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The momentum distribution of quark-gluon plasma at the early stage of a relativistic heavy-ion collision
is anisotropic; consequently, the system, which is assumed to be weakly coupled, is unstable owing to
chromomagnetic plasma modes. We consider a high-energy parton which flies across such an unstable plasma,
and the energy transfer between the parton and the medium is studied as an initial value problem. In the case
of equilibrium plasmas, the well-known formula of collisional energy loss is reproduced. The unstable plasma
case is much more complex, and the parton can lose or gain energy depending on the initial conditions. The
extremely prolate and extremely oblate systems are considered as examples of unstable plasmas, and two classes
of initial conditions are discussed. When the initial chromodynamic field is uncorrelated with the color state of
the parton, it typically looses energy, and the magnitude of the energy loss is comparable to that in an equilibrium
plasma of the same density. When the initial chromodynamic field is induced by the parton, it can be either
accelerated or decelerated depending on the relative phase factor. With a correlated initial condition, the energy
transfer grows exponentially in time and its magnitude can much exceed the absolute value of energy loss in an
equilibrium plasma. The energy transfer is also strongly directionally dependent. Consequences of our findings
for the phenomenology of jet quenching in relativistic heavy-ion collisions are briefly discussed.

DOI: 10.1103/PhysRevC.92.044914 PACS number(s): 12.38.Mh, 25.75.−q

I. INTRODUCTION

The observation of jet quenching in central collisions of
relativistic heavy ions is considered to be a signal that quark-
gluon plasma (QGP) is produced, because only a medium with
deconfined color charges could stop a multi-GeV parton within
a few femtometers; see, e.g., the reviews [1,2]. The energy
loss of a high-energy parton is a key element of a quantitative
understanding of the jet-quenching phenomenon and has been
intensively studied for two decades, but the problem is far from
being completely solved [1,2].

QGP is produced in the early stage of a relativistic heavy-ion
collision and spends most of its lifetime in a state of local
equilibrium. The energy loss of a high-energy parton is there-
fore conventionally computed in a locally equilibrated plasma
which evolves hydrodynamically. However, a QGP reaches a
state of local equilibrium only after a short but finite time inter-
val [3,4], and the momentum distribution of pre-equilibrium
plasma is anisotropic. Even if the anisotropic phase is very
short lived, it might have a significant effect on the energy loss
of a test parton because the weakly coupled anisotropic QGP
is unstable owing to spontaneously growing chromomagnetic
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modes (for a review, see Ref. [5]). The anisotropic plasma
is populated with large chromodynamic fields, which will
strongly influence the test parton. Therefore, the energy loss
of the parton in the brief anisotropic phase might constitute
a significant fraction of the total energy loss responsible for
the experimentally observed jet quenching. An analysis of this
system is very complicated, however, because the unstable
QGP evolves quickly owing to the presence of unstable modes,
and the energy-loss calculation has to be treated as an initial
value problem. Our results show that the energy loss is strongly
time dependent, and this dependence is much stronger than
the switching-on effect studied in Refs. [6,7]. In contrast to
the weakly coupled plasma studied here, energy loss in the
strong coupling regime computed in the framework of Anti-de
Sitter/Conformal Field Theory duality is rather similar in equi-
librium and far-from-equilibrium plasma at the same energy
density [8].

In this paper we study a highly energetic parton that gains
or loses energy through interactions with the chromodynamic
fields present in the QGP. The effect of elastic interactions is
called collisional energy loss and that of gluon emission is
called radiative energy loss. In the case of light partons—light
quarks and gluons—radiative energy loss is expected to give
the dominant contribution to the total energy loss [1,2]. For
heavy quarks the radiative energy loss is presumably less
important owing to the so-called dead cone effect [1,2].
Collisional energy loss in anisotropic QGP was studied in
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Ref. [9], but the unstable plasma was treated as a static medium
and the interaction of the test parton with exponentially
growing chromodynamic fields was ignored. The energy loss
computed in Ref. [9] thus misses the key feature of unstable
plasmas.

We treat the test parton as a classical particle with SU(Nc)
color charge, the dynamics of which is described by the Wong
equations [10] combined with the linearized Yang-Mills equa-
tions. We assume that the typical momenta of the collective
modes are much less than the typical momenta of the plasma
constituents. This approach is equivalent to using QCD within
the hard-loop (HL) approximation [11]. In the equilibrium
limit the time dependence of the energy loss disappears and we
reproduce the soft part of the collisional energy loss [12–15],
where the momentum transfer is of the order of the Debye
mass. The energy loss owing to soft interactions diverges
logarithmically with the upper limit of the momentum transfer,
which we call kmax. In our anisotropic calculations, we also
find an approximately logarithmic dependence on kmax. This
ultraviolet sensitivity is expected because the approach is
classical and signals the necessity to combine the classical
contribution to the energy loss at small wave vectors with the
quantum contribution at higher ones. A quantum approach to
parton energy loss in unstable plasma needs to be developed.

Our crucial finding is that, depending on the initial
conditions, the test parton can either lose or gain energy when
traversing the unstable QGP. In an equilibrium plasma the
parton loses energy and the energy change per unit length
dE/dx is negative. If the parton gains energy from the plasma
fields, dE/dx is positive. Although the energy transfer can
be either negative or positive, depending on the situation, we
frequently use the term “energy loss” generically to describe
both cases. Our results show that when the initial conditions
are chosen in a certain way, the magnitude of the energy
loss increases exponentially, which indicates that the unstable
modes play an important role. At late-enough times, the energy
loss can be much bigger than in equilibrium plasmas. It is also
strongly directionally dependent.

The acceleration of a test particle in a plasma system might
seem rather exotic, but the phenomenon is well known in
the physics of electromagnetic plasmas. It is caused by the
electric field associated with plasma waves in the system.
Charged particles are carried forward on the electrostatic wave
with a motion like surfing with speed equal to the phase
velocity of the wave and can therefore be boosted to very
high energies. This picture motivates the idea to use a plasma
excited by a laser or particle beam as a particle accelerator. A
mechanism was proposed in 1979 by Tajima and Dawson [16]
and was experimentally verified soon afterwards [17]. Because
plasmas can sustain accelerating fields orders of magnitude
larger than those in the radio-frequency modules of standard
accelerators, small plasma devices can be extremely efficient.
In the experiment in Ref. [18], electrons were accelerated
to an energy as high as 1 GeV over a distance of 3.3 cm,
demonstrating immense promise for affordable and compact
plasma accelerators for various applications.

This paper is organized as follows. In Sec. II we derive the
general energy-loss formula of a relativistic classical parton
in an unstable QCD plasma which depends on the initial

conditions. The method is similar to the approach developed
earlier by one of us to study the spectra of chromodynamic
fluctuations [19] and the momentum broadening of a fast
parton [20]. The equilibrium limit is discussed in Sec. III,
where we show that the dependence on the initial conditions
drops out, and our expression reduces to the familiar equilib-
rium result. In Sec. IV we introduce the two classes of initial
conditions that we apply to unstable plasmas, and in Sec. V we
study the effect of self-interaction which needs to be subtracted
from the energy-loss formula. We develop our formalism in
Sec. VI, and in Sec. VII we apply it to extremely prolate and
oblate systems. Our results are summarized and the outlook is
discussed in Sec. VIII. In Appendix A we show that the energy
loss is real, and the temporal axial gauge is compared with the
Feynman-Lorentz gauge in Appendix B.

A preliminary account of our findings was published in
the series of conference proceedings [21–24]. In these reports,
we used a specific choice of initial conditions and we were
not aware that our results crucially depend on this choice, to
the extent that the test parton cannot only lose energy in an
unstable plasma, but could also gain the energy, depending on
how the initial conditions are chosen. Therefore, the results
presented in Refs. [21–24] do not reveal the full complexity of
the problem.

Throughout the paper we use natural units where � =
c = 1. The indices i,j,k = 1,2,3 and μ,ν = 0,1,2,3 label,
respectively, the Cartesian spatial coordinates and those of
Minkowski space.

II. GENERAL FORMULA

Our formalism is based on the HL QCD effective action. It
can be shown that the Wong equations [10] and the linearized
Yang-Mills (Maxwell) equations can be obtained directly from
this action [11]. The Wong equations describe the motion of
a classical parton moving through the fields of a plasma. The
motion of the parton changes the field configurations, which
is self-consistently taken into account through the linearized
Yang-Mills equations which relate the chromodynamic fields
to the parton charge and current. We emphasize that, even
though the Yang-Mills equations are linearized by the HL
approximation, HL QCD is not equivalent to HL QED (up to
an overall factor), because the gluons contribute to the color
charge density and current in these equations.

The Wong equations, which describe the motion of a parton
in a chromodynamic field, are usually written in the Lorentz
covariant form [10],

dxμ(τ )

dτ
= uμ(τ ), (1)

dpμ(τ )

dτ
= gQa(τ )Fμν

a (x(τ ))uν(τ ), (2)

dQa(τ )

dτ
= −gf abcuμ(τ )Aμ

b (x(τ ))Qc(τ ), (3)

where τ , xμ(τ ), uμ(τ ), and pμ(τ ) are, respectively, the
parton’s proper time, trajectory, four-velocity, and four-
momentum; F

μν
a and A

μ
a denote, respectively, the chromo-

dynamic field strength tensor and four-potential in the adjoint
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representation of the SU(Nc) gauge group with the color index
a = 1, 2, . . . ,N2

c − 1; g is the coupling constant, which is
assumed to be small; and finally gQa is the classical color
charge of the parton.

The Wong equations (1)–(3) are supplemented by the
linearized Yang-Mills equations describing the self-consistent
generation of the chromodynamic field. We write the linearized
Yang-Mills equations in a noncovariant three-vector notation
where they have the familiar form of Maxwell equations in a
medium. In Heaviside-Lorentz electromagnetic units, which
are usually used in quantum field theory, we have

∇ · Da(t,r) = ρa(t,r), ∇ · Ba(t,r) = 0, (4)

∇ × Ea(t,r) = −∂Ba(t,r)

∂t
,

(5)

∇ × Ba(t,r) = ja(t,r) + ∂Da(t,r)

∂t
,

where Ea , Da , and Ba are the chromoelectric field, chro-
moelectric induction, and chromomagnetic field, respectively,
and ρa and ja are the density and current of the test parton,
respectively. To close the system of Maxwell equations (4)
and (5), the chromoelectric induction is expressed through the
chromoelectric field

Di
a(t,r) =

∫
dt ′d3r ′εij (t − t ′,r − r′)Ej

a (t ′,r′), (6)

where εij (t,r) is the chromodielectric permeability. We note
that when the medium is on average color neutral, the
chromodielectric permeability is proportional to δab, which
can be factored out to produce an expression that carries no
color indices, as in Eq. (6). We also note that a quantity which
depends on color indicies through δab, or carries no color
indices, is gauge independent.

To solve the Wong equations (1)–(3) we adopt two
simplifying assumptions. The first is that we choose the gauge
condition

uμ(τ )Aμ
a (x(τ )) = 0, (7)

which requires that the potential vanishes along the parton’s
trajectory. Using this gauge, the third Wong equation (3) sim-
ply states that the parton’s charge is a constant of motion or that
Qa is independent of τ . The second important simplification
comes from the fact that we consider a highly energetic parton
and assume that its velocity v is constant and v2 = 1. In
an equilibrium plasma the characteristic momentum transfer
|�p| is of order gT and the parton’s momentum |p| � T ,
where T is the temperature. The HL approach requires gT �
T , and therefore |�v| ∼ |�p|/|p| � 1. When we consider
anisotropic systems, we assume the same hierarchy of scales
which gives |�v| � 1. The physical picture is that owing to
interaction with the chromodynamic field the parton’s energy
and momentum evolve in time without changing the magnitude
of its velocity.

Replacing the proper time τ with the time t = γ τ and writ-
ing xi(t) = ri(t) and ui(t) = γ vi , the first Wong equation (1)
gives r(t) = vt . Using this result, we obtain from the second

Wong equation (2) with μ = 0

dE(t)

dt
= gQaEa(t,r(t)) · v. (8)

Because the current generated by the moving parton equals

ja(t,r) = gQavδ(3)(r − vt), (9)

we rewrite Eq. (8) as

dE(t)

dt
=

∫
d3rEa(t,r) · ja(t,r). (10)

To obtain the energy loss, we must solve Eqs. (4) and (5) for
the electric field and substitute into Eq. (10).

The electric field that appears in Eqs. (8) and (10) is the
total electric field, which is the sum of the external field
generated directly by the moving test parton and the induced
electric field produced by the charge distributions and currents
that are induced by the parton in the plasma medium. The
external electric field gives the parton’s self-interaction and
does not contribute to the energy loss. The energy loss comes
physically from the motion of the parton into the opposing
induced electric field. We derive below an expression for the
total electric field from Maxwell’s equations. At the end of the
procedure, we must either show that the self-interaction does
not contribute to the energy loss, or we must subtract it.

It seems clear from Eq. (10) that if the parton moves into an
electric field of opposite orientation to its current, the change
in the energy will be negative and we have energy loss. We
show, however, that is not always the case. If the calculation
is done as an initial value problem, then the sign of the energy
transfer crucially depends on the choice of initial conditions.

To solve Maxwell’s equations, we use the usual method,
which is to Fourier transform the differential equations to
change them into algebraic equations which can be easily
solved. However, we do not use a standard (two-sided)
Fourier transform. Our problem is to track the evolution of
a parton starting from some arbitrary initial time (which
we take to be t = 0) and calculate its behavior at future
times. The nonequilibrated plasma is not time-translation
invariant, and the energy-loss formula should depend on the
initial conditions, which means that we need to formulate the
calculation as an initial value problem. To do this, we use a
one-sided Fourier transformation defined as

f (ω,k) =
∫ ∞

0
dt

∫
d3rei(ωt−k·r)f (t,r), (11)

f (t,r) =
∫ ∞+iσ

−∞+iσ

dω

2π

∫
d3k

(2π )3
e−i(ωt−k·r)f (ω,k). (12)

The inverse transformation (12) involves the real parameter
σ > 0, which is chosen so that the integral over ω is taken
along a straight line in the complex ω plane, parallel to the real
axis and above all singularities of f (ω,k).

The one-sided Fourier transform of the current (9) is
obtained from Eq. (11), where the time integral is defined
through the limit

lim
ε→0+

∫ ∞

0
dtei(ω−k·v+i0+)t = i

ω − k · v + i0+ , (13)
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which gives

ja(ω,k) = igQav
ω − k · v + i0+ . (14)

This procedure is mathematically equivalent to multiplying the
current in Eq. (9) by a factor e−0+t , which can be interpreted
physically as imposing the boundary condition that the current
goes to zero as the time approaches infinity.

The one-sided Fourier transform of the relation (6) provides

Di
a(ω,k) = εij (ω,k)Ej

a (ω,k). (15)

Applying the one-sided Fourier transform to the Maxwell
equations (4) and (5) and using the relation (15) gives

ikiεij (ω,k)Ej
a (ω,k) = ρa(ω,k), (16)

ikiBi
a(ω,k) = 0, (17)

iεijkkjEk
a (ω,k) = iωBi

a(ω,k) + Bi
0a(k), (18)

iεijkkjBk
a (ω,k) = j i

a(ω,k) − iωεij (ω,k)Ej
a (ω,k)

−Di
0a(k), (19)

where we have written Bi
0a(k) ≡ Bi

a(t = 0,k) and similarly for
Di

0a(k). These initial values come from the time integrals of
the time derivatives of fields after performing an integration
by parts. The algebraic equations (16)–(19) are solved for the
field Ei

a(ω,k),

Ei
a(ω,k) = −i(�−1)ij (ω,k)

× [
ωjj

a (ω,k) + εjklkkBl
0a(k) − ωD

j
0a(k)

]
, (20)

where we have defined the matrix

�ij (ω,k) ≡ −k2δij + kikj + ω2εij (ω,k). (21)

In a quantum field theory formulation, one uses the retarded
gluon polarization tensor �ij (ω,k) instead of the dielectric
tensor εij (ω,k) and the two quantities are related to each other
as

εij (ω,k) = δij − 1

ω2
�ij (ω,k). (22)

The full polarization tensor carries Lorentz indices (μ,ν =
0,1,2,3), which label coordinates in Minkowski space, and
not Cartesian indices (i,j = 1,2,3). The components of the
polarization tensor not determined by Eq. (22) can be recon-
structed from the transversality condition kμ�μν(k) = 0, with
kμ = (ω,k), which is required by gauge invariance. Using the
relation (22), the matrix (21) can be written as

�ij (ω,k)=δij (ω2 − k2)+kikj − �ij (ω,k)= [�−1(ω,k)]ij .

(23)

This result is recognized as the inverse retarded gluon
propagator in the temporal axial gauge (A0 = 0), and we
write the propagator as �ij (ω,k). Although the matrix �
has been derived with no reference to a gauge potential, the
form of the gluon propagator depends on the chosen gauge.
We return to this alleged conflict in Appendix B, where
we also show that the temporal axial gauge is particularly
convenient for our energy-loss calculation because it naturally
provides gauge-independent results. To reach this goal in the

Feynman-Lorentz gauge, which, in particular, was used in
Ref. [7], current conservation must be explicitly enforced.

The effects of the medium are contained in the dielectric
tensor or the polarization tensor. Performing a linear response
analysis of kinetic equations in the collisionless limit, or
equivalently working in the diagrammatic HL approximation,
the dielectric tensor of a locally colorless anisotropic plasma
equals [25,26]

εij (ω,k) = δij + g2

2ω

∫
d3p

(2π )3

vi
p

ω − vp · k + i0+

×
[(

1 − k · vp

ω

)
δjk + v

j
pkk

ω

]
∇k

pf (p), (24)

where p and vp ≡ p/|p| are the momentum and velocity of
a massless parton and f (p) is the distribution function for
hard partons in the plasma. For the SU(Nc) gauge group
f (p) = n(p) + n̄(p) + 2Ncng(p), where n(p), n̄(p), ng(p) are
the distribution functions of quarks, antiquarks, and gluons,
respectively, of a single color component. We remind the
reader that the chromodielectric tensor does not carry any color
indices, as the state corresponding to the momentum distribu-
tion f (p) is assumed to be colorless. The i0+ prescription
makes the Fourier transformed dielectric tensor εij (t,r) vanish
for t < 0. In kinetic theory, the infinitesimal quantity i0+ can
be treated as a remnant of interparticle collisions. Integrating
by parts, the chromodielectric tensor (24) can be rewritten in
the form

εij (ω,k)

= δij − g2

2ω2

∫
d3p

(2π )3

f (p)

|p|

×
[
δij + kiv

j
p + vi

pkj

ω − vp · k + i0+ + (k2 − ω2)vi
pv

j
p

(ω − vp · k + i0+)2

]
,

(25)

which is often more convenient to use than the expression (24).
The energy loss in Eq. (10) can now be written in terms

of the Fourier transformed field and current. Performing the
inverse transformation (12), we have

dE(t)

dt
=

∫ ∞+iσ

−∞+iσ

dω

2π

∫ ∞+iσ ′

−∞+iσ ′

dω′

2π

∫
d3k

(2π )3
e−i(ω+ω′)t

× Ea(ω,k) · ja(ω′, − k), (26)

and substituting the formulas (14) and (20) into Eq. (26), one
obtains

dE(t)

dt
= −i

∫ ∞+iσ

−∞+iσ

dω

2π

∫ ∞+iσ ′

−∞+iσ ′

dω′

2π

∫
d3k

(2π )3
e−i(ω+ω′)t

× igQavi

ω′ + k · v
(�−1)ij (ω,k)

×
[
iωgQavj

ω − k · v
+ εjklkkBl

0a(k) − ωD
j
0a(k)

]
. (27)

The integral over ω′ can be done easily because the integrand
has only one pole at ω′ = −ω̄ ≡ −k · v. The result of
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integration over ω′ is

dE(t)

dt
= gQavi

∫
d3k

(2π )3

∫ ∞+iσ

−∞+iσ

dω

2πi
e−i(ω−ω̄)t (�−1)ij (ω,k)

×
[
iωgQavj

ω − ω̄
+ εjklkkBl

0a(k) − ωD
j
0a(k)

]
, (28)

which is the main result of this section. Equation (28) gives
the change of energy of the parton as a function of time, and
the expression depends on the initial conditions. The integral
over ω is controlled by the poles of the matrix �−1(ω,k)
(or equivalently the gluon propagator), which determine the
gluon collective modes in the system. These modes are found
as solutions of the dispersion equation

det[�(ω,k)] = 0. (29)

Physically, this means that the test parton does not interact
with plasma constituents but rather with the plasma collective
modes.

In Sec. IV we discuss how to choose the initial conditions
which enter the energy-loss formula (28). In the next section
we show that in the equilibrium limit Eq. (28) reduces to the
familiar result, which is independent of the initial conditions.

III. EQUILIBRIUM LIMIT

When the plasma is in equilibrium all collective modes
are damped and all poles of the propagator �ij (ω,k) ≡
(�−1)ij (ω,k) are located in the lower half-plane of complex
ω. The corresponding contributions to the energy loss (28)
exponentially decay in time, and the only stationary contribu-
tion is given by the pole ω = ω̄ = k · v, which comes from
the current of the test parton. This means that the terms in
Eq. (28), which include the initial values of the fields, can be
neglected. It is mathematically equivalent to use a two-sided
Fourier transform from the beginning of the calculation, which
means that the initial conditions do not appear in the Maxwell
equations (16), and the Fourier transform of the current (9)
is just proportional to δ(ω − k · v). The result is that, once
again, the only contribution to the integral over ω comes from
ω = ω̄ ≡ k · v. In both approaches the result is that the energy
loss of a high-energy parton traversing an equilibrium plasma
is given by the time-independent expression

dE

dt
= −ig2QaQavivj

∫
d3k

(2π )3
ω̄(�−1)ij (ω̄,k). (30)

Because the parton’s color charge is not an observable
quantity because of its gauge dependence, the energy loss (30)
has to be averaged over the parton’s color state. This is achieved
by means of the relations∫

dQQa = 0 (31)

and ∫
dQQaQa = C2, (32)

which are derived in Ref. [11]; C2 = 1/2 for a quark in the
fundamental representation of the SU(Nc) gauge group and

C2 = Nc for a gluon in the adjoint representation. Using the
relation (32), the color-averaged energy loss is

dE

dt
= −ig2CRvivj

∫
d3k

(2π )3
ω̄(�−1)ij (ω̄,k), (33)

where the color factor CR is given as

CR ≡
{

C2(N2
c −1)

Nc
= N2

c −1
2Nc

for quark,

C2 = Nc for gluon.

It is easy to see that the result in Eq. (33) is real. Because the
electric field and electric induction are both real in coordinate
space, it follows from Eq. (6) that the dielectric tensor obeys
the relations

Reεij (−ω,−k) = Reεij (ω,k),
(34)

Imεij (−ω,−k) = −Imεij (ω,k).

Because the analogous relations hold for the matrix (prop-
agator) �−1(ω,k), the real and imaginary contributions to
the integrand in Eq. (33) are, respectively, odd and even
as functions of k. Therefore, only the imaginary part of
�−1(ω,k), which is responsible for dissipative phenomena,
contributes to the integral (33), and the energy loss is real as it
should be.

In an isotropic plasma the dielectric tensor can be decom-
posed into longitudinal and transverse components

εij (ω,k) = εL(ω,k)
kikj

k2
+ εT (ω,k)

(
δij − kikj

k2

)
, (35)

and the matrix �ij (ω,k) can be inverted to obtain the
propagator as

(�−1)ij (ω,k) = 1

ω2εL(ω,k)

kikj

k2

+ 1

ω2εT (ω,k) − k2

(
δij − kikj

k2

)
. (36)

Substituting this expression into Eq. (33), the energy loss is
written

dE

dt
= −ig2CR

∫
d3k

(2π )3

ω̄

k2

[
1

εL(ω̄,k)
+ k2v2 − ω̄2

ω̄2εT (ω̄,k) − k2

]
.

(37)

Using the symmetry relations (34) for εL,T (ω,k), Eq. (33)
becomes

dE

dt
= −g2CR

∫
d3k

(2π )3

ω̄

k2

×
[

ImεL(ω̄,k)

|εL(ω̄,k)|2 + ω̄2(k2v2 − ω̄2)ImεT (ω̄,k)

|ω̄2εT (ω̄,k) − k2|2
]
. (38)

As discussed under Eq. (10), the energy-loss formula (10), and
consequently the formula (28), includes the self-interaction of
the test parton with the electric field generated by the parton’s
current (9). The parton’s self-interaction should not contribute
to the energy loss (37), and therefore we need to calculate this
contribution separately and, if it is not zero, we need to subtract
it from the energy loss obtained from Eq. (37). Because the
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effect of self-interaction is the same in a vacuum and in a
medium, we derive it substituting into Eq. (37) the dielectric
functions of the vacuum, which are

εL(ω,k) = εT (ω,k) = 1. (39)

Using Eq. (39) the formula (37) gives

dE

dt

∣∣∣∣
vacuum

= ig2CR(1 − v2)
∫

d3k

(2π )3

ω̄

ω̄2 − k2

= −i
g2CR

(2π )2
(1 − v2)

∫ ∞

0
dkk

∫ +1

−1

d(cos θ ) cos θ

1 − v2 cos2 θ
= 0,

(40)

where we have chosen the axis z along the vector v and
written ω̄ = k · v = k cos θ . Although the momentum integral
is quadratically divergent, the angular integral vanishes and
the three-dimensional integral is zero. The zero result is
also expected from Eq. (38) because the vacuum dielectric
functions (39) are purely real. Thus, we see that the parton’s
self-interaction does not contribute to the equilibrium energy-
loss formula (37) or (38). In Sec. V we show that this is not
the case when the energy-loss calculation is formulated as an
initial value problem.

The result (37) or (38) agrees with the expression obtained
in Ref. [15] using kinetic theory and with the result for the
energy loss owing to soft collisions calculated in the Hard
Thermal Loop approximation [14], see also the textbook [27].
However, this is not the complete energy loss but rather the
soft contribution to it when the wave vector k is of the order
of the Debye mass. Physically, it corresponds to an interaction
of the test parton with soft collective excitations of the plasma
medium. The incompleteness of the formula (37) or (38)
is signaled by the logarithmic divergence as |k| → ∞. To
obtain the complete collisional energy loss, the formula (37)
should be combined with the hard contribution describing
elastic collisions of the test parton with plasma constituents
with momentum transfer much exceeding the Debye mass.
The hard contribution is not ultraviolet divergent, as the
maximal momentum transfer is constrained by the collision
kinematics. The soft contribution to the energy loss depends
logarithmically on the upper cutoff kmax divided by the
Debye mass m, while the hard contribution has a logarithmic
dependence on the energy of the parton E divided by the same
cutoff kmax. The energy loss thus equals

dE

dt
= X ln

(
kmax

m

)
+ Y ln

(
E

kmax

)
. (41)

It can be shown [14,27] that the coefficients X,Y are equal to
each other and therefore

dE

dt
= X ln

(
E

m

)
. (42)

The result is that the cutoffs cancel and one obtains a good
approximation to the energy loss from the soft contribution
with the parton energy used as an upper cutoff.
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FIG. 1. (Color online) The parton energy loss per unit time in
equilibrium plasma as a function of kmax.

As mentioned in the Introduction, the energy loss in
anisotropic QGP was computed previously by Romatschke
and Strickland [9]. Their result can be obtained from our
formula (33) by using an anisotropic propagator for �−1(ω,k)
and including only the contribution from the pole ω = ω̄.
Clearly, this procedure produces a result for the energy loss that
is completely time independent. As we see in the subsequent
sections, the energy loss in anisotropic plasma is actually
strongly time dependent because of the unstable modes.

To compare our results for the energy loss in an unstable
plasma to the corresponding equilibrium result, we have com-
puted numerically the integral (37) in spherical coordinates.
As already mentioned, the integral is logarithmically divergent
at large k ≡ |k|, so we introduce a cutoff k � kmax. When
studying plasmas with massless constituents, the Debye mass
m can be chosen as the only dimensionful parameter, and
we therefore use a system of units where all dimensionful
quantities are rescaled by the appropriate powers of m.
Numerically, one can simply set m = 1. We define the Debye
mass as

m2 ≡ g2
∫

d3p

(2π )3

f (p)

|p| . (43)

For isotropic momentum distributions, the formula (43) co-
incides with the standard definition of the Debye mass. The
same definition can also be used for the anisotropic plasmas
studied in this paper. In Fig. 1 we show the energy loss in
isotropic QGP divided by g2m2 as a function of kmax

m
computed

for CR = Nc = 3 which corresponds to a gluon. Because the
energy loss is divided by g2m2 we do not need to specify the
value of g. The numbers from this figure serve as a reference
for our results on the energy loss in unstable plasmas.

IV. INITIAL CONDITIONS

When the plasma is anisotropic, the propagator �(ω,k) =
�−1(ω,k) has poles in the upper half plane of complex ω which
correspond to instabilities, and the contributions to the energy
loss from these poles grow exponentially in time. This means
that the terms in Eq. (28) which contain the initial values of
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fields D0 and B0 are amplified by an exponential factor and, in
contrast to the equilibrium situation, they cannot, in general,
be neglected.

A. Uncorrelated initial conditions

The simplest choice of the initial condition is D0 = B0 = 0,
which means that the energy-loss formula (10) becomes

dE(t)

dt
= ig2CRvivj

∫
d3k

(2π )3

∫ ∞+iσ

−∞+iσ

dω

2πi
e−i(ω−ω̄)t

× ω

ω − ω̄
(�−1)ij (ω,k), (44)

where we have used the relation (32) to average over colors.
In fact, the formula (44) holds for a whole class of initial
conditions whenever D0 and B0 are independent of the test
parton’s current. In this case, the contributions to the energy
loss (28) which contain D0 and B0 are linear in the parton’s
color charge Qa , and consequently they vanish when color
averaging is performed using the relation (31).

Physically, this result can be understood as follows. Let
us consider an electron moving in an external electromag-
netic field which is independent of the current generated
by the electron. The energy-loss formula is given by the
electromagnetic analog of the formula (8), where E(t,r(t))
is the external electric field along the electron’s trajectory. The
electromagnetic analog of averaging over the parton’s color
is the averaging over the possible charges of a hypothetical
electron, which could carry either negative or positive charge,
or the averaging over the charges of an electron and a positron.
If an electron’s energy increases by �E in the time interval
�t , a positron’s energy would decreases by −�E in the same
field configuration and time interval. Therefore, after averaging
over charges, the net change in the energy is zero.

It is important to remember that the contribution to the
energy loss from the first term in Eq. (28), which is proportional
to the current and not the initial fields, is nonzero, even when
uncorrelated initial conditions are used. Mathematically, this
happens because this term is proportional to the square of the
charge. In an electromagnetic plasma, e2 is strictly positive,
and in a QCD plasma the factor QaQa does not give zero
when averaged [see Eq. (32)]. Physically, we see that the
energy losses of the electron and positron have same sign
because they are not interacting with external fields which are
independent of their currents, but instead with the electric fields
which they have induced in the medium. We also note that the
procedure of averaging over electric charges looks similar to
that of averaging over colors, but the physical situation is quite
different. A color charge is gauge dependent and consequently
it is not a physical observable. Therefore, the averaging over
colors must be performed for the energy loss to have a physical
meaning.

It is interesting to note that we can obtain the same
energy-loss formula (44) in a different way. If we multiply
the current in Eq. (9) by a step function �(t) and then
repeat the whole calculation using the usual two-sided Fourier
transformation, the identical result is found. The initial fields
D0 and B0 do not appear in the two-sided Fourier transformed
Maxwell equations, and the two-sided Fourier transform of

the current with the additional step function is the same as the
one-sided Fourier transform of original current. Although the
same result can be obtained in two different ways, the physical
interpretation of the two procedures is somewhat different.
Using the two-sided transformation with the current multiplied
by a step function, we assume that the plasma system exists
for all times but the test parton appears in the plasma at t = 0.
This was the problem studied in the papers [6,7]. When the
one-sided Fourier transformation is used, it is understood that
we observe the whole system, which includes the plasma and
the test parton, starting only at t = 0. The initial values of the
fields D0 and B0 can be chosen to be independent of the parton’s
color state, but they could also be specified differently. In the
next section we consider a class of nontrivial initial conditions
for which the fields D0 and B0 are strongly correlated with the
current generated by the test parton.

B. Correlated initial conditions

We have shown in the previous section that if the initial
conditions are chosen in any way that is independent of the
parton’s current, they will not contribute to the energy loss. In
this section we consider another kind of initial conditions. First
we note that although initial conditions are always required
to solve differential equations, they are usually determined by
physical arguments which go beyond the differential equations
under consideration. We argue below that in the energy-loss
calculation, a kind of correlated initial conditions might be the
most physical. We imagine that a process which is responsible
for the occurrence of a test parton in a plasma system at the time
t = 0 also polarizes the medium producing a chromodynamic
field which is then correlated with the parton’s color state. We
would like to see if the energy loss is sensitive to this kind of
correlated initial condition.

It is important to realize that the history of the system
under consideration does not start at t = 0 when the test parton
enters the plasma but earlier when the colliding nuclei begin to
approach each other. When they collide, they produce among
other particles the test parton. The plasma is produced at more
or less the same time as the test parton, and, therefore, there is
no reason to assume that the test parton and plasma, which are
both a part of a bigger system, are completely uncorrelated.
Note that this correlation is generated before the collision at
t = 0, and therefore there is no violation of causality.

Although the physical origin of a correlation between the
parton and the plasma fields is clear, the question of how to
express this correlation mathematically is much more difficult.
To derive an upper limit, we assume that the parton enters
the system in the remote past at t = −∞, observing that the
parton’s current (9) can be extended to the time interval from
−∞ to ∞. Flying across the plasma, the parton polarizes the
medium and induces a chromodynamic field. The initial fields
D0 and B0 are identified with the induced fields at t = 0.

To determine the fields D0 and B0, we solve the Maxwell
equations (4) and (5) using a normal (two-sided) Fourier
transform with the time integral from −∞ to ∞. We use
tildes to indicate that a two-sided Fourier transform was taken,
which means that, for example, D(ω,k) and D̃(ω,k) are
different functions of ω but the same function of k. However,
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we note that ε̃(ω,k) = ε(ω,k) and �̃−1(ω,k) = �−1(ω,k)
because these functions obey the retarded initial condition and
therefore ε(t,r) = �−1(t,r) = 0 for t < 0. Solving Eqs. (4)
and (5) using a two-sided Fourier transform produces the result
in Eq. (20) with Ei

a and j
j
a tilded and Bl

0a = D
j
0a = 0, because

the initial fields in Eq. (20) come from the t = 0 lower limit
in the one-sided Fourier transform. Using the tilded version of
the material relation (15), the electric induction is

D̃i
a(ω,k) = −iωεij (ω,k)(�−1)jk(ω,k)j̃ k

a (ω,k), (45)

where the two-sided Fourier transform of the current in Eq. (9)
is

j̃a(ω,k) = gQav2πδ(ω − ω̄). (46)

Taking the inverse two-sided Fourier transform of the re-
sult (45), we obtain

Di
a(t,k) =

∫ ∞

−∞

dω

2π
e−iωt D̃i

a(ω,k)

= −ie−iω̄t gQaω̄εij (ω̄,k)(�−1)jk(ω̄,k)vk, (47)

and setting t = 0, we arrive at

Di
0a(k) = −igQaω̄εij (ω̄,k)(�−1)jk(ω̄,k)vk. (48)

Using the same method, we obtain the initial value of the
chromomagnetic field

Bi
0a(k) = −igQaεijkkj (�−1)kl(ω̄,k)vl. (49)

The formulas (48) and (49) provide maximally correlated
initial conditions. To consider initial conditions with differing
degrees of correlation, we multiply the initial fields (48)
and (49) by a phase factor cos α ∈ [−1,1]. The choices cos α =
±1 correspond to maximally correlated and anticorrelated
initial fields. These two extreme cases provide limits on the
possible effects of correlated initial conditions. We substitute
the initial fields D0 and B0 given by Eqs. (48) and (49) into the
energy-loss formula (28) and insert the phase factor cos α as
described above. After averaging over the parton’s color, we
obtain

dE(t)

dt
= ig2CRvivl

∫
d3k

(2π )3

∫ ∞+iσ

−∞+iσ

dω

2πi

× e−i(ω−ω̄)t (�−1)ij (ω,k)

×
{

ωδjl

ω − ω̄
− cos α[(kj kk − k2δjk)(�−1)kl(ω̄,k)

−ωω̄εjk(ω̄,k)(�−1)kl(ω̄,k)]

}
. (50)

This result, which reduces to the formula (44) when cos α = 0,
is further studied in the subsequent sections for two different
unstable plasma systems.

V. SELF-INTERACTIONS

As already discussed in detail in the context of the
equilibrium result (38), the energy-loss formulas include the
effect of self-interaction—also called the vacuum effect—
which needs to be subtracted if it is nonzero. In this section

we calculate the self-interaction contribution to the energy
loss given by Eqs. (44) and (50). We follow the same method
as in Sec. III. We evaluate the formulas (44) and (50) with
the propagator �−1(ω,k) in the form (36) with the vacuum
dielectric functions (39). However, the calculation is not the
same as the one done in Sec. III. The equilibrium result (38)
only has a contribution from the pole ω = ω̄, but the energy-
loss formulas (44) and (50) with a vacuum propagator also
include contributions from the poles ω = 0 and ω = ±|k|,
which make the effect of self-interaction time dependent.
We discuss only the vacuum contribution to the energy-loss
formula for correlated initial conditions (50), because the
corresponding result for uncorrelated initial conditions can
be obtained by setting cos α = 0.

To compute the vacuum effect, we substitute into the
formula (50) the vacuum propagator (36), with εL(ω,k) =
εT (ω,k) = 1. In this way one finds the longitudinal part,

dEL(t)

dt

∣∣∣∣
vacuum

= ig2CR

∫
d3k

(2π )3

ω̄

k2

∫ ∞+iσ

−∞+iσ

dω

2πi

e−i(ω−ω̄)t

ω

×
[

ω̄

ω − ω̄
+ cos α

]
, (51)

and the transverse one,

dET (t)

dt

∣∣∣∣
vacuum

= ig2CR

∫
d3k

(2π )3

(
1 − ω̄2

k2

) ∫ ∞+iσ

−∞+iσ

dω

2πi

× e−i(ω−ω̄)t

ω2 − k2

[
ω

ω − ω̄
+cos α

ωω̄ + k2

ω̄2 − k2

]
,

(52)

where k ≡ |k|. Performing the integral over ω, which includes
contributions from the poles at ω = ω̄ and ω = 0 in case of
the longitudinal part (51), and the poles at ω = ω̄ and ω = ±k
in case of the transverse one (52), we obtain

dEL(t)

dt

∣∣∣∣
vacuum

= −(1 − cos α)g2CR

∫
d3k

(2π )3

ω̄ sin(ω̄t)

k2
,

(53)

dET (t)

dt

∣∣∣∣
vacuum

= −(1 − cos α)
ig2CR

2

∫
d3k

(2π )3

×
(

1− ω̄2

k2

)(
e−i(k−ω̄)t

k − ω̄
− ei(k+ω̄)t

k + ω̄

)
. (54)

We note that the pole ω = ω̄ does not actually contribute to the
transverse part (54) because the integrand is odd as a function
of k and therefore it gives zero when integrated.

The integrals over k are calculated in spherical coordinates
using an upper cutoff kmax. Summing the longitudinal and
transverse parts, the complete vacuum contribution to the
energy-loss formula (50) equals

dE(t)

dt

∣∣∣∣
vacuum

= − (1 − cos α)g2CR

4π2t2

{
2[Si(kmaxt)−sin(kmaxt)]

+ [2kmaxt − Si(2kmaxt)]
}
, (55)
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where Si(z) is the sine integral defined as

Si(z) ≡
∫ z

0
dx

sin(x)

x
. (56)

The first term in expression (55) is the longitudinal part and
the second term represents the transverse piece which linearly
diverges with increasing kmax. Both the longitudinal and the
transverse contributions go to zero when t → 0. The vacuum
contribution to the energy-loss formula with uncorrelated
initial conditions (44) is given by Eq. (55) with cos α = 0.
From Eq. (55) it is clear that the vacuum contribution is not
zero unless we choose maximally correlated initial conditions
(for which cos α = 1), and therefore the self-interaction effect
must be subtracted from the energy-loss formula in all other
cases.

VI. ANISOTROPIC PLASMAS

The energy loss in isotropic plasmas has been calculated
from the general formula (28) in Sec. III. In this section
we develop our formalism to apply it to a general class of
anisotropic momentum distributions of plasma constituents
which was introduced in Ref. [28] and has been used in various
studies of QGP; see, e.g., Refs. [29–34]. These anisotropic
distributions are obtained from the isotropic one by deforming
it—squeezing or stretching—in one direction. The dispersion
relations of the collective modes, which are needed to compute
the energy loss, have been studied in great detail in our recent
study [35] for all possible degrees of deformation from the
extremely prolate case, when the momentum distribution is
infinitely elongated in one direction, to the extremely oblate
distribution, which is infinitely squeezed in one direction.

In our derivation of the energy-loss formula and our
calculation of energy loss for isotropic systems, we have
mostly used the terminology of classical electrodynamics of
continuous media, with the dielectric tensor playing a key
role. From now on we switch to the language of quantum
field theory and make use of the polarization tensor and
gluon propagator which were already introduced in Eqs. (22)
and (23). The two languages are equivalent, as QCD in the HL
approximation is essentially classical, but the terminology of
quantum field theory is more commonly used when working
with the distribution introduced in Ref. [28].

To simplify the notation, in the rest of this section we omit
the arguments which denote dependence on the wave vector.
For example, we write α(ω,k) as α(ω), �ij (ω,k) as �ij (ω),
etc.

A. Propagator

To compute the energy loss using formula (28) we have
to invert the matrix � defined by Eqs. (21) or (23), which
is the inverse gluon propagator in the temporal axial gauge.
In isotropic plasmas the matrix depends on only one vector
k. It can be decomposed into transverse and longitudinal
components and is therefore easily inverted, giving Eq. (36).
We now consider momentum distributions of the plasma
constituents that can be obtained from the isotropic one by
deforming it in one direction along the unit anisotropy vector

n. In this case the matrix � depends on two vectors, k and n,
and it is symmetric, �ij = �ji . To invert such a matrix, we
introduce, following [36], the vector nT

ni
T =

(
δij − kikj

k2

)
nj (57)

and we define four tensors [28]:

Aij = δij − kikj

k2
, Bij = kikj

k2
,

Cij = ni
T n

j
T

n2
T

, Dij = kin
j
T + kjni

T .

The matrix � defined in Eq. (23) is written

�ij (ω) = [ω2 − k2 − α(ω)]Aij + [ω2 − β(ω)]Bij

− γ (ω)Cij − δ(ω)Dij , (58)

where α, β, γ, δ are the coefficients of the decomposition of
the polarization tensor

�ij (ω) = α(ω)Aij + β(ω)Bij + γ (ω)Cij + δ(ω)Dij . (59)

Writing the propagator � ≡ �−1 in the same basis, the
equation �� = 1 gives

�ij (ω) = �A(ω) (Aij − Cij )

+�G(ω)
{
[ω2 − k2 − α(ω) − γ (ω)]Bij

+ [ω2 − β(ω)]Cij + δDij
}
, (60)

where

�−1
A (ω) ≡ ω2 − k2 − α(ω), (61)

�−1
G (ω) ≡ [ω2 − β(ω)][ω2 − k2 − α(ω) − γ (ω)]

− k2n2
T δ2(ω). (62)

From Eq. (60) we see that the poles of the propagator, which
correspond to gluon collective modes, or plasmons, are given
by the dispersion equations

�−1
A (ω) = 0, �−1

G (ω) = 0. (63)

Equations (63) are obviously equivalent to the general disper-
sion equation (29).

B. Integrand

Substituting the propagator (60) into the energy-loss for-
mula (50) and contracting all indices, we obtain an expression
that we use to do calculations for the extremely prolate
and extremely oblate momentum distributions discussed in
Sec. VII. We use a spherical coordinate system with the z
axis along the anisotropy vector n. The angles θ and φ are
the zenithal and azimuthal angles of the vector k, and � is
the angle between the velocity of the test parton v and the
anisotropy vector n. In our coordinate system the vectors n, v,
and k are

n = (0,0,1),

v = (sin �,0, cos �), (64)

k = k(sin θ cos φ, sin θ sin φ, cos θ ).
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The energy-loss formula (50) is written as

dE(t)

dt
= g2CR

∫
d3k

(2π )3

∫ ∞+iσ

−∞+iσ

dω

2πi
e−it(ω−ω̄) integrand,

(65)

where the integrand is divided into several different pieces by
writing it as

integrand=Aj + Gj +cos α(Aic + Gic + [AA]ic + [GG]ic).

(66)

The two terms Aj and Gj are the contributions from the
first term in the square bracket in Eq. (28), which comes
from the parton current (14). When the initial fields are set
to zero, or when we have uncorrelated initial conditions,
these are the only terms that survive. They are proportional
to �−1

A (ω) and �−1
G (ω). The terms Aic, Gic, [AA]ic, and

[GG]ic are the contributions from the second two terms in
the square bracket in Eq. (28) and come from the initial fields.
They are proportional to �A(ω), �G(ω), �A(ω) �A(ω̄), and
�G(ω) �G(ω̄). In the future we will refer to the first two terms
in the formula (65) as “current contributions,” and the last four
terms will be called “field contributions.” After performing all
contractions, we obtain

Aj ≡ ω̂[ω̃2(x2 − 1) − x2 − Y 2 + 1]

(1 − x2)(ω̂ − ω̃)�−1
A (ω)

,

Gj ≡ ω̂
Y 2β ′(ω) − ω̃(x2 − 1){ω̃[k2(ω̂2 − 1) − α(ω) − γ (ω)] + 2kYδ(ω)}

(1 − x2)(ω̂ − ω̂)�−1
G (ω)

,

Aic ≡
(

ω̂

ω̃
− 1

)
Aj ,

Gic ≡
(

ω̂

ω̃
− 1

)
Gj,

[AA]ic ≡ k2(ω̂ − ω̃)(ω̂ + ω̃)

ω̂ω̃�−1
A (ω̄)

Aj ,

[GG]ic ≡ k2(ω̂ + ω̃)
kY ω̃(1 − x2)[β ′(ω̄)δ(ω) + β ′(ω)δ(ω̄)] + Y 2β ′(ω)β ′(ω̄) + k2ω̃2(1 − x2)2δ(ω)δ(ω̄)

ω̃(1 − x2)�−1
G (ω)�−1

G (ω̄)
,

where we have used the symbols

x ≡ cos θ, ω̂ ≡ ω/k, ω̃ ≡ ω̄/k, Y ≡ cos � − xω̃,

and defined the function β ′(ω) ≡ ω2 − β(ω).

VII. EXTREMELY PROLATE AND OBLATE PLASMAS

In the early stages of a heavy-ion collision, when partons are
initially released from the incoming nucleons, the momentum
distribution is strongly elongated along the beam; it has a
prolate shape with the average transverse momentum much
smaller than the average longitudinal one. Owing to free
streaming (see, e.g., Ref. [37]), the distribution evolves in the
local rest frame to a form which is squeezed along the beam;
it has oblate shape with the average transverse momentum
being much larger than the average longitudinal one. Prolate
and oblate distributions can be obtained from an isotropic one
by stretching or squeezing in the direction of a unit vector
n, which is chosen parallel to the beam direction. In this
paper we consider an extremely prolate and an extremely oblate
distribution, which are defined as

fex-prolate(p) = δ(pT )
|pL|
pT

g(pL), (67)

fex-oblate(p) = δ(pL)h(pT ), (68)

where pL ≡ p · n and pT ≡ |p − (p · n)n|. The functions
h(pT ) and g(pL) are determined from the normalization
condition (43), which now has the form

m2 = g2

4π2

∫ ∞

0
dpT h(pT ) = g2

4π2

∫ ∞

−∞
dpLg(pL). (69)

The collective modes are determined by substituting the
distributions (67) and (68) into the dielectric tensor (24), which
is related to the polarization tensor by Eq. (22). One calculates
the components of the polarization tensor (59) and solves the
dispersion equations (63). The spectrum of plasmons of the
extremely prolate and extremely oblate plasmas was analyzed
in detail in our study [35]. Below we give a summary of the
results. Solutions of the equation �−1

A = 0 are called A modes,
and solutions of �−1

G = 0 are referred to as G modes.
In the extremely prolate system, we can solve the dispersion

equations analytically and write the propagators in the simple
form

�−1
A (ω) = k2(ω̂2 − ω̂2

a

)
, (70)

�−1
G (ω) = ω̂2k4

ω̂2 − x2

(
ω̂2 − ω̂2

2

)
(ω̂2 − ω̂2

+)(ω̂2 − ω̂2
−), (71)
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FIG. 2. (Color online) Unstable mode for the extremely prolate
plasma: −ω2

−(k) as a function of k and cos θ in the domain, where
ω2

−(k) < 0. The angle θ is between the vectors k and n.

where the dispersion relations are

ω̂2
a = 1 + m2

2k2
, (72)

ω̂2
2 = x2 + m2

2k2
, (73)

2ω̂2
± = 1 + x2 ±

√
(1 − x2)(1 − x2 + 2m2/k2). (74)

The modes ±ωa , ±ω2, and ±ω+ are pure real and exist for
all wave vectors. The ±ω− modes are either pure real or pure
imaginary. When k is greater than a threshold value, which we
call kpG [see Eq. (75)], they are real, and when k is less than
this threshold they are imaginary and can be written as ±iγa

with γa ∈ R.
For the oblate distribution, solutions of the dispersion

equations can only be found numerically. There are six real
modes (three pairs) that exist for all wave vectors, which we
call ±ωa (A modes), ±ω−, and ±ω+ (G modes). There are two
thresholds [defined in Eq. (76)] below which imaginary modes

appear. For k < koA there is a pair of imaginary A modes ±iγa ,
and for k < koG there is a pair of imaginary G modes ±iγ−.
Note that we use the same terminology for prolate and oblate
modes without introducing subscripts to distinguish them, but
this will not cause confusion because the prolate and oblate
systems are considered separately in Secs. VII A and VII B.

The threshold wave vectors for prolate and oblate systems
are [35]

kpG ≡ m√
2
| tan θ |, (75)

koA ≡ m√
2
|cotθ |,

(76)

koG ≡ m

2
Re

√
| cos θ |√cos2 θ + 4 + cos2 θ − 2

sin2 θ
.

When θ → π/2 we have kpG → ∞ and the unstable prolate G
mode exists for all k’s. This behavior is shown in Fig. 2 for the
prolate unstable G mode. In the oblate system the situation is
reversed and the threshold wave vectors koA and koG approach
infinity when θ → 0. The unstable A and G modes for the
extremely oblate system are shown in Fig. 3.

As discussed in Sec. II, we calculate the frequency integral
of the energy-loss formula (65) with a contour in the lower
half plane that encloses all singularities of the integral. The
significance of the imaginary modes can be seen immediately.
Denoting the real part of an imaginary mode generically as γ ,
it is clear that the residue of a pure imaginary mode contains a
factor eγ t , which grows exponentially with time. However, the
magnitude of the unstable mode is small (in mass units), and
the region of phase space for which the unstable mode exists is
quite limited. Because there is also an oscillatory factor e−iω̄t

under the integral (28), it is not clear whether the energy loss
will increase exponentially as a function of time.

The integral over the wave vector k is taken numerically
in spherical coordinates with the z axis along the anisotropy
vector n. Because the integral is ultraviolet divergent, we
regulate it by introducing an upper cutoff at some finite
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FIG. 3. (Color online) Unstable modes for the extremely oblate plasma: −ω2
a (a) and −ω2

− (b) as functions of k and cos θ in the domain
where the modes exit. The angle θ is between the vectors k and n.
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FIG. 4. (Color online) The integrand of the energy loss with
cos α = 1 in extremely prolate plasma as a function of k and cos θ

for � = π/12 and t = 8/m. The integral over azimuthal angle φ has
been performed.

momentum kmax. For both oblate and prolate plasmas, there is
a potential divergence when an imaginary mode goes to zero,
as the wave vector approaches its threshold value. However,
these divergences cancel exactly (sometimes in combination
with the residue from the pole at ω = 0). There are divergences
that depend on the azimuthal angle when ω̄ = 0 and ω̄ = ±ω−,
but they are odd and can be regulated using a principal part
prescription.

The current contribution to the energy loss, or the energy
loss with the uncorrelated initial condition, is very oscillatory
and hard to calculate, but we have checked that it is of the
order of the equilibrium energy loss discussed in Sec. III and
its magnitude is much smaller than the field contribution. One
example of this current contribution is given in Sec. VII A.

In the two subsequent sections we present our numerical
results on the energy loss in the extremely prolate and
extremely oblate plasmas. In all our numerical calculations
CR = 3, which corresponds to a gluon, and our results are
expressed in the units of m. As in Sec. III, the energy loss
is divided by g2m2 and therefore the value of the coupling
constant g is not specified.

A. Extremely prolate plasma

In Fig. 4 we present the integrand of the energy loss in
prolate plasma as a function of k and cos θ for � = π/12. The
integral over azimuthal angle φ has been done, and the small
spikes at the top of the figure are produced by numerical issues.
The meaning of the angles θ, φ, � is explained by Eq. (64).
Comparing this plot to that shown in Fig. 2, one clearly sees
the influence of the unstable mode; the integrand is large in
the domain of k and cos θ , where the mode ω− exists.

Figure 5 shows the current contribution to the energy
loss (or the energy loss with cos α = 0) as a function of
time for � = 0. Because dE/dt is negative, the parton loses
energy. The two curves represent two values of kmax = 3m
and kmax = 5m, and one sees that the magnitude of the energy
loss increases with kmax. The result is time dependent, but it

4 8 10620
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5m

=
=
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td
Ed
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−

tm

FIG. 5. (Color online) Current contribution to the energy loss as
a function of t for � = 0, for two different choices of the kmax. The
red (solid) curve is for kmax = 5m, and the blue (dashed) curve is
kmax = 3m.

is approximately of the same magnitude as the equilibrium
energy loss at a given kmax. As seen in Fig. 1, the equilibrium
energy loss equals −0.12g2m2 for kmax = 3m and −0.18g2m2

for kmax = 5m.
In Fig. 6 we show the field contribution to the energy loss

(with cos α = 1) as a function of time for kmax = 5m and
four angles � between the parton velocity and the anisotropy
vector n. The energy loss dE/dt is positive and it increases
exponentially with time, showing the effect of the unstable
modes. The parton thus gains the energy and the magnitude
of dE/dt at later times is much bigger than in equilibrium
plasmas (see Fig. 1). The sign of the field contribution to
the energy loss is determined by the sign of the phase factor
cos α, and therefore if we change the initial condition from
cos α = 1 to cos α = −1 we get exponentially growing energy
loss instead of exponentially growing energy gain. Because the
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FIG. 6. (Color online) The field contribution to the energy loss
in prolate plasma as a function of time for four angles � between the
parton velocity and the anisotropy direction: � = 0 (red, dot-dashed
line), � = π/36 (orange, dotted line), � = π/12 (green, dashed
line), and � = π/6 (blue, solid line). The cutoff parameter is
kmax = 5m.
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FIG. 7. (Color online) The configurations when the energy loss is
maximal in the prolate (a) and oblate (b) plasmas. The arrows labeled
with n, k, E, and v denote, respectively, the anisotropy vector, the
wave vector of the most important unstable mode, the electric field
associated with this mode, and the velocity of the test parton.

field contribution to the energy loss is much bigger than the
current contribution, the sign of dE/dt is actually controlled
by the sign of cos α. Therefore, the energy loss crucially
depends on the initial condition.

One observes in Fig. 6 a strong directional dependence of
the energy loss. For a prolate system, the most important wave
vectors are those for which k ⊥ n, where the threshold wave
vector (75) goes to infinity; see also Fig. 2. When k ⊥ n the
unstable mode has an associated electric field that is parallel to
the vector n. This point is explained in Appendix C. The energy
transfer is most efficient when the electric field is parallel to
the velocity of the test parton (v ‖ E). Therefore, one expects
the largest energy transfer when v ‖ n. This argument is shown
schematically in Fig. 7(a) and verified by the results presented
in Fig. 6, which demonstrates that the magnitude of the energy
loss is maximal at � = 0, and rapidly decays when the angle
� grows.

In Fig. 8 we show (in a logarithmic scale) the energy loss
as a function of kmax for � = 0 and two times: t = 5/m
and t = 8/m. The energy loss oscillates slightly, but the kmax

dependence can be roughly approximated as ln kmax, as in the
equilibrium case. As discussed in Sec. III, the divergence at
large kmax indicates a breakdown of the classical theory.

td
Ed

mg
1

m
kmax

FIG. 8. (Color online) The field contribution to the energy loss in
prolate plasma at � = 0 as a function of kmax for t = 5/m (circles)
and t = 8/m (squares). The red (solid) curves are a logarithmic fit.

B. Extremely oblate plasma

Calculations in oblate plasma are much more difficult
than those in prolate plasma because the components of
the polarization tensor defined by Eq. (59) have a more
complicated structure. They contain square roots that are not
defined along the section of the real axis where the arguments
of the roots are negative. There are therefore contributions to
the frequency integral from the discontinuities between the
upper and lower sides of the cuts that are difficult to calculate.
We have checked for several cases that they are small when
compared to the pole contributions and we therefore neglect
them. One consequence of this more complicated structure is
that the spectrum of collective modes is richer; there are two
unstable modes instead of one, as in the case of prolate plasma.
It is impossible to solve the dispersion equations analytically,
and one can only obtain the dispersion relations numerically.
Finally, there is a technical complication related to the fact
that the dominant contribution to the energy loss in the oblate
plasma comes from the domain of wave vectors k, which are
almost parallel to the anisotropy vector n. When k ‖ n we
have nT = 0 and the decomposition (58) is ill defined. This
occurs because, when k||n, the matrix � does not depend on
two independent vectors k and n but only on one vector k or
n. Consequently, the decomposition (58) should include only
two terms with the matrices A and B. The propagator has the
form

�ij (ω) = 1

ω2 − k2 − α(ω)
Aij + 1

ω2 − β(ω)
Bij (77)

and the components of the polarization tensor are easily
calculated in this special case as (see [35] for details)

α(ω) = m2

2
− m2(ω2 − k2)

4ω4
, β(ω) = m2

2
. (78)

In our calculation, the domain where k||n was treated
analytically and combined with the results of the numerical
computation, as described below. Because of these technical
difficulties, we give numerical results for the extremely oblate
plasma only for a rather small value of kmax = 2m. The
equilibrium energy loss for this value of kmax, which is used
as a reference point, equals −0.079g2m2, see Fig. 1.

As in the case of prolate plasma, the current contribution is
significantly smaller than the field contribution. The latter is
shown in Fig. 9 when the parton’s momentum is perpendicular
to the anisotropy vector n (� = π/2). The red (dashed) line
represents the contribution owing to the A modes, the blue
(dotted) line represents the G modes, and the black (solid) one
gives the sum. The black (solid) is not exactly the sum of the red
(dashed) and blue (dotted) because in the calculation with all
modes the points at x = ±1, which are obtained analytically,
are combined and integrated together with the numerical data,
which is calculated over the range −0.9996 < x < 0.9996.
One observes in Fig. 9 that the unstable A mode is responsible
for the largest effect. Because the field contribution to the
energy loss is much bigger than the current contribution, the
sign of the energy loss is determined by the sign of cos α, which
expresses the dependence on the initial conditions. dE/dt is
negative for cos α < 0 and it is positive when cos α > 0. As
seen in Fig. 9, the energy loss in oblate plasma can be orders
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FIG. 9. (Color online) The field contribution to the energy loss in
oblate plasma as a function of time for � = π/2. The red (dashed)
line corresponds to the effect of A modes, the blue (dotted) line
represents the G modes, and the black (solid) line represents the sum.

of magnitude bigger than in an equilibrium plasma with the
same kmax.

For an extremely oblate system, the most important wave
vectors are those for which k ‖ n, because both of the
thresholds koA and koG go to infinity in this limit; see Eq. (76).
This behavior is also shown in Fig 3. As explained in
Appendix C, instead of two different pairs of imaginary modes
A and G, we have two pairs of identical modes which are
purely transverse when k ‖ n. The electric field associated
with these modes is perpendicular to both k and n. Because
the energy loss is maximal when the parton velocity is parallel
to the electric field, such a situation occurs in the oblate system
when v is perpendicular to n or � = π/2. This argument is
shown schematically in Fig. 7(b). The effect is seen explicitly
in Figs. 10 and 11. The left panel of Fig. 10 shows that for
both A and G modes the energy loss is dominated by the
region x ≈ 1, and the right panel proves that when x = 1 the
biggest effect is observed when � = π/2. Figure 11 presents
the energy loss as a function of � for t = 25/m. The figure
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FIG. 11. (Color online) The field contribution to the energy loss
in oblate plasma as a function of the angle � for t = 25/m.

shows that dE/dt drops rapidly when � becomes smaller than
π/2.

VIII. DISCUSSION AND OUTLOOK

Let us first summarize our study. We have derived the
energy-loss formula for a high-energy parton flying across an
unstable plasma which experiences a rapid temporal evolution
owing to exponentially growing collective modes. Because
the formula is found as the solution of an initial value
problem, initial values of the chromodynamic fields present
in the plasma must be chosen. Except in special cases, the
energy-loss formula includes an effect of self-interaction
which must be subtracted to get a physically meaningful result.
In the case of equilibrium plasmas, the initial conditions are
“forgotten,” and the well-known formula of collisional energy
loss is reproduced. When the initial conditions are chosen in
such a way that the initial fields are not correlated with the
current generated by the test parton, the parton typically loses
energy, and the magnitude of the energy loss is comparable to
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FIG. 10. (Color online) The integrand of the field contribution to oblate energy loss after integrating over φ and k for t = 25/m. In panel
(a) the integrand is shown as a function of x ≡ cos θ for � = π/2 and in panel (b) it is shown as a function of � for x = 1. The red (dashed),
blue (dotted), and black (solid) lines in panel (a) represent the effect of, respectively, A modes, G modes, and the sum of A plus G modes.
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that in an equilibrium plasma of the same mass m (43). When
the initial chromodynamic field is induced by the parton, it can
be either accelerated or decelerated depending on the relative
phase factor. With correlated initial conditions, the magnitude
of the energy loss grows exponentially in time and can much
exceed the absolute value of the energy loss in an equilibrium
plasma.

We have derived an expression for the energy loss for
arbitrarily prolate or oblate plasmas and performed numerical
calculations for the specific examples of the extremely prolate
and extremely oblate systems. The energy loss is not only
time dependent but it is also strongly directionally dependent.
The configurations when the energy loss is maximal in the
prolate and oblate plasmas are illustrated in Fig. 7. In these
special configurations, the magnitude of the energy loss can
be much bigger than that in an equilibrium plasma. Beyond a
narrow cone which is centered around the optimal direction,
the energy loss rapidly drops.

It is interesting to consider the possible consequences of our
findings for the jet suppression observed in relativistic heavy-
ion collisions. Because a high-energy parton can be either
accelerated or decelerated in an unstable plasma, we expect
that the energy loss strongly fluctuates and that the fluctuations
are particularly large in the configurations depicted in Fig. 7.
Quark-gluon plasma at an early stage of a relativistic heavy-ion
collision has initially a prolate momentum distribution which
evolves fast owing to free streaming to an oblate momentum
distribution. During the process of equilibration the plasma
is oblate and it remains oblate in the subsequent evolution
because of viscosity effects [38]. Jet quenching is observed at
both BNL Relativistic Heavy Ion Collider and CERN Large
Hadron Collider at almost vanishing rapidity in the center of
mass of colliding nuclei. This configuration is just as shown
in Fig. 7(b), where the jet momentum is transverse to the
vector n. We suspect that the jet-quenching pattern can be
changed when the jet axis is tilted in such a way that the near-
side jet has a small but positive (negative) rapidity, while the
away-side jet has a small but negative (positive) rapidity. The
effect of unstable modes is then reduced and the energy-loss
fluctuations are expected be much smaller.

One should remember that we have discussed here only
collisional energy loss. There are simple arguments that indi-
cate that radiative energy loss behaves very differently [20].
Radiative energy loss is controlled by the parameter q̂
which measures the momentum broadening of a parton. This
parameter is by definition positive and grows exponentially in
an unstable plasma, as does the radiative energy loss, which
is always negative. Therefore, before we draw a conclusion
about the possible role of unstable plasma in jet suppression
phenomenology, the effects of both collisional and radiative
energy loss must be combined. This requires a computation of
q̂ in unstable plasmas, which we plan to publish soon.
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APPENDIX A: REALITY OF ENERGY LOSS

We prove here that the energy loss (28) is real for any
momentum distribution that satisfies the mirror symmetry
f (p) = f (−p). For this purpose we take the complex con-
jugate of the formula (28) and obtain

dE∗(t)

dt
= −gQavi

∫
d3k

(2π )3

∫ ∞−iσ

−∞−iσ

dω

2πi
ei(ω−ω̄)t�∗ij (ω,k)

×
[
− iωgQavj

ω − ω̄
+ εjklkkB∗l

0a(k) − ωD
∗j
0a (k)

]
,

(A1)

where the inverse matrix �−1 is replaced with the retarded
propagator �. Now we change the integration variables ω →
−ω and k → −k, which gives

dE∗(t)

dt
= −gQavi

∫
d3k

(2π )3

∫ ∞+iσ

−∞+iσ

dω

2πi
e−i(ω−ω̄)t

×�∗ij (−ω,−k)

[
− iωgQavj

ω − ω̄
− εjklkkB∗l

0a(−k)

+ωD
∗j
0a (−k)

]
. (A2)

Because the initial fields B0a(r) and D0a(r) are pure real in
coordinate space, we have

B0a(k) = B∗
0a(−k), D0a(k) = D∗

0a(−k). (A3)

In our study [35] we have proven that for mirror-symmetric
momentum distributions, the retarded propagator defined by
Eq. (23) satisfies the relations

Re�ij (−ω,−k) = Re�ij (ω,k),

Im�ij (−ω,−k) = −Im�ij (ω,k),

which give

�∗ij (−ω,−k) = �ij (ω,k). (A4)

Using the relations (A3) and (A4), the right side of Eq. (A2)
is identical to the right side of Eq. (28), which completes the
proof that the energy loss given by the formula (28) is real.

APPENDIX B: TEMPORAL AXIAL AND
FEYNMAN-LORENTZ GAUGES

In this Appendix we show that the temporal axial gauge is
particularly convenient for the energy loss calculation because
it naturally provides a gauge-independent expression for the
energy loss that depends only on the electric and magnetic
fields. In contrast, current conservation must be explicitly
enforced in Feynman-Lorentz gauge. To simplify the problem,
we consider here an electromagnetic plasma.

The electromagnetic analog of the energy-loss formula (28)
is clearly gauge invariant, as the derivation of the formula is
gauge invariant at every step. The gauge-dependent potential
Aμ is not used at all, and the energy loss is written in a form
that depends only on the dielectric tensor and electric and
magnetic fields, which are physical quantities. However, when
we switch to the terminology of quantum field theory and the
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inverse dielectric tensor is replaced with the photon propagator
in the temporal axial gauge, the gauge independence of the
formula (28) is not evident anymore. In this section we show
that although the energy-loss formula looks different in the
Feynman-Lorentz gauge, it is still gauge invariant. We also
explain why the temporal axial gauge is much more convenient
for the energy-loss calculation. In this appendix we use the
usual (two-sided) Fourier transformation and not the one-sided
transformation, which was used in Sec. II.

To further simplify the problem, we consider not the whole
energy-loss formula but only the electric field generated by the
test particle in vacuum. We solve the Maxwell equation,

∂μFμν(x) = jν(x), (B1)

where x = (t,r), Fμν ≡ ∂μAν − ∂νAμ, and jμ is the particle’s
current. The electric field, which is the physical quantity of
interest, is expressed through the four-potential as

E(x) = −∇A0(x) − Ȧ(x), (B2)

which in momentum space is

E(k) = −ikA0(k) + iωA(k). (B3)

We note that k = (ω,k) denotes here the four-vector and
not |k|.

To solve Eq. (B1) for the potential, one must choose a gauge.
The resulting solution has the form A = propagator × current.
Both the propagator and the vector potential are gauge
dependent. However, if we calculate the electric field from
the potential using Eqs. (B2) or (B3), the result must be
gauge independent. This is true when current conservation
is imposed.

We start by considering Feynman-Lorentz gauge (∂μAμ=0)
in which the Maxwell equation (B1) is

�Aμ(x) = jν(x), (B4)

and the (two-sided) Fourier transformed solution reads

Aμ(k) = �
μν
FLG(k)jν(k), (B5)

where

�
μν
FLG(k) = − gμν

k2 + isgn(ω)0+ = gμνDFLG(k) (B6)

is the retarded photon propagator in the Feynman-Lorentz
gauge. From Eqs. (B3), (B5), and (B6) we obtain the electric
field generated by the current jν(k),

Ei(k) = −iDFLG(k)[kij 0(k) − ωji(k)]. (B7)

Now we consider the temporal axial gauge (A0 = 0). The
(two-sided) Fourier transformed field equation (B1) splits into
two equations:

−ωkiAi(k) = j 0(k), (B8)[
(−ω2 + k2)δij − kikj ]Aj (k) = j i(k). (B9)

The solution of the second equation (B9) is

Ai(k) = −�
ij
TAG(k)j j (k), (B10)

where

�
ij
TAG(k) = 1

ω2 + isgn(ω)0+
kikj

k2

+ 1

ω2 − k2 + isgn(ω)0+
(
δij − kikj

k2

)
(B11)

is the retarded photon propagator in the temporal axial gauge.
Substituting the solution (B10) into Eq. (B3) and using
(A0=0), we obtain

Ei(k) = −iω�
ij
TAG(k)j j (k). (B12)

We have found that in Feynman-Lorentz gauge the electric
field is given by Eq. (B7) and in temporal axial gauge it is
given by Eq. (B12) with the additional constraint (B8). The
two equations for the electric field look different, but if current
conservation is imposed they are, in fact, the same. Current
conservation gives the relation

ωj 0(k) = k · j(k). (B13)

Using (B13) the electric field obtained from the Feynman-
Lorentz gauge (B7) can be written in the form

Ei(k) = − i

ω
DFLG(k)(kikj − ω2δij )j j (k). (B14)

Equations (B6) and (B11) give the equality

�
ij
TAG(k) = 1

ω2
DFLG(k)(kikj − ω2δij ). (B15)

Using Eq. (B15) it is easy to see that the expressions (B12)
and (B14) are equivalent.

When working in the temporal axial gauge, current con-
servation merely tells us that the solution (B10) satisfies
Eq. (B8) automatically, and the electric field is naturally gauge
independent. Equivalently, the electric field in Eq. (B12) can be
derived from the Maxwell equations (4) and (5) without any
reference to the four-potential Aμ. In contrast, if Feynman-
Lorentz gauge is used, current conservation must be explicitly
enforced. The authors of Ref. [7] resolved this problem by
modifying somewhat artificially the parton’s current.

APPENDIX C: IMPORTANT CONFIGURATIONS

In this Appendix we look at the prolate system in the special
case that the wave vector of the unstable mode is perpendicular
to the direction of anisotropy (k ⊥ n) and the oblate system
when these two vectors are parallel (k ‖ n). These regions of k
are important because they are the part of the domain of k for
which the unstable modes exist up to infinite k; see Eqs. (75)
and (76) and Figs. 2 and 3. We further show that the energy loss
is maximal when the velocity of the test parton v is parallel to
n in the prolate plasma and when v ⊥ n in the oblate one. The
arguments discussed in this appendix are illustrated in Fig. 7.

We start with the prolate system. The linearized Yang-Mills
or Maxwell equations of electric field E(ω,k) can be written
as [35]

�ij (ω,k)Ej (ω,k) = 0, (C1)

with the matrix � defined by Eq. (21). Because Eq. (C1) is
homogeneous, there are solutions if the determinant of the
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matrix � vanishes; this is the general dispersion equation (29). When n = (0,0,1) and k = (k,0,0), Eq. (C1) is⎡
⎢⎣

ω2 − β(ω) 0 0

0 ω2 − k2 − α(ω) 0

0 0 ω2 − k2 − α(ω) − γ (ω)

⎤
⎥⎦

⎡
⎢⎣

Ex(ω,k)

Ey(ω,k)

Ez(ω,k)

⎤
⎥⎦ = 0, (C2)

where

α(ω) = β(ω) = m2

2
, γ (ω) = m2(k2 − ω2)

2ω2
. (C3)

The imaginary modes appear as solutions of the equation ω2 − k2 − α(ω) − γ (ω) = 0, which controls the z component of the
electric field. Therefore, the exponentially growing component of E is parallel to n. Because the maximal energy loss occurs
when v ‖ E, the maximal effect requires v ‖ n.

Let us now consider the oblate plasma. When n = (0,0,1) and k = (0,0,k), Eq. (C1) is⎡
⎢⎣

ω2 − k2 − α(ω) 0 0

0 ω2 − k2 − α(ω) 0

0 0 ω2 − β(ω)

⎤
⎥⎦

⎡
⎢⎣

Ex(ω,k)

Ey(ω,k)

Ez(ω,k)

⎤
⎥⎦ = 0, (C4)

where the coefficients α(ω) and β(ω) are given by Eq. (78). The imaginary modes appear as solutions of the equation [ω2 − k2 −
α(ω)]2 = 0, which controls the x and y components of the electric field. Therefore, the exponentially growing component of E
is perpendicular to n and the maximal energy loss occurs when v ⊥ n.
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