
PHYSICAL REVIEW C 76, 044905 (2007)

Evolution of anisotropy of a partonic system from relativistic heavy-ion collisions

Weronika Jas*
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The evolution of anisotropy in momentum and coordinate space of the parton system produced in relativistic
heavy-ion collisions is discussed within the free-streaming approximation. The momentum distribution evolves
from the prolate shape (elongated along the beam) to the oblate one (squeezed along the beam). At the same time,
the eccentricity in coordinate space, which occurs at finite values of impact parameter, decreases. It is argued that
the parton system reaches local thermodynamic equilibrium before the momentum distribution becomes oblate.
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I. INTRODUCTION

A parton system, which emerges at the early stage of rela-
tivistic heavy-ion collisions, is anisotropic both in momentum
and coordinate space. These anisotropies crucially influence
the dynamics of the system: the momentum one causes plasma
color instabilities (for a review, see Ref. [1]); the coordinate
space one is responsible for hydrodynamic elliptic flow (for a
review, see Ref. [2]). An eccentricity of the overlap region of
colliding nuclei at nonzero impact parameter decreases when
the parton system produced in the overlap region expands.
While the eccentricity simply decays, the parton momentum
distribution, which is observed locally, changes from a strongly
prolate shape (elongated along the beam axis) to an oblate form
(squeezed along the beam).

Since hydrodynamics requires at least partial local equi-
librium [3], an observation of the elliptic flow suggests that
the parton system is thermalized before the initial eccentricity
is significantly reduced. The equilibration time of the parton
system teq was actually estimated to be shorter than 1 fm/c [4].
Interparton collisions cannot equilibrate the system so fast, but
magnetic unstable modes due to the momentum anisotropy
speed up the equilibration process. However, the question
arises as to whether the momentum distribution is prolate
or oblate just before equilibrium is reached. In this paper,
we attempt to resolve the issue in a very simple classical
model where partons produced in the overlapping region of
colliding nuclei freely escape from it. We analyze how the
coordinate space anisotropy decays and how the momentum
distribution evolves in a box which includes the Lorentz
contracted region where the partons are initially produced. The
effect of finite formation time of produced partons is taken into
account.

We are fully aware of how naive our approach is. Matter,
which emerges at the early stage of relativistic heavy-ion
collisions, is very dense, presumably inhomogeneous, and
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partially coherent because of the memory of the pure quantum
state of two colliding nuclei. Such a system cannot be reliably
described in terms of kinetic theory with weakly interacting
quasiparticles on mass-shell. A derivation of the transport
equation from quantum field theory clearly reveals the lim-
itations of the kinetic approach [5]. We believe, however, that
our free-streaming model still grasps the global features of the
early stage system. The evolution of anisotropies, which is our
main interest here, is dominated by the system’s expansion.
And it proceeds with the velocity of light independently
of details of the system’s dynamics. However, it should be
clearly understood that in the free-streaming model, where
no interaction is present, a real equilibration does not take
place. Therefore, even if the particle momentum distribution
appears to be of the equilibrium form, one cannot conclude
that the system has reached equilibrium, which is required by
the hydrodynamic description, as the pressure resulting from
interparticle collisions is absent in the free-streaming model.
We will return to this discussion in the concluding section of
the paper.

II. DECAY OF ECCENTRICITY

The partons are assumed to be produced in an ellipsoidal re-
gion parametrized by the three-dimensional Gaussian function
centered at zero with the widths σx, σy , and σz, where x, y, and
z denote Cartesian coordinates. As usual, the z axis is along the
beam. The distribution of parton rapidity, which is denoted here
by Y , is also assumed to be Gaussian with the width �Y . We
note that the rapidity distribution of charged pions produced in
Au-Au collisions at

√
s = 200 GeV per nucleon-nucleon pair

is well described by the Gaussian distribution with �Y = 2.3
[6]. Since we work in the center-of-mass frame, the rapidity
distribution is centered at zero. We also assume that partons
are massless, and then, as will be evident later on, we do not
need to specify the distribution of their transverse momenta,
which is denoted as P (pT ). Thus, the distribution function of
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partons, which obeys the collisionless Boltzmann equation, is

f (t,r,p) = 1

σxσyσz �Y 〈pT 〉 exp

[
−(x − vxt)2

2σ 2
x

− (y − vyt)2

2σ 2
y

− (z − vzt)2

2σ 2
z

− Y 2

2�Y 2

]
P (pT )

p2
T chY

, (1)

where

〈pT 〉 ≡
∫ ∞

0
dpT pT P (pT ),

∫ ∞

0
dpT P (pT ) = 1,

and the velocities vx, vy, and vz are given as

vx = cos φ

chY
, vy = sin φ

chY
, vz = thY,

with φ being the azimuthal angle in the momentum space. We
note that we use natural units, where c = 1. The distribution
function is normalized to unity, i.e.,∫

d3r
d3p

(2π )3
f (t, r, p) = 1.

When the impact parameter of the colliding nuclei is chosen
to be along the x axis, as shown in Fig. 1, the eccentricity,
which drives the elliptic flow, is defined as

ε = 〈y2〉 − 〈x2〉
〈y2〉 + 〈x2〉 . (2)

With the distribution function (1), one computes

〈x2〉 ≡
∫

d3r
d3p

(2π )3
x2f (t, r, p) = σ 2

x + αt2,

where

α = 1

2
√

2π�Y

∫ +∞

−∞

dY

ch2Y
exp

[
− Y 2

2�Y 2

]
.

If one takes into account only partons with the rapidities
Y obeying Ymin < Y < Ymax, the formula, which defines the
coefficient α, changes to

α =
∫ Ymax

Ymin
dY ch−2Y exp

[ − Y 2

2�Y 2

]
2
∫ Ymax

Ymin
dY exp

[ − Y 2

2�Y 2

] .

FIG. 1. (Color online) View of colliding nuclei of equal radius R,
as seen in the x-y plane transverse to the beam axis.

Computing 〈y2〉 analogously to 〈x2〉, one finds the eccen-
tricity (2) as

ε(t)

ε(0)
=

(
1 + α

R2
T

t2

)−1

, (3)

where the initial eccentricity ε(0) and the average transverse
size of the overlap region of colliding nuclei RT are

ε(0) = σ 2
y − σ 2

x

σ 2
y + σ 2

x

, R2
T ≡ σ 2

y + σ 2
x

2
.

The formula (3) was earlier derived in Refs. [2,7] for a
narrow interval around Y = 0 when α = 1/2. Unfortunately,
by mistake, α = 1 in Ref. [7].

When the impact parameter varies, both the initial ec-
centricity ε(0) and the average transverse size RT change.
To express the two quantities through the nuclear radius R

(a hard sphere parametrization is adopted here) and the impact
parameter b, we replace the overlap region of the two circles
shown in Fig. 1 by the ellipse given by the equation

x2

d2
x

+ y2

d2
y

� 1,

with the half-axes dx and dy defined in Fig. 1. Elemen-
tary geometric arguments provide dx = R − b/2 and dy =√

R2 − b2/4. Since the mean square sizes of the ellipse are
〈x2〉 = d2

x /4 and 〈y2〉 = d2
y /4, we identify σx and σy with

dx/2 and dy/2, respectively. Then, one expresses ε(0) and RT

through R and b as

ε(0) = b

2R
, R2

T = R2

4
(1 − ε(0)).

In Fig. 2, we show predictions of Eq. (3) for Au-Au
collisions at midrapidity (α = 1/2). The radius of a gold
nucleus is chosen to be 7 fm. As seen in Fig. 2, the larger
initial eccentricity, the faster its decay. We note that the largest
elliptic flow in Au-Au collisions is observed at b ≈ 10 fm [8]

FIG. 2. (Color online) Eccentricity in Au-Au collisions as a
function of time for five values of the impact parameter. The curve
with the largest initial eccentricity corresponds to b = 1.8R, the next
one to b = 1.6R, etc.
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corresponding to b ≈ 1.4R. At larger impact parameters, the
produced system is presumably too small to fully manifest
collective hydrodynamic behavior. An analysis of the exper-
imental elliptic flow data within the hydrodynamic model
shows that the eccentricity cannot be reduced to less than 75%
of its initial value [4], see also Ref. [9]. When the reduction
is larger, the ideal hydrodynamics, which gives an upper limit
of the flow, significantly underestimates experimental data.
Figure 2 shows that for b ≈ 1.4R, the eccentricity is reduced
to 75% of its initial value at 1.5 fm/c. Within this time interval,
the system has to be equilibrated to start the hydrodynamic
evolution responsible for the elliptic flow. Thus, our estimate
of the upper limit of equilibration time is 1.5 fm/c. Actually,
the hydrodynamic analysis [4], which uses not only the elliptic
flow data but other experimental constraints as well, provides
the equilibration time teq as short as 0.6 fm/c.

III. MOMENTUM ANISOTROPY EVOLUTION

In this section, we compute the momentum distribution of
partons in a box of sizes Lx,Ly , and Lz. The box is centered at
x = y = z = 0. To simplify the calculations, the sharp-edge
box is replaced by the box function of Gaussian form

O(r) = Ox(x)Oy(y)Oz(z), Oi(ri) =
√

6

π
exp

[
−6r2

i

L2
i

]
,

i = x, y, z, (4)

which obeys the conditions∫ Li/2

−Li/2
dri =

∫
driOi(ri),

∫ Li/2

−Li/2
drir

2
i =

∫
dri r

2
i Oi(ri).

The momentum distribution of particles in the box is
characterized by the parameter

ρ(t) = 2
〈
p2

z

〉
〈
p2

T

〉 , (5)

where

〈
p2

z

〉 = 1

n

∫
d3rO(r)

d3p

(2π )3
p2

zf (t, r, p),

n =
∫

d3rO(r)
d3p

(2π )3
f (t, r, p),

with analogous formulas for 〈p2
T 〉; f (t, r, p) is given by

Eq. (1). For the prolate distribution, one has ρ > 1; for the
isotropic one, ρ = 1; and finally, for the oblate distribution,
ρ < 1. Since the parameter ρ is sensitive only to the second
moments of the momentum distribution, ρ = 1 is a necessary
but not a sufficient condition for an isotropy of the distribution.

The calculations simplify when the system is cylindrically
symmetric in coordinate space that is σx = σy = σT and Lx =
Ly = LT . Then, the anisotropy parameter (5) is given by

ρ(t) =
∫

dY sh2Y G(t, Y )∫
dYG(t, Y )

, (6)

where

G(t, Y ) ≡ exp

[
−6

(
1

L2
T + 12σ 2

T

1

ch2Y

+ 1

L2
z + 12σ 2

z

th2Y

)
t2 − Y 2

2�Y 2

]
.

One easily computes the initial value of ρ as ρ(0) = e2�Y 2 − 1.
It is also of interest to see how the energy density e(t) in the box
decreases when the momentum anisotropy evolves. A simple
calculation provides

e(t)

e(0)
= e−�Y 2/2

√
2π�Y

∫
dY chYG(t, Y ).

To compute ρ(t) and e(t)/e(0), the parameters σT , σz, LT ,

and Lz have to be chosen. As is well known, the nuclear
density of heavy nuclei is well described by the Woods-Saxon
formula which can be roughly approximated by the sharp-
sphere parametrization with the radius R which for the heaviest
nuclei equals about 7 fm. The mean square radius for the sharp-
sphere parametrization 〈r2〉 = 3R2/5. Therefore, we choose
the widths of the Gaussian distribution σT = σx = σy to be
equal to R/

√
5 ≈ 3 fm. The transverse size of the box LT is

assumed to coincide with σT . The longitudinal width of the
interaction zone σz is chosen as 1 fm. The calculations of ρ(t)
and e(t)/e(0) are performed for Lz = 1 fm and Lz = 3 fm.
The results are shown in Figs. 3–6.

As already mentioned, the width of rapidity distribution of
charged pions produced in Au-Au collisions at

√
s = 200 GeV

is �Y = 2.3 [6]. One expects that the rapidity of produced
partons is even broader. Therefore, the results shown in
Figs. 3 and 4 for �Y = 2.5 seem to be relevant for heavy-ion
collisions at the BNL Relativistic Heavy Ion Collider (RHIC).
In such a case, it takes 6–8 fm/c to have an oblate momentum
distribution. As Figs. 5 and 6 show, the energy density in the
box is then decreased by a large factor—the system is much
diluted.

FIG. 3. (Color online) Momentum anisotropy as a function of
time for four values of the rapidity distribution width �Y . The upper
most line corresponds to �Y = 2.5, the next lower one to �Y = 2.0,
etc. The longitudinal size of the box Lz equals 1 fm.
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FIG. 4. (Color online) Same as Fig. 3, but for Lz = 3 fm.

One argues that particles which are produced with rapidity
Y materialize only at a finite proper time τ and space-time
rapidity η = Y . Keeping in mind that

τ =
√

t2 − z2, η = 1

2
ln

t + z

t − z
,

one finds

t = τ chη, z = τ shη.

When the formation time τ is 0.3 fm/c and η = Y = 2.5, one
obtains t = 1.8 fm/c and z = 1.8 fm. Thus, partons with Y =
2.5 materialize beyond the box of Lz � 1 fm. To take into
account the effect of finite time formation in our analysis, we
simply eliminate from the distribution function (1) the partons
of the proper time smaller than τ . In other words, function (1)
is multiplied by 
(t

√
1 − v2

z − τ ), and high-rapidity partons
are effectively excluded.

The temporal evolution of the momentum asymmetry ρ,
which takes into account the finite formation time, is shown in
Figs. 7 and 8 for τ = 0.3 and τ = 0.8 fm/c, respectively. As

FIG. 5. (Color online) Relative energy density as a function of
time for four values of the rapidity distribution width �Y . The upper
most line corresponds to �Y = 1.0, the next lower one to �Y = 1.5,
etc. The longitudinal size of the box Lz equals 1 fm.

FIG. 6. (Color online) Same as Fig. 5, but for Lz = 3 fm.

FIG. 7. (Color online) Momentum anisotropy as a function of
time for the formation time τ = 0.3 fm/c and four values of the
rapidity distribution width �Y . The upper most line corresponds to
�Y = 2.5, the next lower one to �Y = 2.0, etc. The longitudinal
size of the box Lz equals 3 fm.

FIG. 8. (Color online) Same as Fig. 7, but for τ = 0.8 fm/c.
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previously, σT = LT = 3 fm, σz = 1 fm, and Lz = 3 fm. As
seen, the effect of finite formation time is very significant. At
the beginning, the momentum distribution is oblate as partons
with small Y appear in the box earlier than those with larger Y .
After some time, the momentum distribution is prolate, and it
becomes again oblate due to the system’s expansion only after
3–5 fm/c.

IV. CONCLUSIONS AND DISCUSSION

As discussed in Sec. II, the parton system produced
in nucleus-nucleus collisions has to be equilibrated before
1.5 fm/c. Otherwise, the eccentricity is reduced too much,
and the ideal hydrodynamics significantly underestimates the
experimental data of the elliptic flow. The results from Sec. III
show that at the time 1.5 fm/c, the local momentum distribution
is still prolate. Therefore, we conclude that just before local
equilibrium is reached, the parton momentum distribution is
elongated along the beam.

Let us now consider the reliability of this conclusion.
First of all, if our rather conservative estimate of the upper
limit of equilibration time of teq = 1.5 fm/c is replaced by
more elaborated estimate of 0.6 fm/c given in Ref. [4], our
conclusion is really safe—it seems impossible to build up the
oblate momentum distribution in such a short time.

One wonders whether the formation time τ can be extended.
It should be remembered, however, that for finite τ , the initial
coordinate space eccentricity does not occur at t = 0 but rather
at t = τ (for midrapidity particles). And the interval of time
when the system reaches equilibrium is reduced to teq − τ . So,
the longer the τ , the more difficult it is to understand the fast
thermalization.

Temporal evolution of the momentum anisotropy is faster
when σz, which is the initial longitudinal localization of
produced partons, is reduced. However, for Lz = 3 fm, the
time when ρ = 1 is shorter only by 25% when σz decreases
from 1 to 0.5 fm. So, our conclusion remains unchanged.
We note that σz should not be confused with the longitudinal
localization of valence quarks of incoming nuclei which, due
to the Lorentz contraction, is σT /γ with γ being the Lorentz
factor. Our σz corresponds to the produced partons. Therefore,
it cannot be too small, as the wee partons, which are localized

beyond the contracted volume of incoming nuclei, effectively
participate in nucleus-nucleus collisions.

Our free-streaming model of massless partons is obviously
very naive. Partons, which are produced at the collision’s early
stage, often carry a large virtuality acting as a mass. If the
parton mass is taken into account, both the coordinate and
momentum space evolutions are slowed down. Interparton
interactions presumably lead to a similar effect. However,
we cannot see a good reason for why the coordinate space
evolution is slowed down much more than the momentum
space evolution. Therefore, our conclusion seems to be rather
safe.

Obviously, it is desirable to improve our free-streaming
model, but the problem is rather difficult. The color glass
condensate (CGC) approach (for a review, see Ref. [10]),
which is the best developed effective theory for studying the
early stage of heavy-ion collision, is not well suited for the
problem. The valence quarks are treated in CGC as classical
passive sources of small x, highly populated gluons which
are described in terms of classical fields. Partons with sizable
x, which crucially influence the momentum distribution, are
essentially absent in CGC.

Numerous studies of equilibration of parton systems with
the initially oblate momentum distribution, which are reviewed
in Ref. [1], are theoretically well founded as the oblate
system is diluted and decohered. However, according to our
conclusion, these studies do not actually explain how local
equilibrium is reached in heavy-ion collisions but rather how
the equilibrium is sustained. We believe that the plasma
equilibration, in particular the color instabilities, which are
supposed to speed up the process of thermalization, should be
analyzed as in Refs. [11,12], that is, in the systems with prolate
momentum distribution. We are aware that kinetic theory is
hardly applicable to such dense, inhomogeneous, and partially
coherent systems, but Nature does not seem to be bothered by
our theoretical difficulties.
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