxoxfxz

where x, is the infrared cut parameter —the smallest
value of x which is taken into account. From Fig. 1 one
sees that at sufficiently thick targets, the dominant contri-
bution to the integral from Eq. (7) comes from the x
which are close to x,. Therefore, we expand the loga-
rithm around x,. Then one gets

dn(z)

———=w/xy—n(z), (8)

dz wiXo

where w= f dx xf(x,z) is the dimensionless analog of

the earlier introduced total energy W. One easily finds
the solution of Eq. (8) which reads

n(z)=[n(z=0)—w/x¢lexp(—z)+w/x, . )

One sees that the parton multiplicity first linearly in-
creases with the target thickness, then the increase is
slower than linear, and finally it approaches the maximal
multiplicity equal to w /x,. Since the thickness of heavi-
est nuclei is probably not higher than about one radiation
length, Eq. (9) predicts an approximately linear particle
multiplicity increase with a nucleus thickness in hadron-
nucleus collisions at high energies if the number of par-
tons is proportional to the number of hadrons. As is
known, the experimental data reveal just such a linear in-
crease.®

Experimentally the rapidity distributions of hadrons
instead of x distributions of partons are observed in
hadron-nucleus collisions. Therefore, to confront the
solutions of Eq. (6) with experimental data, let us assume
that a parton of x fraction of initial hadron momentum
converts in the hadronization process into a pion of the
same x. The rapidity distribution of pions coming from
the parton x distribution which at z=0 coincides with
the valence quark structure function is given in Fig. 2.
The initial total momentum equals 100 GeV/c. Although
some qualitative features of data® are seen in Fig. 2, the
quantitative agreement is rather poor. Probably nonper-
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FIG. 2. The rapidity distribution of pions for several values
of target thickness. The initial momentum is 100 GeV/c. The
vertical axis units are arbitrary.

turbative effects responsible for hadronization, which are
completely neglected here, substantially modify the shape
of the rapidity distributions.

While the transport equation (5) seems adequate for
hadron-nucleus collisions it can be inappropriate for in-
teractions of heavy ions. The point is the following. The
partons from the initial beam which are strongly de-
celerated can interact with incoming partons. In other
words, slow partons should contribute to the density of
scattering centers, p, which is assumed constant in Eq.
(5). One observes that implementation of the effect dis-
cussed to the transport equation demands introduction of
the time dependence. To simplify the problem let us split
the incoming beam of partons into bunches correspond-
ing to nucleons which successively approach the target.
If we numerate the bunches in such a way that the num-
ber one bunch is that one which collides with the target
as a first, the bunch number two approaches the target
the density of which is increased due to interaction with
the first bunch. When the bunch number three interacts
with the target its density has been modified by the first
and the second bunch. Keeping in mind this picture Eq.
(5) changes into the set of equations

df{(E,) _ do(E,)
—— =Pl [dE, |\f(E\,h—2—
+rE BN ITE T E)
fi 1 ’ dE]
_ do(E)
f,-(E,l)———dE1 , (10)

where f; is the distribution function of partons originated
from ith bunch. The density of partons in the target is
defined as

piD=p,
1 €
pi(l)=pi_1(l)+?f0 dE df; |(E,l)/dl ,
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where € is the maximal energy of partons which contrib-
ute to the target density and s is the perpendicular area of
the beam. :

As we did previously, we rewrite Eq. (10) in the dimen-
sionless form

dfilxz) o L
T—Ki(z)fo dx, | |+ . filx+x,,2)
——1—®(x —x)fi(x,2)
X, 1/ i\ % ’
Kk(z)=1, (11)

. o €/E,
Ki(2)=r; () + % fo dx df; _|(x,2)/dz .

To make Eq. (11) definite one has to determine the values
of two ratios o /s and €/E,. Since Eq. (11) is nonlinear
with respect to the distribution function, the normaliza-
tion of it cannot be chosen arbitrarily.

To get a feeling what kind of effects we can expect, Eq.
(11) has been solved numerically with probably somewhat
overestimated values of the ratios. Namely we have tak-
en 0/5s=0.1 and €/E;=0.05. The distribution func-
tions, which are initially deltalike, are normalized as
fdxfi(x,0)=3. The results are presented in Fig. 3,
where we show the evolution of the fifth bunch distribu-
tion function compared with that of the first one. One
sees that for sufficiently thick targets the nonlinear effects
can be very important.

We have presented in this paper a first schematic
description of parton beam traversing the parton matter
target. Assuming that the beam evolves due to parton
bremsstrahlung we have found the distribution of energy
of partons and of their number as a function of target
thickness. Although the bremsstrahlung is treated per-
turbatively, the evolution seems very fast, i.e., the distri-
bution function is substantially modified when the parton
beam traverses even a thin layer. Some features of exper-
imental data from hadron-nucleus collisions appear in the
results of our approach; however, it is premature to con-
clude whether or not it provides an adequate description
of these data. We have shown how to modify the ap-
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FIG. 3. The evolution of distribution functions of the first
and the fifth bunch with the target thickness. The vertical axis
units are arbitrary.

proach in order to include the case of nucleus-nucleus
collisions. First numerical results indicate a rather
strong nonlinear response of the target to successive col-
lisions with partons of the projectile nucleus.
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