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The relation between the author’s transport theory approach to the systems with unstable particles
and the S-matrix formulation of statistical mechanics is established. Then, the equilibrium charac-
teristics of a classical gas of nucleons, deltas, and pions are studied. The finiteness of the delta de-
cay width is taken into account. It is shown that if one treats the delta isobars as stable particles
their number is significantly underestimated at the temperatures smaller than about 60 MeV.

I. INTRODUCTION

The classical (nonquantum) kinetic theory approach to
the systems including unstable particles was developed in
our recent paper.! The hadron gas is an example of a sys-
tem where the presence of unstable particles, hadron reso-
nances, essentially influences the properties of the gas.
The decay width of hadron resonances is often greater
than the temperature of the hadron systems, which sug-
gests the importance of resonance instability. On the oth-
er hand, the lifetimes of the resonances can be longer than
the average time intervals between successive collisions in
the gas. So, the resonances should be treated in a manner
similar to that for stable particles. The starting point of
our approach has been the introduction of the profile
function which is the generalization of the delta function
that “keeps” a stable particle on the mass shell. Then the
phase space element of the resonance with four-
momentum p is chosen in the form A(p?)d*p, where A(p?)
describes the mass smearing of the resonance. Using the
profile function we have defined the resonance distribu-
tion function and macroscopical quantities. Kinetic equa-
tions have been formulated, where, besides binary col-
lisions, resonance formation processes and resonance de-
cays have been taken into account. It has been shown that
the profile function can be uniquely determined through
experimentally measurable quantities if the transition
rates of the processes with the resonance involved satisfy
the detailed balance condition or the bilateral normaliza-
tion condition. For the resonance formation cross section
in the Breit-Wigner form the profile function looks like

AM?)= L , (1
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where M and I' are the average resonance mass and the

resonance decay width, respectively. Finally it has been

demonstrated that the equilibrium characteristics of the
resonances can be expressed in the form

Or= [ dMMAM) O M) , )

where Z (M) is the respective characteristic for stable
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particles with mass M.

The aim of this paper is twofold. In Sec. II we show
that our model is, in the case of equilibrium systems,
equivalent under certain assumptions to the S-matrix for-
mulation of statistical mechanics by Dashen, Ma, and
Berstein.? In their approach unstable particles (reso-
nances) occur through the S-matrix elements of the reso-
nance scattering of stable particles.

In Sec. III the equilibrium characteristics of a classical
gas of nucleons, deltas, and pions are studied. We show
that if one treats the delta isobars as stable particles their
number can be significantly underestimated.

II. S-MATRIX EXPANSION
OF THE GRAND POTENTIAL

To relate our kinetic theory approach to the Gibbs sta-
tistical mechanics, let us write the grand canonical poten-
tial of the system of stable and unstable particles. Only
the interaction which leads to the resonance formation
and resonance decay is included, i.e., the resonance
scattering of stable particles is assumed to dominate two-
body interaction. So, the grand potential reads

Q=3 Qlmp)+ 3 [ dM MNMHY M), Q)
i J

where Q(m,u) is the grand canonical potential of the
one-component ideal gas of particles with mass m and
chemical potential u. In the first term summation is per-
formed over the sorts of stable particles while the second
one is over the unstable particle sorts. Formula (3), of
course, follows from (2).

The S-matrix expansion of the grand canonical poten-
tial for the system of relativistic particles is the following:

Q=0,—TV I a,ef ', 4)

where (), is the grand potential of noninteracting parti-
cles, V is the volume of the system, T ="' is the tem-
perature, .#” is the set of conserved charges, and u is the
set of chemical potentials. v=(#",a), where a describes
all quantum numbers required in fixing the system with
" charges;
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where S is the S operator and the subscript ¢ indicates
that only the so-called connected diagrams are taken into
account. Let us now discuss, as in Ref. 2, the hadron gas
consisting of nucleons and pions. Suppose the scattering
processes are dominated by =N resonance scattering
which lead to the delta formation. We take into account
only the collisions

7T+N—>A—>7+N (5)

and ignore all other interaction processes. For such a sys-
tem the first term in Eq. (4) is the grand canonical poten-
tial of the ideal gas of nucleons and pions, and the second
term relates to the 7N resonant interaction. For simplici-
ty we neglect the role of particle spins, which are taken
into account through the particle degeneration factors
only. Taking the matrix element of process (5) in the
Breit-Wigner form, one finds>3
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Substituting Eq. (6) in formula (4) we get the following
grand canonical potential valid in the lowest order S-
matrix expansion (4):

Q=0g+gsz [ dM MAM?)

x -1V [ ﬁ%e“ﬁ‘f’zwz)'” . ™
(2m)

where g, is the delta degeneration factor and z =eP s
the delta fugacity. We have assumed that the gas is sym-
metric, i.e., the total electric charge of the system equals
(in natural units) half of the total baryon charge. In such
a case the chemical potentials of all sorts of baryons, in
particular, of the deltas with different electric charge, are
equal to each other and the chemical potentials of pions
vanish. The function A(M?) from Eq. (7) is exactly equal
to that from formula (1). In the parentheses one recog-
nizes the grand canonical potential of the ideal gas of
spinless particles with mass M. So, the form of potential
(7) coincides with this one of (3). In that way we have
shown that the idea of the profile function follows from
the S-matrix formulation of statistical mechanics.

III. GAS CHARACTERISTICS

Keeping in mind formula (2) we discuss in this section
the properties of a classical gas consisting of nucleons,
deltas, and pions.

The Breit-Wigner formula (1) is correct for sufficiently

narrow resonances, which is not the case for the isobars A.
So, to describe the mass distribution of deltas we modify
formula (1) as follows:

r

— 5 o(
M[(M —-M)"+T*/4]
where 6 is the step function; my and m, are the masses
of nucleons and pions, respectively; M =1232 MeV; and

I'=115 MeV. The coefficient £ is found from the nor-
malization condition

[ aMMAaM)=1.

AM?)=¢

M-—-my—m,),

The baryon density of the system reads
p=2gs [ dM MAM*)n(T,M)+zgxn(T,my) ,  (8)
with

n(T,m):—l—szKz(Bm) ,
2

gn=4, and g, =16; K, is the McDonald function. As
quoted previously, the fugacities of N and A are equal be-
cause the gas is assumed symmetric. The first term in Eq.
(8) comes from the deltas while the second one comes
from nucleons. Solving Eq. (8) with respect to z one finds
the densities of deltas, ps, and nucleons. In Fig. 1 we
present the ratio of p, to p as a function of temperature.
In the case of symmetric gas this ratio is density indepen-
dent. The dashed line is found under the assumption that
the deltas are stable particles, i.e., I'=0. It is seen that
particularly at low temperatures one strongly underesti-
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FIG. 1. The ratio of the delta density to the baryon density of
the system versus temperature.
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mates the density of the isobars if these particles are treat-
ed as stable ones. Our classical calculations cannot be ex-
trapolated to the temperature T° <30 MeV since in such a
case the quantum effects are essential.

The energy density of the system is

e=z2ga [ dM MAM®)u(T,M)+2gnu (T,my)
+g u(lT,m,), 9)

where g =3 and

u(T,m)=E%szz[/}mKl([J’m)+3K2(Bm)] .
The first, second, and third terms of Eq. (9) come from
the isobars, nucleons, and pions, respectively. The numer-
ical calculations show that the energy density is complete-
ly insensitive to the value of I' of the resonance. The
reason is the following. At low temperatures, where the
number of deltas strongly depends on the decay width, the
absolute number of deltas is small as compared to the
number of nucleons (see Fig. 1). Consequently the delta
contribution to the energy density of the system is small.
At high temperatures, where the number of deltas is com-
parable to that of nucleons, the description of resonances
is, in practice, the same for I'=0 and '=115 MeV (see
Fig. 1).

In the framework of the thermodynamical model of the
pion production in relativistic nucleus-nucleus collisions,
the number of secondary pions (of all sorts) equals the
number of pions plus the number of deltas present in the
fireball at the moment in time of the fireball decay. The
deltas are added since these isobars decay into pions
which are finally registered. To discuss how the number
of secondary pions changes if one takes into account the
finiteness of the isobar decay width we have calculated the
ratio

R prtpall’=115 MeV)
T prtpal=0)

where p, is the pion density. In Fig. 2 we present this ra-
tio as a function of temperature for three values of the
baryon density measured in the units of normal nuclear
density po=0.17 fm 3. It is seen that at low tempera-
tures, R significantly exceeds unity. As is known, the
thermodynamical model overestimates, at least by a factor
of 2, the multiplicity of secondary pions in nucleus-
nucleus collisions.*> The proper description of deltas
makes this difficulty even more serious.

It is known that about 80% of the produced pions come
from the delta decays® in nucleon-nucleon collisions at a
few GeV/c incident momentum. So it is of physical in-
terest to consider the ratio of the delta density to the den-
sity of pions in the hadron gas. In Fig. 3 we present this
ratio versus temperature for three values of the baryon
density. It is seen that the form of the ratio as a function
of temperature essentially changes if one takes into ac-
count the finiteness of the delta decay width. The ratio
monotonically decreases when temperature increases,
which is not the case for ' =0.

A finite A width had been incorporated previously, see,
e.g. Ref. 7, in the model calculations of hot hadronic
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FIG. 2. The ratio R as a function of temperature for three
values of the baryon density.
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FIG. 3. The ratio of the delta density to the density of pions
versus temperature for three values of the baryon density.
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matter by discretizing the A-mass distribution, i.e., the
mass spectrum had been approximated by several discrete
masses at regular intervals from threshold. The statistical
weight of each component had been found from the
Breit-Wigner formula and the total weight had been nor-
malized to 1. This procedure is, of course, approximately
equivalent to ours.

IV. CONCLUSIONS

Establishing the relation between our transport theory
approach and the S-matrix formulation of statistical
mechanics, we have made the idea of the profile function
more convincing. On the other hand, limitations of this
concept are also better seen. The S-matrix expansion of
the grand potential? is rapidly covergent for classical sys-
tems. In the region where quantum effects are important,

the expansion practically fails since one should take into
account numerous multiparticle diagrams for a realistic
description of the system. An analogous situation occurs
with our approach. To make the idea of the profile func-
tion adequate for quantum systems one should include the
dependence of this function on the medium, i.e., the un-
stable particle lifetime should be density and temperature
dependent.

We have applied our model to the description of the
hadron gas of nucleons, pions, and deltas. It has been
shown that if one treats the isobars as stable particles their
number in the gas is significantly underestimated, particu-
larly at temperatures smaller than about 60 MeV.

One of us (St.M.) is grateful to G. Baym for calling at-
tention to Ref. 2.
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