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We discuss a sum rule satisfied by the correlation function of two particles with small relative momenta. The
sum rule, which results from the completeness condition of the quantum states of two particles, is derived and
checked to see how it works in practice. The sum rule is shown to be trivially satisfied by free particle pairs. We
then analyze three different systems of interacting particles: neutron and proton pairs in the s-wave approximation,
the so-called hard spheres with phase shifts taken into account up to l = 4, and finally, the Coulomb system of
two charged particles.
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I. INTRODUCTION

The correlation functions of two identical or nonidentical
particles with “small” relative momenta have been extensively
studied in nuclear collisions for bombarding energies from tens
of MeV [1] to hundreds of GeV [2]. These functions provide in-
formation about space-time characteristics of particle sources
in the collisions. As shown by one of us [3], the correlation
function integrated over particle relative momentum satisfies
a simple and exact relation because of the completeness of
the particle quantum states. The relation can be used to get a
particle phase-space density, following the method [4,5], with
no need to extract the Coulomb interaction. The sum rule offers
a constraint for the procedure of imaging [6,7] which inverts
the correlation function and provides the source function. The
sum rule is also helpful in handling the correlation functions
of exotic systems such as p̄� [8] when the interparticle
interaction is poorly known.

The aim of this paper is to discuss the sum rule in detail and
to prove or disprove its usefulness in experimental studies.
Therefore, we first derive the sum rule and show that it
is trivially satisfied by free particles. Then, we analyze the
correlations in the neutron-proton (n-p) system, where there
are both the two-particle scattering states and a bound state, i.e.,
a deuteron. We prove that in spite of the attractive interaction,
the n-p correlation can be negative because of the deuteron
formation. Although some qualitative features dictated by the
sum rule are certainly seen, the calculated correlation function
does not satisfy the sum rule. This is not surprising as not
only the momenta of order 1/R, where R is the source size,
but also larger momenta contribute to the sum-rule integral.
Consequently, the s-wave approximation, which is used to
compute the n-p correlation function, is insufficient.

To assess the importance of the higher l phase shifts, we
discuss a system of the so-called hard spheres and compute
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the correlation function of identical and nonidentical particles,
taking into account phase shifts up to l = 4. Paradoxically, the
higher l contributions do not improve the situation but make it
even worse.

Finally, we discuss the correlations caused by the Coulomb
interaction. This case is of particular interest as one usually
measures the correlation functions of charge particles that
experience the Coulomb interaction. Also, the integral, which
is controlled by the sum rule, is used to determine the particle
phase-space density [4,5]. In the case of Coulomb interactions,
the exact wave functions are known, and consequently, the
exact correlation functions can be computed. Unfortunately,
as we discuss in detail, the integral of interest appears to
be divergent, and the sum rule does not hold for this most
important case.

II. PRELIMINARIES

To avoid unnecessary complications, our considerations
are nonrelativistic, and we start with the formula repeatedly
discussed in the literature which expresses the correlation
function R(q) of two particles with the relative momentum
q as

R(q) =
∫

d3r Dr (r) |φq(r)|2, (1)

where φq(r) is the wave function of relative motion of the two
particles. Dr (r) is the effective source function defined through
the probability density Dr (r, t) to emit the two particles at the
relative distance r and the time difference t as

Dr (r) =
∫

dt Dr (r − vt, t), (2)

with v being the particle pair velocity with respect to the
source; the relative source function Dr (r, t) is given by
the single-particle source function D(r, t), which describes the
space-time emission points of a single particle, in the following
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way:

Dr (r, t) =
∫

d3R dT D

(
R − 1

2
r, T − 1

2
t

)

×D

(
R + 1

2
r, T + 1

2
t

)
.

We note that Dr (r),Dr (r, t), and D(r, t) are all normalized as∫
d3r Dr (r) =

∫
d3r dt Dr (r, t) =

∫
d3r dt Dr (r, t) = 1.

(3)

We also observe that the spherically symmetric single-particle
source function D(r, t) provides, in general, the effective
Dr (r), which is elongated along the velocity v. To simplify
calculations, however, we assume here that the source function
Dr (r) is spherically symmetric. Such an assumption makes
sense when the single-particle source function D(r, t) is spher-
ically symmetric and particles are emitted instantaneously, i.e.,
D(r, t) = D(|r|) δ(t − t0). Then,

Dr (r) =
∫

d3RD

(
R − 1

2
r
)

D

(
R + 1

2
r
)

.

The single-particle source function is often chosen in the
Gaussian form

D(r) = 1(
2πr2

0

)3/2 exp

(
− r2

2r2
0

)
.

It gives the mean radius squared of a source-equal to 〈r2〉 =
3r2

0 , and it leads to the effective relative source function as

Dr (r) = 1(
4πr2

0

)3/2 exp

(
− r2

4r2
0

)
. (4)

III. SUM RULE

Let us consider the correlation function integrated over the
relative momentum. Since R(q) → 1 when q → ∞, we rather
discuss the integral of R(q) − 1. Using Eq. (1) and taking
into account the normalization condition of Dr (r) (3), one
finds, after changing the order of the r and q integrations, the
expression∫

d3q

(2π )3
(R(q) − 1) =

∫
d3r Dr (r)

∫
d3q

(2π )3
(|φq(r)|2 − 1).

(5)

It appears that the integral over q in the right-hand side
(rhs) of Eq. (5) is determined by the quantum-mechanical
completeness condition. Indeed, the wave functions satisfy
the well-known closure relation∫

d3q

(2π )3
φq(r)φ∗

q(r′) +
∑

α

φα(r)φ∗
α(r′)

= δ(3)(r − r′) ± δ(3)(r + r′), (6)

where φα represents a possible bound state of the two particles
of interest. When the particles are not identical, the second
term in the rhs of Eq. (6) is not present. This term guarantees

the right symmetry for both sides of the equation for the case
of identical particles. The upper sign is for bosons, while the
lower one is for fermions. The wave function of identical
bosons (fermions) φq(r) is (anti-)symmetric when r → −r,
and the rhs of Eq. (6) is indeed (anti-)symmetric when r →
−r or r′ → −r′. If the particles of interest carry spin, the
summation over spin degrees of freedom in the left-hand side
(lhs) of Eq. (6) is implied. When the integral representation of
δ(3)(r − r′) is used, the relation (5) can be rewritten as∫

d3q

(2π )3
[φq(r)φ∗

q(r′) − eiq(r−r′)]

+
∑

α

φα(r)φ∗
α(r′) = ±δ(3)(r + r′).

Now, we take the limit r′ → r and get the relation∫
d3q

(2π )3
[|φq(r)|2 − 1] = ± δ(3)(2r) −

∑
α

|φα(r)|2 . (7)

When Eq. (7) is substituted into Eq. (5), one finds the desired
sum rule∫

d3q [R(q) − 1] = ±π3 Dr (0) −
∑

α

Aα, (8)

where Aα is the formation rate of a bound state α

Aα = (2π )3
∫

d3r Dr (r)|φα(r)|2. (9)

Aα relates the cross section to produce the bound state α with
momentum P to the cross section to produce two particles with
momenta P/2 as

dσα

dP
= Aα

dσ̃

d(P/2)d(P/2)
.

The tilde means that the short-range correlations are removed
from the two-particle cross section, which is usually taken as
a product of the single-particle cross sections.

The completeness condition is, obviously, valid for any
interparticle interaction. It is also valid when the pair of
particles interact with the time-independent external field,
e.g., the Coulomb field generated by the particle source.
Thus, the sum rule (8) holds under very general conditions
as long as the basic formula (1) is justified; in particular, as
long as the source function Dr (r) is q independent and spin
independent. The validity of these assumptions can only be
tested within a microscopic model of nucleus-nucleus collision
which properly describes the quantum particle correlations and
bound state formation.

There are several potential applications of relation (8). As
already mentioned, the integral of the correlation function in
the lhs of Eq. (8) is used to determine a particle phase-space
density. The method [4,5] assumes that the correlation function
represents noninteracting particles. Consequently, before com-
puting the integral, the correlation function is corrected in such
a way that the Coulomb interaction is removed. However, the
sum rule (8) shows that the integral of the correlation function
is independent of the interparticle interaction. Therefore, there
is no need to extract the Coulomb interaction. We note that
this procedure is rather model dependent.
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To obtain information about the source function D(r, t), one
usually parametrizes the function, computes the correlation
function, and compares it with experimental data. The method
of imaging [6,7] provides the source function directly, invert-
ing the functional R[Dr ] (1) with the experimental correlation
function as an input. As seen, relation (8), which gives Dr (0),
can be treated as a useful constraint of the imaging method.

The sum rule is also helpful in understanding the correlation
functions. In particular, the sum rule shows that the correlation
function can be negative in spite of an attractive interparticle
interaction. This happens when the particles form bound
states represented by the second term in the rhs of Eq. (8)
or the interaction is strongly absorptive as in the case of
an antiproton-lambda system which annihilates into mesons.
Then, the scattering states of the p̄� do not give a complete set
of quantum states of the system, and the integral from the lhs of
Eq. (8) has to be negative. The recently measured correlation
function of p̄ and � [8] is indeed negative at small relative
momenta.

IV. FREE PARTICLES

In the case of noninteracting particles, the correlation
function differs from unity only for identical particles. Then,
the wave function, which enters the correlation function (1), is
an (anti-)symmetrized plane wave

φq(r) = 1√
2

(eiqr ± e−iqr),

with the upper sign for bosons and lower for fermions. Then,
the integration over q in Eq. (5) can be explicitly performed
without reference to the completeness condition (7), and one
finds ∫

d3q [R(q) − 1] = ±π3 Dr (0). (10)

The sum rule (10) was found this way in [9]; see also [4].
Although the sum rule (8) assumes integration up to the

infinite momentum, one expects that the integral in Eq. (8)
saturates at sufficiently large q. To discuss the problem
quantitatively, we define the function

S(qmax) = 4π

∫ qmax

0
dq q2[R(q) − 1]. (11)

As already mentioned, the source function is assumed to be
spherically symmetric; consequently, the correlation function
depends only on q ≡ |q|. Thus, the angular integration is
trivially performed.

For the Gaussian effective source (4), when π3Dr (0) =
(
√

π/2r0)3, the free functions R(q) and S(qmax) equal

R(q) = 1 ± e−4r2
0 q2

,

S(qmax) = ±
(√

π

2r0

)3

E2/3[(2r0qmax)3],

where

En(x) ≡ 1

�(1 + 1/n)

∫ x

0
dte−tn ,

and �(z) is the Euler gamma function. Since for large x, the
function En(x) can be expressed as (see, e.g., [10]),

En(x) = 1 − 1

�(1 + 1/n)

e−xn

nxn−1

[
1 + O

(
1

xn

)]
,

we have the approximation

S(qmax) ≈ ±
(√

π

2r0

)3 (
1 − 4r0qmax√

π
e−4r2

0 q2
max

)
,

for (2r0 qmax)3 
 1. As seen, the sum-rule integral (10) is
saturated for qmax not much exceeding 1/2r0, and obviously,
the sum rule is satisfied.

V. NEUTRON-PROTON SYSTEM

In this section, we discuss the interacting neutron-proton
pair in either the spin singlet or triplet state. The nucleons,
produced in high-energy nuclear collisions, are usually as-
sumed to be unpolarized, and one considers the spin-averaged
correlation function R which is a sum of the singlet and triplet
correlation functions Rs,t with the weight coefficients 1/4 and
3/4, respectively. Here, we consider, however, the singlet and
the triplet correlation functions separately. Then, the sum rule
(8) reads ∫

d3q (Rs(q) − 1) = 0, (12)∫
d3q(Rt (q) − 1) = −Ad . (13)

Following [11], we calculate the correlation functions Rs,t

assuming that the source radius is significantly larger than the
n-p interaction range. Then, the wave function of the n-p pair
(in a scattering state) can be approximated by its asymptotic
form

φs,t
np (r) = eiqr + f s,t (q)

eiqr

r
, (14)

where f s,t (q) is the scattering amplitude. It is chosen as

f s,t (q) = −as,t

1 − 1
2ds,t as,t q2 + iqas,t

, (15)

where as,t (ds,t ) is the scattering length (effective range) of the
n-p scattering; as = −23.7 fm, ds = 2.7 fm, and at = 5.4 fm,
dt = 1.7 fm [12]. The amplitude (15) takes into account only
the s-wave scattering. This is justified as long as only small
relative momenta are considered.

Substituting the wave function (14) into formula (1) with
the source function (4), we get

Rs,t (q) = 1 + Re[f s,t (q)]
1

2r2
0 q

e−4r2
0 q2

erfi(2r0q)

− Im[f s,t (q)]
1

2r2
0 q

(1 − e−4r2
0 q2

) + |f s,t (q)|2 1

2r2
0

,

(16)

where

erfi(x) ≡ 2√
π

∫ x

0
dtet2

.
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FIG. 1. Singlet correlation function of neutron and proton com-
puted for three values of source size parameter r0.

Because the source described by formula (4) is spherically
symmetric, the correlation function (16) does not depend on q
but on q only.

In Figs. 1 and 2, we show, respectively, the singlet and triplet
correlation functions computed for three values of the source
size parameter r0. As seen, the triplet correlation is negative in
spite of the attractive neutron-proton interaction. This happens,
in accordance with the sum rule (13), because the neutron and
proton, which are close to each other in the phase space, tend
to exist in a bound not a scattering state. Moreover, the n-p
pairs that form a deuteron deplete the sample of n-p pairs
and produce a dip of the correlation function at small relative
momenta.

The deuteron formation rate, which enters the sum rule (13),
is computed with the deuteron wave function in the Hulthén
form

φd (r) =
(

αβ(α + β)

2π (α − β)2

)1/2
e−αr − e−βr

r
, (17)

FIG. 2. Same as Fig. 1, but for triplet correlation function.

FIG. 3. Deuteron formation rate as a function of source size
parameter r0.

with α = 0.23 fm−1 and β = 1.61 fm−1 [13]. Substituting
the wave function (18) and the source function (4) into Eq. (9)
results in

Ad = 2π2

r2
0

αβ(α + β)

(α − β)2
[K(2αr0)

− 2K((α + β)r0) + K(2βr0)], (18)

where

K(x) ≡ ex2
erfc(x), erfc(x) ≡ 2√

π

∫ ∞

x

dt e−t2
.

In Fig. 3, we present the deuteron formation rate (18) as
a function of the source size parameter r0. As seen, Ad

monotonously decreases when the source grows.
In Figs. 4 and 5 we display the function S(qmax), defined by

Eq. (11), found for the singlet and triplet correlation functions
presented in Figs. 1 and 2, respectively. Although S(qmax)

FIG. 4. Function S(qmax) for singlet correlation function of
neutron and proton for three values of source size parameter r0. To
set the scale, the corresponding values of the deuteron formation rate
are given.
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FIG. 5. Same as Fig. 4, but for triplet correlation function.

saturates at large qmax for both the singlet and the triplet
correlation function, neither the sum rule (12) nor (13) is
satisfied. The singlet S(qmax) does not vanish at large qmax,
as it should according to Eq. (12), while the triplet S(qmax)
is not negative, as required by Eq. (13). However, comparing
the numerical values of S(qmax) to the corresponding deuteron
formation rate, which sets the characteristic scale, one sees
that with growing r0, the sum rule is violated less and less
dramatically. It is not surprising, because the asymptotic form
of the wave function (14) and the s-wave approximation then
become more accurate. Formula (11) shows that because of
the factor q2, even small deviations of the correlation function
from unity at large q generate sizable contributions to S.
Therefore, we can expect that higher partial waves have to
be taken into account to satisfy the sum rule.

VI. HARD SPHERES

We consider here a pair of the so-called hard spheres
interacting via the potential that is zero at distances larger
than a and is infinite otherwise; a is the sphere’s diameter.
As is well known (see, e.g., [14]), scattering of the spheres is
analytically tractable, and the lth phase shift δl is given by the
equation

tan δl = jl(qa)

nl(qa)
, (19)

where jl(z) and nl(z) are the spherical Bessel and Neumann
functions, respectively. The scattering amplitude equals

f (	) = 1

q

∞∑
l=0

(2l + 1) Pl(cos	)
cot δl + i

cot2 δl + 1
, (20)

where 	 is the scattering angle and Pl(z) is the lth Legendre
polynomial. Substituting amplitude (20) into the equation
analogous to Eq. (14) produces the (asymptotic) wave function.
Using this function and the Gaussian source (4), we obtain the

FIG. 6. Correlation function of nonidentical hard spheres for
source size parameter r0 = 4 fm.

correlation function of nonidentical hard spheres as

R(q) = 1 + 1√
π r3

0 q

∑
l

(2l + 1)
jl(qa)

n2
l (qa) + j 2

l (qa)

×
{ [

nl(qa) cos

(
πl

2

)
+ jl(qa) sin

(
πl

2

)]

×
∫ ∞

0
drr e

− r2

4r2
0 cos(qr) jl(qr)

+
[
nl(qa) sin

(
πl

2

)
− jl(qa) cos

(
πl

2

)]

×
∫ ∞

0
drr e

− r2

4r2
0 sin(qr) jl(qr)

}

+ 1

2r2
0 q2

∑
l

(2l + 1)
j 2
l (qa)

n2
l (qa) + j 2

l (qa)
. (21)

For identical hard spheres, the wave function should be (anti-)
symmetrized as 1√

2
[φq(r) ± φq(−r)], and the correlation

function equals

R(q) = 1 ± e−4r2
0 q2 + 1√

π r3
0 q

∑
l

(2l + 1)
jl(qa)

n2
l (qa) + j 2

l (qa)

× [1 ± (−1)l]

{[
nl(qa)cos

(
πl

2

)
−jl(qa)sin

(
πl

2

)]

×
∫ ∞

0
drr e

− r2

4r2
0 cos(qr)jl(qr) −

[
nl(qa)sin

(
πl

2

)

+ jl(qa)cos

(
πl

2

)] ∫ ∞

0
drr e

− r2

4r2
0 sin(qr) jl(qr)

}

+ 1

2r2
0 q2

∑
l

(2l + 1)
j 2
l (qa)

n2
l (qa) + j 2

l (qa)
[1 ± (−1)l].

(22)

We note that there is a specific asymmetry of the signs of
the corresponding terms in Eqs. (21) and (22). This happens
because [(−1)l ± 1]/2 = ∓(−1)l .

In Figs. 6–9, we show the correlation functions for
nonidentical spheres (21) and identical bosonic ones (22). The
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FIG. 7. Same as Fig. 6, but for r0 = 6 fm.

functions are computed numerically for the sphere diameter
a = 1 fm and two values of the source size parameter r0 = 4 fm
and r0 = 6 fm. We have considered rather large sources
because the wave function, which is used to compute the cor-
relation function, is of the asymptotic form (14). This requires
r0 
 a. The functions S(qmax) defined by Eq. (11), which
correspond to the correlation functions shown in Figs. 6–9, are
presented in Figs. 10–13. In Figs. 6–13, three families of curves
represent the s-wave approximation, the sum of partial waves
with l = 0, 1, 2, and the sum of l = 0, 1, 2, 3, 4. As seen,
going beyond the s-wave approximation minimally modifies
the correlation functions shown in Figs. 6–9. This is rather
expected, as the correlation functions are significantly different
from unity only at small momenta where contributions of
higher partial waves are strongly suppressed. The higher
partial waves are more important for the functions S(qmax),
but the integrals are still far from being saturated. According
to the sum rule (8), the function S(qmax) should tend to
zero for nonidentical spheres and to π3Dr (0) = (

√
π/2r0)3

for identical ones when qmax → ∞. Such a behavior is not
observed in our calculations, and taking into account the partial
waves of higher l does not improve the situation. We see two
possible explanations for the problem. First, the sum rule is in

FIG. 8. Correlation function of identical hard spheres for source
size parameter r0 = 4 fm.

FIG. 9. Same as Fig. 8, but for r0 = 6 fm.

principle fulfilled, but one should go to much larger momenta
qmax to saturate the integral (11). However, higher relative
momenta require taking into account more and more partial
waves. If this is indeed the case, the sum rule is formally correct
but useless because Eq. (1), which is a starting point of the
sum-rule derivation, assumes that the relative momentum of
particles q is much smaller than the typical particle momentum.
Second, the integral (11) is divergent as qmax goes to infinity.
Then, the sum rule is simply meaningless. We discuss the
second possibility in more detail in the next section, where we
study the Coulomb interaction.

VII. COULOMB INTERACTION

As is well known, the Coulomb problem is exactly solvable
within the nonrelativistic quantum mechanics [14]. The exact
wave function of two nonidentical particles interacting as a
result of the repulsive Coulomb force is given as

φq(r) = e
− πλ

2q �

(
1 + i

λ

q

)
eiqz/2 F

(
−i

λ

q
, 1, iqη

)
, (23)

where λ ≡ µe2/8π , with µ being the reduced mass of the
two particles and ±e the charge of each of them; F denotes

FIG. 10. Function S(qmax) corresponding to correlation function
of nonidentical hard spheres for source size parameter r0 = 4 fm.
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FIG. 11. Same as Fig. 10, but for r0 = 6 fm.

the hypergeometric confluent function, and η is the parabolic
coordinate (see below). The wave function for the attractive
interaction is obtained from (23) by means of the substitution
λ → −λ. When one deals with identical particles, the wave
function φq(r) should be replaced by its (anti-)symmetrized
form. The modulus of the wave function (23) equals

|φq(r)|2 = G(q)

∣∣∣∣F
(

−i
λ

q
, 1, iqη

)∣∣∣∣2

,

where G(q) is the so-called Gamov factor defined as

G(q) = 2πλ

q

1

exp
(

2πλ
q

) − 1
. (24)

As seen, the modulus of the wave function of nonidentical par-
ticles solely depends on the parabolic coordinate η. Therefore,
it is natural to calculate the Coulomb correlation function in the
parabolic coordinates: η ≡ r − z, ξ ≡ r + z, and φ which is
the azimuthal angle. Then, the correlation function computed
for the Gaussian source function (4) equals

R(q) = G(q)

2
√

π r0

∫ ∞

0
dη exp

(
− η2

16r2
0

) ∣∣∣∣F
(

−i
λ

q
, 1, iqη

)∣∣∣∣2

,

(25)

FIG. 12. Function S(qmax) corresponding to correlation function
of identical hard spheres for source size parameter r0 = 4 fm.

FIG. 13. Same as Fig. 12, but for r0 = 6 fm.

where the integration over ξ has been performed. Note here
that in contrast to the neutron-proton and hard sphere cases,
the Coulomb correlation function is calculated with the exact
wave function not with the asymptotic form of it.

The modulus of the (anti-)symmetrized Coulomb wave
function equals

|φq(r)|2

= 1

2
G(q)

{ ∣∣∣∣F
(

−i
λ

q
, 1, iqη

)∣∣∣∣2

+
∣∣∣∣F

(
−i

λ

q
, 1, iqξ

)∣∣∣∣2

± 2 Re

[
eiqz F

(
−i

λ

q
, 1, iqη

)
F ∗

(
−i

λ

q
, 1, iqξ

)]}
,

and the correlation function analogous to (25) is

R(q) = G(q)

2
√

π r0

{∫ ∞

0
dη exp

(
− η2

16r2
0

)∣∣∣∣F
(

−i
λ

q
, 1, iqη

)∣∣∣∣2

± 1

4r2
0

∫ ∞

0
dη

∫ ∞

0
dξ (η + ξ )exp

(
− (η + ξ )2

16r2
0

)

× Re

[
eiq(ξ−η)/2F

(
−i

λ

q
, 1, iqη

)
F ∗

(
−i

λ

q
, 1, iqξ

)]}
.

(26)

In Figs. 14 and 15, we demonstrate the correlation function
of nonidentical particles and identical pions, respectively,
which are given by Eqs. (25) and (26). In the case of
nonidentical particles, we have taken the reduced mass, which
enters the parameter λ, to be equal to that of identical pions.
Therefore, the two systems differ only because of the effects
of quantum statistics. In both cases, the Coulomb interaction
is repulsive. While the correlation of nonidentical particles
is everywhere negative, the correlation of identical pions is
negative at small q because of the Coulomb repulsion, but it
is positive for larger q as a result of the effect of quantum
statistics.

Figures 16–18 show the functions S(qmax) defined by
Eq. (11), which are computed for the correlation functions
presented in Figs. 14 and 15. According to the sum rule (8),
S(qmax) should vanish for sufficiently large qmax in the case of
nonidentical particles that repel each other, and S(qmax) should
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FIG. 14. Coulomb correlation function of nonidentical repelling
particles for three values of source size parameter r0.

tend to π3 Dr (0) for identical pions. As seen in Figs. 16–18,
the functions S(qmax) do not seem to saturate at large qmax, and
the sum rule is badly violated.

What is wrong here? The derivation of the sum rule (8)
implicitly assumes that the integral in the lhs exists, i.e., it
is convergent. Otherwise, interchanging the integrations over
q and r, which leads to Eq. (5), is mathematically illegal.
Unfortunately, the Coulomb correlation functions appear to
decay too slowly with q; consequently, the integral in the lhs
of Eq. (8) diverges.

To clarify how the integral diverges, one has to find the
asymptotics of the correlation function at large q. This is a
difficult problem, as one has to determine a behavior of the
wave function (23) at large q for any r and then perform the
integration over r. To our knowledge, the problem of large q
asymptotics of the Coulomb correlation function has not been
satisfactorily solved, although it has been discussed in several

FIG. 15. Same as Fig. 14, but for identical pions.

FIG. 16. Function S(qmax) corresponding to Coulomb correlation
function of nonidentical repelling particles for three values of source
size parameter r0.

papers [15–19]. We have not found a complete solution of
the problem, but our rather tedious analysis, which uses the
analytic approximate expressions of the hypergeometric con-
fluent function at small and large distances, suggests, in agree-
ment with [15–19], that [R(q) − 1] ∼ 1/q2 when q → ∞.
Then, the integral in the lhs of Eq. (8) linearly diverges, and the
sum rule does not hold. We note that the Gamov factor (24),
which represents a zero size source and decays as 1/q at large
q, leads to the quadratic divergence of the integral (8). We also
note here that the asymptotics 1/q2 of the correlation function
does not have much to do with the well-known classical limit
of the correlation function [15–19]. Since the large q limit of
the correlation function corresponds to the small separation of
the charged particles, which at sufficiently large q is smaller
than the de Broglie wavelength, the classical approximation
breaks down.

FIG. 17. Function S(qmax) corresponding to Coulomb correlation
function of identical pions for source size parameter r0 = 1 fm. The
dotted line represents the value of π 3 Dr (0).

044905-8



SUM RULE OF THE CORRELATION FUNCTION PHYSICAL REVIEW C 71, 044905 (2005)

FIG. 18. Same as Fig. 17, but for r0 = 3 fm and 5 fm.

VIII. FINAL REMARKS

The sum rule (8) provides a rigorous constraint on the
correlation function if the momentum integral in Eq. (8) exists.
The rule is trivially satisfied by the correlation function of
noninteraction particles. The model calculations of the n-p
correlation function in the s-wave approximation fail to fulfill
the sum rule. One suspects that the approximation, which is
sufficient to properly describe a general shape of the correlation

function, distorts its tail. Since even small deviations of the
correlation function from unity at large q generate a sizable
contribution to the sum-rule integral, it seems reasonable to
expect that the higher partial waves have to be included to
comply with the sum rule. Paradoxically, when the higher
partial waves are taken into account for the interacting hard
spheres, the situation does not improve but gets worse. This
suggests that either one should go to really large momenta
to saturate the sum-rule integral or the integral in Eq. (8)
is divergent. In the case of Coulomb repelling interaction,
we certainly deal with the second option. Because of the
strong electrostatic repulsion at small distances, the correlation
function decays too slowly at large momenta; consequently, the
sum-rule integral does not exist.

Being rather useless, the sum rule nevertheless explains
some qualitative features of the correlation function. In
particular, it shows that in spite of the attractive interaction,
the correlation can be negative, as observed in the triplet state
of the neutron-proton pair and in the p̄� system.
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