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Event-by-event fluctuations of the chemical composition of the hadronic final state of relativistic heavy-ion
collisions carry valuable information on the properties of strongly interacting matter produced in the collisions.
However, in experiments incomplete particle identification distorts the observed fluctuation signals. The effect is
quantitatively studied and a new technique for measuring chemical fluctuations, the identity method, is proposed.
The method fully eliminates the effect of incomplete particle identification. The application of the identity method
to experimental data is explained.
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I. INTRODUCTION

Event-by-event fluctuations of chemical (particle-type)
composition of hadronic final states of relativistic heavy-ion
collisions are expected to be sensitive to properties of strongly
interacting matter produced in the collisions [1]. Specific
fluctuations can signal the onset of deconfinement when the
collision energy becomes sufficiently high to create droplets of
quark-gluon plasma [2]. At higher collision energies, where the
quark-gluon phase is abundantly produced at the early collision
stage, large chemical fluctuations can occur as the system hits
the critical point of strongly interacting matter in the course
of its temporal evolution [3,4]. It is thus certainly of interest
to study event-by-event chemical fluctuations experimentally.
First data coming from the CERN SPS [5–7] and BNL RHIC
[8] were already published. The results are not very conclusive
yet and more systematic measurements are needed. In addition,
the question arises whether data analysis methods can be
improved.

In real experiments it is impossible to determine uniquely
the type of every detected particle. The identification requires
measurements of particle electric charge and mass. Precise
mass measurements are experimentally difficult and expen-
sive. For this reason analyses of chemical fluctuations are
usually performed in a limited acceptance where particle
identification is relatively reliable. However, sensitivity to
fluctuations of range larger than the acceptance window
is then lost and signals from fluctuations of shorter range
are usually diluted. Furthermore, it should be noted that
results on fluctuations, unlike those on single-particle spectra,
cannot be corrected for the limited acceptance. Often it is
possible to enlarge the acceptance, but at the expense of
a significant contamination of the sample by misidentified
particles. The effect of particle misidentification can distort
measured fluctuations. Thus, incomplete particle identification

is a serious obstacle to the precise measurement of chemical
fluctuations.

Although it is usually impossible to identify every detected
particle, one can in general determine with high accuracy the
percentage (averaged over many interactions) of, say, kaons
among produced hadrons. This information will be shown
to be sufficient to fully eliminate the effect of incomplete
identification. In this paper we propose a new experimental
technique called the identity method which achieves the
goal independently of the specific properties of the chemical
fluctuations under study.

In the study of chemical fluctuations the NA49 Collabo-
ration [5–7] used the measure σdyn, which is defined as the
difference between fluctuations measured in real and mixed
events. The effect of particle misidentification is accounted for
by including it in the mixed events. The STAR Collaboration
[8] used, in addition to the σdyn measure, the quantity νdyn. The
latter one assumes that particles are uniquely identified.

It was suggested long ago [9,10] to quantify chemical
fluctuations by the measure � [11], which proved to be
efficient in experimental studies of event-by-event fluctuations
of particle transverse momentum [12,13], electric charge [14],
and quite recently of azimuthal angle [15]. The � measure,
unlike σdyn and νdyn, is a strongly intensive measure of
fluctuations. Namely, its magnitude is independent of the
number and of the distribution (fluctuation) of the number of
particle sources, if the sources are identical and independent
from each other. This feature, which is discussed in detail in
Ref. [16], is important in experimental studies of relativistic
heavy-ion collisions where the collision centrality is never
fully controllable. However, up to now it was unclear how to
correct measurements of chemical � for the effect of particle
misidentification.
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The identity method, which is developed here, uses the
fluctuation measure �, a simple modification of �. The mea-
sure �, similar to �, is strongly intensive but the modification
makes it possible to correct the measurements for the effect of
particle misidentification. Below we show that the measure �

can be factorized into a coefficient, which represents the effect
of misidentification, and the quantity �CI, which corresponds
to the value � would have for complete identification. The
misidentification coefficient can be determined from the data
in a model independent way. Therefore, the identity method
provides the value of the fluctuation measure as it would be
obtained in an experiment in which every particle is uniquely
identified.

Before the identity method is presented, we introduce and
discuss in Sec. II the fluctuation measures σdyn, νdyn, �, and �.
In Sec. III we demonstrate by a Monte Carlo simulation how
the effect of misidentification distorts the chemical fluctuations
as quantified by νdyn, �, and �. The identity method is
formulated in Sec. IV. Instead of conclusions we present in
the last section the steps required to apply the identity method
to experimental data. To simplify the presentation, we consider
chemical fluctuations of events composed only of kaons and
pions. Clearly, kaons and pions can be replaced by particles of
any other sort.

II. MEASURES OF FLUCTUATIONS

As mentioned in the Introduction, fluctuations of chemical
composition of final states of relativistic heavy-ion collisions
can be studied in several ways. The NA49 Collaboration [5–7]
measured event-by-event fluctuations of the particle ratios
K/π, K/p, p/π and determined the quantity σdyn defined as

σdyn = sgn
(
σ 2

data − σ 2
mixed

)√∣∣σ 2
data − σ 2

mixed

∣∣, (1)

where σdata and σmixed are the relative width (the width divided
by the mean) of the event-by-event particle ratio distribution
in, respectively, the data and artificially generated mixed
events where every particle comes from a different real event.
The fluctuations present in mixed events are attributable to
the effect of particle misidentification and the statistical noise
caused by the finite number of particles.

The STAR Collaboration used [8] the quantity νdyn to mea-
sure chemical fluctuations. For the case of a two-component
system of pions and kaons νdyn is defined as

νdyn = 〈NK (NK − 1)〉
〈NK〉2

+ 〈Nπ (Nπ − 1)〉
〈Nπ 〉2

− 2
〈NKNπ 〉

〈NK〉〈Nπ 〉 , (2)

where NK and Nπ are the numbers of kaons and pions in
a given event and 〈· · ·〉 denotes averaging over events. The
quantity νdyn is defined in such a way that, in particular, it
vanishes when the multiplicity distributions of pions and kaons
are both Poissonian (〈Ni(Ni − 1)〉 = 〈Ni〉2, i = π, K) and in-
dependent from each other (〈NKNπ 〉 = 〈NK〉〈Nπ 〉). Thus, it is
constructed to quantify the deviations of the fluctuations from
the Poissonian noise. For large-enough particle multiplicities
one finds the approximate relation νdyn ≈σ 2

data − σ 2
mixed, which

gives νdyn ≈ sgn(σdyn) σ 2
dyn [8]. We note that the quantity νdyn

implicitly assumes unique identification of all particles.

As already noted, it was advocated long ago [9,10] to
employ the measure � [11] to study chemical fluctuations. The
measure is defined in the following way. One introduces the
variable z ≡ x − x, where x is a single-particle characteristic
such as the transverse momentum or azimuthal angle. The
overline denotes averaging over the single-particle inclusive
distribution. The event variable Z, which is a multiparticle
analog of z, is defined as Z ≡ ∑N

i=1(xi − x), where the sum
runs over the N particles in a given event. By construction,
〈Z〉 = 0. The measure � is finally defined as

� ≡
√

〈Z2〉
〈N〉 −

√
z2. (3)

The measure � vanishes in the absence of interparticle
correlations. This situation is discussed in some detail below
for the case of chemical fluctuations. Here we note that
the measure also possesses another important property: It is
strongly intensive, which means that it is independent of the
number and of the distribution (fluctuation) of the number of
particle sources, if the sources are identical and independent
from each other. In particular, if a nucleus-nucleus collision
is a simple superposition of nucleon-nucleon interactions,
then �AA = �NN . The strongly intensive property is a very
valuable feature of � because centrality selection in relativistic
heavy-ion collisions is never perfect and events of different
numbers of particle sources are always mixed up. The strongly
intensive property is also desirable when different centralities
or different colliding systems are compared. For a discussion
of strongly intensive quantities, see Ref. [16].

The analysis of chemical fluctuations can be performed
with the help of � in two different but fully equivalent ways.
In the first method [9], using the identity variable, chemical
fluctuations are treated in analogy to fluctuations of transverse
momentum. In the second method � is calculated from the
moments of the multiplicity distributions [10].

We next describe the first method for the example of a
two-component system of pions and kaons. One defines the
single-particle variable x as x = wK , where wK is called the
kaon identity and wi

K = 1 if the ith particle is a kaon and
wi

K = 0 if the ith particle is a pion. This implies unique
particle identification. One then directly uses the definition
(3) to evaluate �.

Let us now discuss the most important case for which the
measure � of chemical fluctuations vanishes. Because the
inclusive distribution of wK equals

P (wK ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

〈Nπ 〉
〈N〉 for wK = 0,

〈NK〉
〈N〉 for wK = 1,

(4)

one finds

z2 ≡ w2
K − wK

2 = 〈NK〉
〈N〉

(
1 − 〈NK〉

〈N〉
)

. (5)

When interparticle correlations are absent, the distribution of
particle identities in events of multiplicity N reads

PN

(
w1

K,w2
K, . . . , wN

K

) = PNP
(
w1

K

)
P

(
w2

K

) · · ·P (
wN

K

)
, (6)
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where PN is an arbitrary multiplicity distribution of parti-
cles of any type. One shows that 〈Z2〉 computed with the
event distribution (6) equals 〈Z2〉 = 〈N〉z2 and, consequently,
� = 0.

In the second method the measure � of chemical fluctu-
ations is obtained from the moments of the experimentally
measured multiplicity distributions of kaons and pions. As
shown in Ref. [10], one has

z2 = 〈NK〉〈Nπ 〉
〈N〉2

, (7)

〈Z2〉
〈N〉 = 〈Nπ 〉2

〈N〉3

(〈
N2

K

〉 − 〈NK〉2
) + 〈NK〉2

〈N〉3

(〈
N2

π

〉 − 〈Nπ 〉2
)

−2
〈NK〉〈Nπ 〉

〈N〉3
(〈NKNπ 〉 − 〈NK〉〈Nπ 〉), (8)

which substituted in Eq. (3) gives the measure �.
The formulas (7) and (8) clearly show that �, like νdyn,

vanishes when the multiplicity distributions of pions and
kaons are both Poissonian and independent from each other.
However, more generally, � vanishes for any multiplicity
distribution provided it satisfies (6). The distribution (6) leads
to the multiplicity distribution of the form

PNKNπ
= PNK+Nπ

×
(

NK + Nπ

NK

)( 〈NK〉
〈N〉

)NK
(

1 − 〈NK〉
〈N〉

)Nπ

, (9)

with the moments

〈NK (NK − 1)〉 = 〈NK〉2

〈N〉2
〈N (N − 1)〉, (10)

〈Nπ (Nπ − 1)〉 = 〈Nπ 〉2

〈N〉2
〈N (N − 1)〉, (11)

〈NKNπ 〉 = 〈NK〉〈Nπ 〉
〈N〉2

〈N (N − 1)〉. (12)

One checks that � and νdyn both vanish when these moments
are substituted into Eq. (8) and Eq. (2), respectively.

It appears convenient for our further considerations to
modify � to the form

� = 〈Z2〉
〈N〉 − z2, (13)

which preserves the properties of �; it vanishes in the absence
of interparticle correlations and it is strongly intensive. The
measure � will be used to formulate the identity method for
the study of chemical fluctuations. When expressed through
moments of the multiplicity distribution, it equals

� = 1

〈N〉3

[〈
N2

π

〉〈NK〉2 + 〈Nπ 〉2〈N2
K

〉
−2〈Nπ 〉〈NK〉〈NπNK〉 − 〈Nπ 〉2〈NK〉 − 〈Nπ 〉〈NK〉2

]
.

(14)

Comparing Eq. (2)) to Eq. (14) one finds that � and νdyn are
proportional to each other:

� = 〈Nπ 〉2〈NK〉2

〈N〉3
νdyn. (15)

We note here that νdyn is not intensive but it becomes even
strongly intensive when multiplied by 〈N〉, 〈NK〉, or 〈Nπ 〉.

III. EFFECT OF MISIDENTIFICATION

As mentioned in the Introduction, complete identification
of every particle is impossible. In this section we show how the
incomplete particle identification influences the magnitudes of
fluctuation measures. For this purpose we considered a simple
model of chemical fluctuations where the multiplicity of pions
is Poissonian with a mean value of 100 and the number of
kaons is 20% of the number of pions (strict correlation of the
numbers of kaons and pions). Actually, NK is taken as the
integer number closest to Nπ/5, which is smaller or equal
to Nπ/5. The fluctuation measures can be easily computed
analytically for the model but our aim here is to simulate the
effect of incomplete particle identification.

There are many experimental techniques to measure par-
ticle mass. We discuss here the effect of misidentification
referring to measurements of energy loss, dE/dx, in a detector
material. This method is applied by the experiments NA49,
NA61, and STAR. The detectors are equipped with Time
Projection Chambers in which dE/dx is measured. The value
of dE/dx can be used to identify particles because it depends
on both particle mass m and momentum p in the combination
of velocity (β = p/

√
m2 + p2). In the case of large separation

of the energy loss distributions of pions and kaons, as
schematically shown in Fig. 1(a), almost unique particle
identification is possible. This is, however, not possible when
the measured pion and kaon dE/dx distributions overlap, as
illustrated in Fig. 1(b).

Performing the Monte Carlo simulations we assumed that
the dE/dx distributions of pions and kaons are Gaussians
centered, respectively, at 1.4 and 1.2 in arbitrary units. They
are normalized to the mean multiplicity of pions and of
kaons, respectively. To quantify the bias caused by particle
misidentification a simple particle identification scheme is
used, namely, a particle is identified as a pion if dE/dx > 1.3
and as a kaon if dE/dx � 1.3. The width σ of both Gaussians
is chosen to be the same but its value is varied from 0 to 0.08.
With growing width of the peaks of the dE/dx distribution,
the fraction of misidentified particles obviously increases. The
results of the simulation are illustrated in Fig. 2, where the
fluctuation measures �, �, and νdyn are shown as a function
of σ . As seen, the magnitudes of �, �, and νdyn decrease as
the fraction of misidentified particles grows and the measures
vanish when particle identification becomes totally random.
This sizable and experimentally unavoidable effect was the
main motivation to develop the identity method, which fully
eliminates the problem.

IV. IDENTITY METHOD

The identity method, which is described here for a two-
component system of pions and kaons, utilizes the measure
� defined by Eq. (13). However, the kaon identity wK is not
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FIG. 1. (Color online) The distribution of dE/dx with nonoverlapping peaks of pions and kaons (a), which allows unique particle
identification, and the distribution with overlapping peaks (b), which does not allow unique identification.

limited to either 1 or 0 anymore, but can take any value from
the interval [0, 1].

In the previous section we assumed that particles are iden-
tified according to the energy-loss distribution. To make the
presentation of the identity method more general we assume
here that particle identification is achieved by measurement
of particle mass not specifying the particular experimental
technique which is used for this purpose. Because any
measurement is of finite resolution, we deal with continuous
distributions of observed masses of pions and kaons, which
are denoted as ρπ (m) and ρK (m), respectively. They are
normalized as

∫
dm ρπ (m) = 〈Nπ 〉,

∫
dm ρK (m) = 〈NK〉. (16)

The kaon identity is defined as

wK (m) ≡ ρK (m)

ρ(m)
, (17)

where ρ(m) ≡ ρπ (m) + ρK (m), and is normalized as∫
dm ρ(m) = 〈N〉 ≡ 〈Nπ 〉 + 〈NK〉. (18)

If the distributions ρπ (m) and ρK (m) do not overlap, the
particles can be uniquely identified and wK = 0 for a pion and
wK = 1 for a kaon. When the distributions ρπ (m) and ρK (m)
overlap, wK can take the value of any real number from [0, 1].
Figure 3 illustrates the latter case. The mass distributions are
shown in Fig. 3(a) and the distribution of kaon identity in
Fig. 3(b). The peaks close to 0 and 1 in Fig. 3(b) correspond to
the mass regions in which pions, respectively kaons, are well
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FIG. 2. (Color online) The measures of chemical fluctuations � and � (a) and νdyn (b) as functions of the width of the energy-loss
distribution.
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FIG. 3. (Color online) The distributions of observed masses of pions ρπ (m), of kaons ρK (m), and their sum ρ(m) (a) and the corresponding
distribution of kaon identity wK (b).

identified. The wK values around 0.5 correspond to particles
for which the measured mass is in the transition region between
the kaon and pion peaks (m ≈ 280 MeV) in the distribution
ρ(m) shown in Fig. 3(a).

Let us now explain how the fluctuation measure � is
calculated once the mass distributions were experimentally
obtained. The single-particle variable entering Eq. (13) is
defined as in Sec. II: z ≡ wK − wK . The bar denotes the
inclusive average which is computed as follows:

wK ≡ 1

〈N〉
∫

dm ρ(m) wK (m)

(19)

= 1

〈N〉
∫

dm ρK (m) = 〈NK〉
〈N〉 .

Analogously, one finds w2
K and z2 ≡ w2

K − wK
2. The quantity

〈Z2〉 is obtained as

〈Z2〉 = 1

Nev

Nev∑
n=1

(
Nn∑
i=1

wi
K − Nn wK

)2

, (20)

where Nev is the number of events and Nn is the multiplicity
of the nth event. Substituting 〈Z2〉, z2, and 〈N〉 into Eq. (13),
one finds the measure �, the magnitude of which, however,
is biased by the effect of particle misidentification. Next we
discuss the correction procedure.

As shown in the Appendix, the measure � can be expressed
through the moments of the multiplicity distributions of pions
and kaons as

� = A

( 〈NK〉
〈N〉 − uK

)2

, (21)

where

A ≡ 1

〈N〉
[〈

N2
π

〉 〈NK〉2

〈Nπ 〉2
+ 〈

N2
K

〉 − 〈NK〉 − 〈NK〉2

〈Nπ 〉
− 2〈NπNK〉 〈NK〉

〈Nπ 〉
]

, (22)

and

uK ≡ 1

〈NK〉
∫

dm ρK (m) wK (m). (23)

In the case of complete particle identification (CI) the
distributions ρπ (m) and ρK (m) do not overlap and thus
uK = 1. Then, the result for � is

�CI = A

( 〈NK〉
〈N〉 − 1

)2

, (24)

which is equivalent to the expression (14).
Although particle-by-particle identification is usually diffi-

cult, statistical identification is reliable. In the latter case, we
do not know whether a given particle is a kaon, but we know
the average numbers of kaons and of pions. We introduce the
concept of random identification, which assumes that for every
particle the probability of being a kaon equals 〈NK〉/〈N〉. Such
a situation is described by mass distributions of the form

ρi(m) =

⎧⎪⎪⎨
⎪⎪⎩

0 for m < mmin,

〈Ni 〉
mmax−mmin

for mmin � m � mmax,

0 for mmax < m,

where i = π,K and mmin and mmax denote lower and upper
limits of the measured mass range, respectively. With this
distribution,

uK = wK = 〈NK〉
〈N〉 . (25)

When uK = 〈NK〉/〈N〉 is substituted into Eq. (21), � = 0.
Thus, the measure � vanishes when particle identification is
random.

Finally, we arrive at the crucial point of the considerations.
It appears that the measure � can be expressed as

� = �CI

(
1 − VI

VR

)2

, (26)

where �CI is the measure � for the complete identification, as
given by Eq. (24). The quantities VI and VR are the values of
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the integral

V ≡
∫

dm ρ(m) wK (m) [1 − wK (m)], (27)

evaluated for the cases of imperfect and random identification,
respectively.

One proves the equality (26) by observing that

VI = 〈NK〉(1 − uK ), VR = 〈NK〉〈Nπ 〉
〈N〉 . (28)

Substituting Eqs. (24) and (28) into the equality (26), one
obtains the formula (21). Actually, the relation (26) was first
discovered by performing various numerical simulations and
only then was it proven analytically. Equation (26) allows
one to experimentally obtain �CI from �. Thus, the effect of
misidentification is fully corrected by the factor (1 − VI/VR)2

which measures the quality of the applied procedure of particle
identification. The factor is independent of the correlations
under study and can be determined from experimental data.

V. EXPERIMENTAL PROCEDURE

The application of the identity method to experimental data
is not difficult. We present here a step-by-step procedure to
obtain the measure �CI of fluctuations of kaons (or any other
selected particle type) with respect to all particles (represented
by the sum of kaons and pions in the previous sections). It is
important to note that if misidentification occurs between more
than two particle types, the identity method does not allow to
study relative fluctuations of two of them, for example, of
kaons and pions in the presence of protons.

We come back to the specific, but typical, example con-
sidered in Sec. III of particle identification via measurements
of particle energy loss in the detector material. The energy
loss dE/dx is denoted by X. The energy loss of particles of
a given type depends on the particle mass and momentum
(via the velocity) and detector characteristics. The distribution
of X is usually a multidimensional function, which can be
determined experimentally by averaging over particles from
many interactions. The energy loss distribution, which for a
given particle momentum is typically fitted by a sum of four
Gaussians corresponding to electrons, pions, kaons, and (anti-
)protons, allows one to determine the average multiplicities of
kaons and of all particles. Having obtained this information,
one should proceed as follows.

(i) Extract the energy-loss distribution of kaons ρK (X) from
the inclusive distribution ρ(X). The distributions should be
normalized as∫

dX ρ(X) = 〈N〉,
∫

dX ρK (X) = 〈NK〉.

(ii) Determine the kaon identity

wK (X) = ρK (X)

ρ(X)

for every registered particle.

(iii) Compute the fluctuation measure � from the definition
(13). This is the raw value of �, which is not corrected yet
for the effect of misidentification.

(iv) Knowing the mean multiplicities, compute the quantity

VR = 〈NK〉(〈N〉 − 〈NK〉)
〈N〉 .

(v) Using all particles, calculate the integral

VI =
∫

dXρ(X) wK (X) [1 − wK (X)].

(vi) Determine the fluctuation measure �CI, which is free of the
effect of misidentification, as

�CI = �

(1 − VI/VR)2
.

The experimental data accumulated by the NA49 Collabo-
ration are currently under analysis using the identity method
proposed in this paper [17].
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APPENDIX

We express here the measure � through the moments of
multiplicity distributions of pions and kaons. For this purpose
one writes 〈Z2〉 as

〈Z2〉 =
∞∑

Nπ=0

∞∑
NK=0

PNπ NK

∫
dmπ

1 Pπ

(
mπ

1

)∫
dmπ

2 Pπ

(
mπ

2

) · · ·

×
∫

dmπ
Nπ

Pπ

(
mπ

Nπ

)∫
dmK

1 PK

(
mK

1

)
×

∫
dmK

2 PK

(
mK

2

) · · ·
∫

dmK
NK

PK

(
mK

NK

)
[wK

(
mπ

1

)
+wK

(
mπ

2

) + · · · + wK

(
mπ

Nπ

) + wK

(
mK

1

)
+wK

(
mK

2

) + · · · + wK

(
mK

NK

) − (Nπ + NK )wK ]2,

(A1)

where PNπ NK
is the multiplicity distribution of pions and

kaons; Pπ (m) ≡ ρπ (m)/〈Nπ 〉 and PK (m) ≡ ρK (m)/〈NK〉 are
the mass distributions of pions and kaons, respectively.

Equation (A1) gives

〈Z2〉 = 〈Nπ 〉u2
π + 〈NK〉u2

K + 〈N2〉〈Nπ (Nπ−1)〉wK
2uπ

2

+〈NK (NK − 1)〉uK
2 + 2〈NπNK〉uπ uK

− 2〈NNπ 〉wK uπ − 2〈NNK〉wK uK, (A2)
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where

un
π ≡ 1

〈Nπ 〉
∫

dm ρπ (m) wn
K (m),

un
K ≡ 1

〈NK〉
∫

dm ρK (m) wn
K (m), (A3)

with n = 1, 2. Because

〈Nπ 〉
〈N〉 un

π + 〈NK〉
〈N〉 un

K = wn
K, (A4)

Eq. (A2) provides

〈Z2〉 = 〈N〉w2
K +

[
〈N2〉 + 〈Nπ (Nπ − 1)〉 〈N〉2

〈Nπ 〉2

− 2〈NNπ 〉 〈N〉
〈Nπ 〉

]
wK

2

− 2

[
〈Nπ (Nπ − 1)〉 〈N〉〈NK〉

〈Nπ 〉2
− 〈NNπ 〉 〈NK〉

〈Nπ 〉
+ 〈NNK〉 − 〈NπNK〉 〈N〉

〈Nπ 〉
]
wK uK

+
[
〈Nπ (Nπ − 1)〉 〈NK〉2

〈Nπ 〉2
+ 〈NK (NK − 1)〉

− 2〈NπNK〉 〈NK〉
〈Nπ 〉

]
uK

2. (A5)

Keeping in mind that z2 = w2
K − wK

2 and wK = 〈NK〉/〈N〉,
one finds after somewhat lengthy calculations the formula (21)
with A given by Eq. (22).
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