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Employing a previously derived formulation, and extending the treatment from purely transverse modes to
wave vectors having a longitudinal component, we discuss the prospects for the occurrence of Weibel-type
color-current filamentation in high-energy nuclear collisions. Numerical solutions of the dispersion equation
for a number of scenarios relevant to RHIC and LHC suggest that modes with�predominantly transverse� wave
numbers of several hundred MeV may become moderately agitated during the early collision stage. The
emergence of filamentation helps to speed up the equilibration of the parton plasma and it may lead to
nonstatistical azimuthal patterns in the hadron final state.
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I. INTRODUCTION

In the exploration of high-energy nuclear collisions�1�,
the possible occurrence of collective phenomena is of par-
ticular interest. The present note reports on studies of color
filamentation during the early collision stage.

Within the framework of electrodynamics, Weibel�2�
pointed out that self-excited transverse modes exist in plas-
mas with anisotropic momentum distributions and he derived
their rate of growth from the linear response of the collision-
less Boltzmann transport equation�also known as the Vlasov
equation�. This treatment was later adapted to counterstream-
ing fluids of nucleons�3,4� or partons�5–9� and it was found
that also these systems possess the Weibel filamentation in-
stability. Although idealized counterstreaming may not be
realized, it is expected that a significant degree of local
momentum-space anisotropy will occur at the early stages of
relativistic nuclear collisions at the Relativistic Heavy-Ion
Collider �RHIC� or the Large Hadron Collider�LHC� and
investigations have been carried out of the associated Weibel
filamentation modes in chromodynamic plasmas�10–12�.

The present work employs the approach formulated in
these latter investigations in an attempt to achieve a more
complete and quantitative understanding of the Weibel fila-
mentation phenomenon in high-energy nuclear collisions.
After recalling the most important developments made in
Refs. �10–13�, we first discuss the general features of the
filamentation phenomenon and considering, for the first time,
modes that are not simply transversally aligned. For plasmas
relevant to RHIC or LHC, we present numerical results for
the resulting growth rates. Furthermore, for suitable idealized
dynamical scenarios, we extract the collective amplification
coefficients and elucidate the importance of the rapid longi-
tudinal expansion as well as the equilibration caused by col-
lisions among the partons. We conclude by discussing the
possible dynamical implications of these collective modes.

II. FORMAL FRAMEWORK

The present study is based on the developments made
previously in Refs.�10–13� and we recall here the most rel-

evant elements of those. The treatment is made within the
semiclassical transport framework in which the partons are
described by their phase-space densities. An early review of
quark-gluon transport theory was given by Elze and Heinz
�14�, while a very recent review may be found in Ref.�15�.

In the present problem, we perturb a plasma of quarks,
antiquarks, and gluons whose phase-space densities are uni-
form in space and stationary in time. Furthermore, they are
distributed equally among the various color channels, so the
corresponding background densities are color singlets. For
simplicity, the partons are assumed to be massless, so their
energies areEp��p�.

There are, in principle, separate phase-space densities for
each quark flavor and each spin component, but since they
all contribute additively we may consider just one generic
quark density with a fourfold flavor-spin degeneracy,
Q(x,p), wherex�(t,r) denotes the four-position andp is
the quark three-momentum. Similarly, we consider just one
common phase-space density for the antiquarks,Q̄(x,p).

In addition to being 4�4 Dirac tensors, the phase-space
densitiesQ and Q̄ are N�N color matrices in the SU(N)
gauge group that have singlet�colorless� and multiplet�col-
ored� parts:

Q�x,p��Q0�p���Q�x,p�, �1�

Q̄�x,p��Q̄0�p���Q̄�x,p�. �2�

The singlet parts represent theq and q̄ background phase-
space densities,Q0�I f q and Q̄0�I f q̄ �where I is the N
�N unit matrix in color space�, with the phase-space number
densities for each color being

f q�p��
1

N
Tr�Q�x,p��, f q̄�p��

1

N
Tr�Q̄�x,p��. �3�

The induced disturbances�Q and�Q̄, which represent de-
viations from the color neutrality, are assumed to be much
smaller than the colorless background terms. They may be
expanded on theN2�1 SU(N) group generators�ta�, which
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satisfy Tr� tatb��
1
2 �ab �the trace is with respect to the color

indices�, and the individual color componentsQa andQ̄a can
be extracted by projection,

Qa�x,p��2Tr� taQ�x,p��, Q̄a�x,p��2Tr� taQ̄�x,p��.
�4�

Because the group generators are traceless, only the colorless
part of Q, i.e., Q0, contributes tof q , while only the colored
part �Q contributes toQa .

The gluon phase-space densityG(r,p) is an (N2�1)
�(N2�1) matrix in the adjoint representation, which is
spanned by theN2�1 matrices�Ta�, whose elements are the
SU(N) structure constants, (Ta)bc�� i f abc . The identity
f abcf dbc�N�ad implies that Tr�TaTb��N�ab. We may thus
write

G�x,p��G0�p���G�x,p�� f g�p�I�TaGa�x,p�, �5�

where the individual elements are

Gab�x,p�� f g�p��ab� i f abcGc�x,p�. �6�

The color singlet partG0 is the uniform and stationary gluon
background distribution andf g(p) is the associated phase-
space number density in each of theN2�1 different color
channels labeled bya. The various color components can be
extracted by trace operations:

f g�p��
1

N2�1
Tr�G�x,p���

1

N2�1
Gaa�x,p�, �7�

Ga�x,p��
1

N
Tr�TaG�x,p���

i

N
f abcGbc�r,p�. �8�

The disturbances in the parton phase-space densities con-
tribute additively to the induced current densitiesj a ,

j a
	�r,t ��

1

2
g� d3p

�2
�3
p	

Ep
�Qa�r,p,t ��Q̄a�r,p,t �

�2i f abcGcb�r,p,t ��, �9�

whereg is the QCD coupling constant,g2�4
�c�s .
In the collisionless idealization, the parton phase-space

densities satisfy Vlasov-type transport equations:

p	D	Q�x,p��
g

2
p	� F	
�x�,

�Q�x,p�

�p

� �0, �10�

p	D	Q̄�x,p��
g

2
p	� F	
�x�,

�Q̄�x,p�

�p

� �0, �11�

p	D	G�x,p��
g

2
p	�F	
�x�,

�G�x,p�

�p

� �0, �12�

where�•,•� denotes the anticommutator. The covariant de-
rivativesD	 andD	 act as follows:

D	�I �	� ig�A	�x�,•�, D	�I�	� ig�A	�x�,•�,
�13�

with A	 andA	 being the potentials in the fundamental and
adjoint representations, respectively,

A	�x��Aa
	�x��a , A ab

	 �x��� i f abcAc
	�x�. �14�

The stress tensor in the fundamental representation isF	

��	A
��
A	� ig�A	 ,A
�, while F	
 denotes the field
strength tensor in the adjoint representation.

With the phase-space densities of forms�1�, �2�, and�5�,
the transport equations, which are linearized with respect to
�Q, �Q̄, and �G, can be explicitly solved in terms of the
free Green’s functions. Substituting these solutions into ex-
pression�9� for the current, one finds the Fourier transform
of the induced current:

j a
	�k���	
�k�Aa;
�k�, �15�

where k�(�,k). The polarization tensor�	
(k) does not
carry a color index, since the potential in a given color chan-
nel, Aa

	 , can induce color currents in only that channela. It
is given by

�	
�k��g2� d3p

�2
�3
p	

Ep
�g
��

p
k�

p�k�� i ��� f eff�p�

�p�
,

�16�

with the effectivebackground phase-space density being

f eff�p��
1

2
f q�p��

1

2
f q̄�p��N fg�p�. �17�

The result�15� is similar to the electromagnetic case, the
only difference being the replacement of the background
phase-space density of charge carriers,f e�ē(p), by theeffec-
tive background phase-space density contributing to each of
the N2�1 individual color channelsa. In order to simplify
the analysis, we assume that all the parton species�quarks,
antiquarks, and gluons� have the same momentum profile
�(p) with �d3p�(p)�1. So, f eff(p)��eff�(p) where the
effective parton density is�eff�

1
6 (�q�� q̄)� 3

8 �g .
Insertion of the expression�15� for the induced current

into the field equation of motion,D	F	
(x)� j 
(x), then
yields an algebraic equation forAa

	(k),

�k2g	
�k	k
��	
�k��Aa;
�k��0, �18�

which in turn leads to the dispersion equation for the collec-
tive modes,

det�k2g	
�k	k
��	
�k���0. �19�

However, due to the transversality of the polarization tensor,
k	�

	
(k)�0, the above equation involving a 4�4 determi-
nant can be reduced to an equation that involves only a 3
�3 determinant. This simplification can be most easily un-
derstood in the Coulomb gauge, where the chromoelectric
three-vector is given byEa�� tAa . Then Eq.�18� for Aa

	 is
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immediately transformed into an equation forEa and the
dispersion equation for the collective modes then readily fol-
lows,

det�k2� i j �kikj��2� i j �k���0, �20�

where the 3�3 color permittivity tensor� has the elements
� i j (k)�� i j ���2� i j (k). Although the dispersion equation
�20� has been derived here in the Coulomb gauge, it is gauge
independent since the position of a pole in the gluon propa-
gator is the same for all gauges, even though the gluon
propagator itself is a gauge-dependent quantity�see Ref.
�15�, for example�.

In the subsequent presentation, we study Eq.�20� with the
polarization tensor derived in the collisionless limit, in which
the treatment is simplest. A general formal justification for
adopting this scenario as a first approximation lies in the fact
that the frequency of the plasma waves is of orderg, whereas
that of the binary collisions is of orderg2 or g4, depending
on the momentum transfer. Thus, for sufficiently small cou-
pling constantsg, the collective modes have a shorter char-
acteristic time than the collisions and consequently, the col-
lisions do not influence the waves for short periods of time.
However, in the present case, where the focus is on unstable
modes, this argument may not hold, since the characteristic
growth rates tend to be significantly slower than the frequen-
cies of the stable modes. Furthermore, the coupling constant
is actually not that small and the parton density is initially
relatively high. Therefore, the dispersion equation�20� de-
rived within the collisionless idealization should be regarded
merely as a starting point for obtaining a rough idea of the
quantitative importance of the phenomenon. If it appears
warranted, more refined treatments would be called for.

III. GENERAL FEATURES

In the present study, we consider momentum profiles
�(p) that are invariant with respect to rotations around thez
axis as well as reflections in thexy plane�it then follows that
�(�p)��(p)]. Then the profile function depends only on
the magnitude of the momentum component along the sym-
metry axis,p���pz�, and the magnitude of the transverse
momentum,p��(px

2�py
2)1/2. Due to this symmetry, we may

generally assume that the wave vector is of the formk
�(kx,0,kz), with kx�k��0 and kz�k��0. Finally, since
we are seeking modes for which the frequency is purely
imaginary, we write�� i� where� is real.

The elements of the polarization tensor�(k) are

� i j �k��g2�eff� �v i
�

�pj �
v iv jk•v

�k•v �2��2
kl

�

�pl 	 , �21�

where �•� denotes the average over the profile function
�(p). Since�xy and �yz vanish in the present case, the
determinant�20� factorizes into ay part, k2��2��yy ,
which has no real roots, and anxz part presenting the dis-
persion equation of interest,Dk(�)�0, where

Dk��kz
2��2��xx��kx

2��2��zz���kxkz��xz�
2.
�22�

Since Dk depends on� only through its square, the roots
come in opposite pairs,�k�� i�k . Furthermore, it can be
seen thatDk vanishes for��0 since we then have


�xx �xz

�zx �zz
� �
 kz�vx�•••�� �kx�vx�•••��

kz�vz�•••�� �kx�vz�•••�� � , �23�

where �•••���g2�eff(�vz�/�px�vx�/�pz)/k•v�. The �
dependence of� notwithstanding,Dk(�) appears qualita-
tively as a fouth-order polynomial in�, with Dk��

4 for
large ���. Consequently, in addition to the double root at
zero, there is at most one other pair of real roots,��k . Thus,
for any given wave vectork, the dispersion equation�22� has
at most one positive root,�k .

When the wave vector is perpendicular to the axis of sym-
metry,k�(k�,0,0), the polarization tensor is fully diagonal,
�xz�0. Furthermore,�xx�0, so the dispersion equation
�22� reduces to

0�k�
2 ��2��zz,

or

k�
2 ��2�zz. �24�

This equation has a positive root as long ask��kmax, the
maximum being determined bykmax

2 ���zz(��0),

kmax
2 �2g2�eff� pz

2

E 
 �

�pz
2 �

�

�px
2� 	 . �25�

This relation shows that there are Weibel filamentation
modes as long as the momentum profile falls off ‘‘more rap-
idly’’ in the transverse direction than longitudinally.

It is readily seen that the polarization tensor remains un-
affected under a rescaling of its four-vector argumentk
�(�,k),�(ak)��(k). Thus, since�(k) is proportional to
g2�eff the entire dispersion equation remains unchanged if at
the same time that quantity is multiplied bya2. Conse-
quently, if for any given value ofg2�eff , the mode with the
wave vectork has the growth rate�k , then in a plasma
where the value ofg2�eff is changed by the factora2, the
mode with the wave vectorak has the growth ratea�k . This
general scaling property is very useful, as it makes it possible
to significantly extend the utility of results obtained for spe-
cific scenarios.

As k� is varied from zero tokmax �keepingk��0), the
growth rate�k starts out linearly from zero, has a broad
maximum, and then decreases towards zero again. The initial
slope (d�/dk�)0 is determined by

� vz

�

�pz
	 �� vz

2

vx
2��d�/dk��0

2 vx

�

�px
	 , �26�

and it increases with the degree of anisotropy.
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For any given value ofk� for which the transverse dis-
persion equation�24� has a solution fork�(k�,0,0) �i.e., for
k��kmax), there exists a range of valuesk��k�

max(k�) for
which the general dispersion equation�22� has solutions for
k�(k�,0,k�). �For k��0, the determinantDk , considered as
a function of�2, starts out from zero and exhibits a negative
minimum before starting its steady growth towards��2.
The value of� for which Dk becomes positive is the asso-
ciated growth rate�k . As k� is increased, the minimum
moves inwards�as does the crossing point�k) and it even-
tually merges with the maximum at zero. We then have
�2Dk /��2�0 and k� has attained its maximum value
k�

max(k�).�
As the direction of the wave vectork is moved out of the

transverse (xy) plane, the direction of the electric field vec-
tor E starts to deviate from thez axis, as does the direction of
the induced currentj. In the non-Abelian plasma, the specific
behavior is gauge dependent and we shall illustrate it in the
Coulomb gauge�Sec. VI�.

IV. CALCULATIONAL SCENARIOS

In order to have a concrete framework for the presentation
of the numerical results, we shall adopt the following stan-
dard values for the RHIC and LHC scenarios�16,17�:

RHIC: �s�0.3, �eff� t0�0.4 fm/c��6 fm�3, �27�

LHC: �s�0.1, �eff� t0�0.3 fm/c��50 fm�3.
�28�

Obviously, they represent very rough estimates only and we
have tried to err on the conservative side. Larger values for
either the coupling constant or the parton density would only
enhance the filamentation effect and the simple scaling prop-
erties of the dispersion equation�22� makes it relatively easy
to determine what would result if these input values were
changed.

In our studies, we shall employ two different analytical
parametrizations of the momentum profile function�(p).
The first form is a simple Gaussian:

�Gauss�p��
1


��
2

1

�2
�z

exp�
 px
2�py

2

��
2 �

pz
2

2� �
2� , �29�

where ��
2 ��px

2�py
2���x

2��y
2 and � �

2��pz
2���z

2 . Since
the results will depend only on the anisotropy�z /�x , we
shall adopt a fixed value for the transverse variance��

�300 MeV/c, and then vary the longitudinal width� � . We
note that ��/�px

2����/�py
2�����

�2 while ��/�pz
2�

�� 1
2� �

�2 for the Gaussian profile.
As an alternative, we employ a pQCD-motivated profile,

which has a polynomial transverse falloff,

�pQCD�p��
2




��
4

�pT
2���

2 �3
1

�2
�z

e�pz
2/2� �

2
. �30�

We still take the transverse width to be���300 MeV/c and
have ��/�pz

2��� 1
2� �

�2 while now ��/�px
2����/�py

2�
��2��

�2 . �We have also considered replacing the longitu-
dinal profile by a Gaussian in the rapidityy� 1

2 ln�(E
�pz)/(E�pz)�, but such a form is unsuitable because of its
singular behavior atp��0.�

Figure 1 illustrates shape of these two test profiles. Gen-
erally, for similar values of�� and � � , the pQCD form
exhibits a slower transverse falloff which�as we shall see�
enhances the degree of instability.

V. TRANSVERSE MODES

In order to illustrate the typical appearance of the disper-
sion relation, we show in Fig. 2 the growth rate�k for purely
transverse modesk�(k�,0,0) as a function ofk� , for a few
selected values of the momentum anisotropy in matter corre-
sponding to the initial RHIC scenario. The curve�(k�) rises
linearly from k��0 with an initial slope that increases with
the anisotropy�see Eq.�26��. The curve then exhibits a maxi-
mum �0 at the optimal wave numberk��k0, and then de-
creases roughly linearly towards zero ask� approachesk�

�kmax, with a slope that decreases as the anisotropy in-
creases. Although the two different momentum profiles yield
qualitatively similar dispersion relations, the slower trans-

FIG. 1. �Color online� Contour plot of the mo-
mentum profile function�(p) for either the
Gaussian�top� or the pQCD�bottom� parametri-
zation, using ���300 MeV/c and � �
�1 GeV/c. The presentation is logarithmic with
four bands per decade.
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verse falloff of the pQCD form generally increases the de-
gree of instability. As a consequence, the maximum wave
numberkmax becomes significantly larger and, perhaps more
importantly, the maximum growth rate�0 is also increased,
although this effect is only rather modest.

In order to provide a more global impression of these
features, we first consider the dependence of the maximum
wave numberkmax on the various input values�see Fig. 3�.
For the Gaussian profile we have

kmax
2 �g2�eff�vzpz�
 1

�x
2 �

1

�z
2� , �31�

which shows that there are unstable modes as long as�z
��x . The limiting case,kmax�0, corresponds to isotropy,
�z

2��x
2 �� 1

2 (300 MeV)2�. For the pQCD profile we find

kmax
2 �g2�eff�vzpz�
 2

�x
2 �

1

�z
2� . �32�

Thus, evidently,kmax is now larger and the limiting case,
kmax�0, is oblate,�z

2� 1
2�x

2 �� 1
4 (300 MeV)2�. The result-

ing values ofkmax are shown in Fig. 3. Sincekmax
2 ��s�eff ,

the results for the LHC and RHIC scenarios differ by a factor
of �(��)LHC /(��)RHIC�

1/2� 5
3 , in reflection of the general

scaling properties of the dispersion equation�24�. Further-
more, since�vzpz���pz���2/
�z , we obtain the following
fairly accurate approximation:

kmax
2 �g2�eff�2



�z
 1 or 2

�x
2

�
1

�z
2���z . �33�

More important thankmax is k0, the wave number of the
fastest-growing modes, since these modes will become pre-
dominant in the course of time. It is shown in Fig. 4�top�.
After a sharp initial rise,k0 exhibits a very slow decrease
with increasing anisotropy. For a wide range of� � values,
the wave number of the fastest-growing modes obtained with
the Gaussian profile is typically around 500 MeV at RHIC
and 900 MeV at LHC, corresponding to wave lengths�0 of
2.5 fm and 1.4 fm, respectively. For the pQCD profile these
wave numbers are typically 100 MeV higher. We note that
unless the anisotropy is small, we havek0�kmax.

The behavior of the maximum growth rate�0 is shown in
Fig. 4 �bottom� and it is qualitatively similar to that ofk0: it
exhibits a rapid initial growth followed by a slow decrease.
The maximum growth rate is obtained for� �
�1.5–2.0 GeV/c and the corresponding overall shortest
growth times�0�1/�0 are 0.90 fm/c and 0.55 fm/c for the
Gaussian profile, respectively, while they are about 20%
shorter for the pQCD profile. Thus the pQCD profile, with its
slower transverse falloff, leads to somewhat larger growth
rates. However, the overall results are very similar for the
two profile forms. In Fig. 4 as well, the scaling feature of the
dispersion equation�24� implies that the LHC curves are
simply a factor of5

3 larger than the RHIC curves. It is thus
fairly easy to infer the behavior of the dispersion relation for
any other particular choices of the input parameters�s and
�eff .

Our results for the transverse modes agree qualitatively
with the analytical results obtained in Ref.�11�.
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FIG. 2. The dispersion relation for four initial RHIC scenarios
(�s�0.3,�eff�6 fm�3) with various momentum anisotropies: the
growth rate�k for purely transverse modes,k�(k�,0,0), as a func-
tion of the transverse wave numberk� , for the Gaussian�top� or
pQCD �bottom� momentum profile�(p).

FIG. 3. The maximum wave numberkmax at the initial timet0 as
a function of the longitudinal momentum dispersion� � for Gauss-
ian and pQCD momentum profiles�(p) in the standard RHIC and
LHC scenarios given in Eqs.�27� and�28�. The approximate values
given by Eq.�33� are shown for the RHIC scenario�dots�.
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VI. GENERAL MODES

As noted above, for any given purely perpendicular wave
vector k�(k�,0,0) for which there exists a filamentation
mode�whose induced current is then perfectly aligned with
the symmetry axis�, there exists an entire range of mis-
aligned modes that are also unstable, being characterized by
the wave vectork�(k�,0,k�), wherek��k�

max(k�).
The dispersion equation for these general filamentation

modes is given by Eq.�22�. SinceDk(�) is even and van-
ishes for��0, there is at most one positive root for a given
k. The resulting maximum values ofk� are shown in Fig. 5
for selected values of the anisotropy, in both the RHIC and
LHC scenarios. These curves delineate the respective spin-
odal boundaries ink space and the isotropic metric employed
in the display ensures that the directional information is
meaningful.

For a general mode, whose wave vectork is not perpen-
dicular to thez axis, the situation is more complicated and

the associated fields and currents are no longer simply re-
lated tok. In order to illustrate the increased complexity, we
consider here thek dependence of the electric field strength
E and the color current densityj in the Coulomb gauge.�The
results are gauge invariant for electromagnetic plasmas.�
Thus, the electric fieldE is determined by the following 3
�3 matrix equation:

�k2� i j �kikj��2� i j �k��Ea
j �k��0. �34�

Since theyy term never vanishes�and the off-diagonal terms
involving y vanish by symmetry�, we must haveEy�0.
Thus, the field vector lies in thexz plane, the plane spanned
by the wave vector and the symmetry axis of the momentum
distribution f (p). In the aligned case, the wave vector is
perpendicular to the symmetry axis,k�(kx,0,0), and the
resulting electric field is directed along the symmetry axis,
E�(0,0,Ez). In the general case, the wave vector has a com-
ponent parallel to the symmetry axis,k�(kx,0,kz), and thus
no longer lies in the transverse plane. The angle formed with
the symmetry axis,�k , is determined by tan�k�kx /kz ,
while the polar angle of the associated electric field vector,
�E, is determined by

tan�E�
Ex

Ez
�

kxkz��xz

kz
2��2��xx

�
kx

2��2��zz

kzkx��zx
. �35�

For small values ofkz , �k is near 90°, while�E is near 0°.
These directions evolve steadily as the magnitude ofkz is

 

 

FIG. 4. The wave number of the fastest-growing mode,k0 �top�,
and the associated maximum growth rate�0 �bottom�, as functions
of the longitudinal momentum dispersion� � for RHIC �solid� and
LHC �dashed� scenarios, using either Gaussian or pQCD momen-
tum profiles having���0.3 GeV/c.
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FIG. 5. The maximum value of the longitudinal wave number
k�

max as a function of the magnitude of the transverse wave number
k� �a modek�(k�,0,k�) is unstable ifk��k�

max] for the initial
RHIC �bottom� and LHC�top� scenarios. The momentum profile is
Gaussian, and the various values of the longitudinal momentum
dispersion�z are indicated. The vertical and horizontal scales are
equal.
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increased,�k decreasing and�E increasing, until they be-
come equal just as the maximum value ofkz is reached,
�k„k� ,k�

max(k�)…��E„k� ,k�
max(k�)…. It follows that E�k

only whenk is perpendicular to the symmetry axis and thus
it is only those modes that have a purely transverse character.
Furthermore, there are no purely longitudinal modes�for
which E�k).

For large values ofkx , where� becomes small, there is
not much room forkz and the limiting direction does not
deviate much from thex direction�it approaches thex direc-
tion when kx approacheskmax). Obviously, there is most
room for kz for thosekx values that are in the region of
maximum growth, while for smallkx , where also� tends to
zero, there is again little room forkz . However, sincekx is
now also small, the direction ofk is significantly affected by
the addition ofkz . The resulting unstable region ink space is
thus a flat disklike volume�with a central depression�, which
is oriented perpendicular to the symmetry axis of the mo-
mentum profile�the beam axis�.

It also follows that�•k�0 at the spinodal boundary. This
feature implies that the limiting direction of the current is
perpendicular to the wave vector�and hence to the electric
field as well�. Furthermore, the direction of the currentj
turns in the same sense as the wave vectork, but initially at
a slower rate, so their relative angle never exceeds 90°,k•j
�0.

The evolution of these various directions with the wave
vectork is illustrated in Fig. 6. We see that in the region of
largest amplification the degree of reorientation can be sub-

stantial, typically amounting to���30°. The resulting
modes are rather complicated to describe, since the direc-
tions of k, E, andj have no simple mutual relationship.

VII. AMPLIFICATION COEFFICIENTS

The environments produced in high-energy nuclear colli-
sions are endowed with a rapid expansion, primarily in the
longitudinal �beam� direction ẑ. The effective density then
decreases towards zero in the course of time,�eff(t)→0. We
shall therefore solve the dispersion equation at successive
times t�t0 and thus obtain a time-dependent growth rate
�k(t) for each wave vectork. �Such an adiabatic approach is
valid only for sufficiently slow evolutions and the results
should therefore be regarded as approximative.� Since the
maximum wave number for which instabilities exist,kmax, is
proportional to the square root of�eff , it also decreases in
time, kmax(t). Consequently, for each particular wave vector
k, there is a time,tk

max beyond which the associated collec-
tive frequencies��k are real.

Within the adiabatic approximation, the amplitude of a
given unstable mode,Ck

� , evolves as

Ck
�� t ��Ck

�� t0�exp���
t0

t

�k� t��dt�� . �36�

The accumulated increase of the corresponding strength is
then governed by theamplification coefficient�18,19�,

 k��
t0

tk
max

�k� t �dt. �37�

An elementary analysis shows that if the density falls off as
an inverse power of time,�eff�t�!, then k�k1�2/! in the
limit of soft modes. Thus the amplification coefficient di-
verges unless the falloff is at least quadratic.

In a high-energy nuclear collision, the falloff of the den-
sity is initially approximately inversely proportional to time,
!�1, due to the rapid longitudinal expansion, but it then
quickens�ultimately to !�3) as the transverse expansion
manifests itself. Thus, if carried through, the adiabatic treat-
ment would yield finite amplification coefficients for all
modesk. For simplicity, and to avoid a sensitive dependence
on the long-time behavior for the soft modes, we shall em-
ploy a simple exponential falloff,

�eff� t ���eff� t0�e
��t/t0��eff� t0�� t0

t
�O
 t0

2

t2� � , �38�

where�t�t�t0 is the elapsed time. This form matches the
initial longitudinal expansion while ensuring that�k(t) drops
off sufficiently fast at large times to avoid soft divergencies.
It thus allows us to evaluate the amplification coefficients in
a manner that is insensitive to the long-term behavior of the
collision system.

We first calculate k under the assumption that the mo-
mentum distribution remains constant in time while�eff
drops off in the above exponential fashion�38�. This is ex-
pected to provide an overestimate of the amplification, since

FIG. 6. For a lattice of wave vectorsk�(k�,0,k�) are shown the
direction of the wave vector,ek �the upper-left line of any pair�,
together with the direction of either the electric field,eE �left panel�,
or the current densityej �right panel�, in the standard RHIC scenario
with a Gaussian momentum profile having� ��1 GeV/c. These
results have been obtained in the Coulomb gauge.
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both expansion and equilibration act to reduce the aniso-
tropy. The resulting amplification coefficients are shown in
Fig. 7. The curves all exhibit a steep initial rise followed by
a gentle descent for large wave numbers. Since the modes
with small wave numbers are subject to amplification for a
longer time, the curves have their maxima shifted down-
wards relative to thek0 values for the respective initial sce-
narios. Thus, the largest amplification coefficients are ob-
tained fork��250 GeV/c in the RHIC scenario and fork�

�400 GeV/c in the LHC scenario. Their largest values are
about 0.7 and 0.9, respectively, and they are reached for� �
�2 –4 GeV/c.

Since the pCDQ momentum profile generally leads to
growth rates�k that are larger than those obtained with the
Gaussian profile�see above�, the resulting amplification co-
efficients k are correspondingly larger, by about 20% in the
region of maximum amplification.

VIII. MOMENTUM RELAXATION

In the above analysis, we have taken account of the de-
creasing density, but kept the momentum profiles constant. A
more realistic treatment must take account of the dynamical
evolution of the momentum profile as well. Of particular
importance are the rapid longitudinal expansion and the pos-
sibility of collisions among the partons. In order to elucidate
the quantitative importance of these agencies, we allow the
momentum distribution to evolve as it would if subjected to
a combination of idealized longitudinal expansion and elastic
Boltzmann collisions, while still assuming that the overall
effective density behaves as in Eq.�38�. �Thus, although we
have neglected the possible influence of the parton-parton
collisions on the dispersion relation, we do now consider
their effect on the anisotropy in the medium.�

If we ignore the effect of the expansion and treat the
collisions in the relaxation-time approximation, the equation
of motion for the momentum distribution is simple:

�

�t
��p,t ���

1

tc
���p,t ���̃�p��, �39�

where �̃(p) is the equilibrium profile�which is isotropic�
and tc is the relaxation time. If we are only interested in the
momentum variances� i

2(t)��d3p pi
2�(p,t), then Eq.�39�

reduces to a set of coupled equations

�

�t
� i

2� t ���
1

tc
�� i

2� t ���̃2�, �40�

where�̃2 is the equilibrium variance. The evolution is then
the familiar exponential relaxation,

� i
2� t ���� i

2� t ���̃2� e�(t�t0)/tc��̃2. �41�

We now include a longitudinal scaling expansion, which
causes the density to decrease steadily in time,�(t)
��(t0)t0 /t. �The scaling scenario is boost invariant, so it
suffices to consider what happens in a rest frame at the ori-
gin, wheret andz are identical to the general variables� and
".� Since the collision rate is inversely proportional to the
density,tc

�1��� v̄, it is reasonable to assume that it exhibits
a similar decrease,tc

�1�C/t. The equations of motion�40�
are then modified:

�

�t
�x

2��
C

t
��x

2��̃2�, �42�

�

�t
�z

2��
C

t
��z

2��̃2��
1

t
�z

2 , �43�

The last term in Eq.�43� seeks to flatten the local momentum
distribution in response to the longitudinal stretching, which
at the same time reduces the collision rate.

The resulting dynamics is then more complicated. For
simplicity, we shall assume that the sum of the momentum
variances is preserved by the Boltzmann collisions, as in
elastic nonrelativistic collisions. The equilibrium variance at

 

 

 

 

 

 

 

 

FIG. 7. The amplification coefficient k for purely transverse
Weibel modes as a function of the wave numberk� , for the ideal-
ized case when the momentum profile remains frozen throughout
while the density decreases exponentially according to Eq.�38�
calculated for the RHIC scenario with either Gaussian�top� or
pQCD �bottom� profiles having the specified longitudinal widths
�z .
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a given timet is then given by�̃2� 1
3 (2�x

2��z
2). The equa-

tions of motion�42� and�43� can then be rewritten on matrix
form,

�

�t
 �x
2

�z
2� ��

1

3t 
 C �C

�2C 3�2C� 
 �x
2

�z
2� . �44�

The eigenvalues of the time-independent coupling matrix,
�	 , are determined by the following secular equation:

�	
2 �3�1�C��	�3C�0, �45�

and the eigenvalues of Eq.�44� are#	���	/3t, i.e.,

#	� t ��
1

2t
�1�C	��1�C�2� 4

3 C�1/2��0. �46�

It then follows that the associated normal variances�	
2 fall

off as inverse powers of time,

�	
2 � t �

�	
2 � t0�

�e� t0

t #	(t�)dt��e�(�	/3)� t0

t dt�/t��
 t0

t � �	/3

.

�47�

They represent approximately the distortion�z
2��x

2 and
�half� the total variance 2�x

2��z
2 , respectively.

Since the Cartesian variances can be expressed in terms of
the normal variances,

�x
2�N���

2 ����
2 �, �z

2�N���
2 �2���

2 �, �48�

with N �1�1�2�2 and

��
1

2C
� 3

2 �1� 2
3 C�C2�1/2� 3

2 � 1
2 C��0, �49�

their time evolution can be readily obtained. It is seen that all
the variances tend to zero for any�positive� value of the
collision constantC, thereby making it possible to simulta-
neously achieve the continual longitudinal shrinkage caused
by the expansion,�z→0, and the approach to isotropy
caused by the collisions,�z→�x .

The effects of the expansion and equilibration on the am-
plification coefficients is illustrated in Fig. 8 for the Gaussian
momentum profiles. In view of our previous findings, we
expect that the effects are similar for pQCD profiles. We note
that the stretching produces an only relatively moderate de-
crease�about 20%�, whereas the collisions reduce the ampli-
fication coefficients by about a factor of 3. The combined
effect is then a reduction of k by a factor of nearly 4. The
collision rate has been somewhat arbitrarily set toC�1,
corresponding to an initial Boltzmann relaxation time of
tc(t0)�t0. Our results show that there is a considerable sen-
sitivity to this quantity, which might be better estimated from
microscopic parton cascade models�20�.

In order to further elucidate the effect of scaling expan-
sion and the Boltzmann relaxation, we show in Fig. 9 the
effect of including both in the approximately optimal RHIC
and LHC scenarios, for which the initial longitudinal vari-
ance is around� ��2 GeV/c �see Fig. 7�. As already noted

in connection with Fig. 8, the inclusion of these effects lead
to an overall reduction of more than a factor of 4, relative to
the simple idealized case in which the momentum profiles
remain frozen as the density decreases according to Eq.�38�
�shown in Fig. 7�. The results obtained with pQCD profiles
are quite similar, apart from the values being overall slightly
larger �about 20% for the most amplified modes�.

Of course, if the Boltzmann relaxation time is increased,
the effect of the collisions will decrease, and vice versa.
Since the actual collision rate is hard to assess, it may only

FIG. 8. The effect of the Bjorken expansion and the Boltzmann
relaxation on the amplification coefficient k , for the RHIC case
with � �(t0)�1 GeV/c in various dynamical scenarios: Frozen mo-
mentum distributions, as in Fig. 7�solid�; flattening of the momen-
tum distribution due to the stretching of the system�long dashes�;
relaxation of the momentum distribution due to the collisions, as-
sumingC�1 sotc(t0)�0.4 fm/c �short dashes�; and both of those
agencies active�dots�.

FIG. 9. The effect of the scaling expansion and the Boltzmann
equilibration on the amplification coefficient k for RHIC and LHC
scenarios. The momentum profiles are Gaussian and have an initial
dispersion of� �(t0)�2 GeV/c, for which the largest net amplifi-
cation is obtained. The solid curves are those obtained for frozen
profiles �shown in Fig. 7�, while the dashed curves are obtained in
the presence of both the scaling expansion and the Boltzmann col-
lisions �with C�1).
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be safe to conclude that the collisions are quantitatively im-
portant, while the�somewhat more complicated� effect of the
expansion appears to be less crucial.

IX. CONCLUDING REMARKS

In the present study, we have sought to make quantitative
estimates of the importance of the Weibel instabilities in the
chromodynamic plasma created early on in a high-energy
nuclear collision. Any quantitative calculation must rely on
specific assumptions about the plasma environment, includ-
ing its dynamical evolution, which is presently only rather
poorly known. Therefore, our results are correspondingly ap-
proximate. Fortunately, though, the simple scaling properties
of the Weibel dispersion relation makes it relatively easy to
infer what the result would have been if different input val-
ues had been employed. Therefore, the utility of our results
extends beyond the specific cases presented as illustrations.

As a concrete framework for our discussion, we have
adopted two standard scenarios, one appropriate for RHIC
and the other for LHC, in terms of the coupling constant�s ,
the initial effective parton density�eff(t0), and the corre-
sponding starting timet0. Furthermore, we have employed
axially symmetric momentum profiles that are either Gauss-
ian or pQCD-motivated�leading to a power falloff in the
transverse direction�. We have then kept the transverse mo-
mentum dispersion constant at���300 MeV/c, while ex-
ploring the dependence on the�local� longitudinal spread� �
�for a given density and profile type, the results depend only
on the ratio� � /��).

Going beyond earlier treatments of these modes, we have
permitted the wave vectork to have a component along the
symmetry axis as well, thus extending the considerations to
modes that are not purely transverse. The associated polar-
ization tensor is then no longer diagonal. Generally the
growth rates�k decrease as the parallel component ofk is
increased, and the resulting region of instability ink space is
widest in the region where the aligned modes have their
maximal growth rates. Furthermore, the electric field of a
given mode,Ek , as well as the induced currentjk form an
angle with the symmetry axis, as we illustrated in the Cou-
lomb gauge. The electric field then turnstowardsk and fi-
nally becomes parallel tok at the spinodal boundary, while
the current density turns in the same sense ask. Being ini-
tially aligned with the symmetry axis�and thus perpendicular
to k), it turns at first at a slightly slower rate, so its angle
with k becomes smaller than 90°. It then starts turning at a
faster rate and reverts to being perpendicular tok at the
boundary, where it is thus perpendicular toE.

The largest growth rates�k are obtained for modes whose
wave numbers are perpendicular to the symmetry axis and
they have a transverse character,E�k. Over a wide range of
� � values, these wave numbers are typically around
500 MeV at RHIC and 900 MeV at LHC, corresponding to
wave lengths�0 of 2.5 fm and 1.4 fm, respectively. The cor-
responding growth rates are generally larger for the pQCD
profiles, but only by about 20% for the fastest modes. How-
ever, as the density decreases in the course of time, the
higher wave numbers are progressively disfavored, as the

spinodal region contracts. Therefore, the resulting amplifica-
tion coefficient, k���k(t)dt, which governs the accumu-
lated degree of collective growth for a givenk, peaks at
somewhat lower wave numbers, namely, atk�250 GeV/c in
the RHIC scenario and atk�400 GeV/c in the LHC sce-
nario. In the idealized case when the momentum profiles
�(p) are kept frozen in time, the largest values of k are
reached for� ��2 –4 GeV/c and amount to about 0.7 and
0.9, respectively, for Gaussian profiles and about 20% more
for pQCD profiles. The inclusion of a longitudinal scaling
expansion reduces these numbers only moderately�by about
20%�, so this dynamical complication is not so crucial. By
contrast, the inclusion of elastic Boltzmann collisions among
the partons leads to a significant reduction in the degree of
instability, as the associated relaxation drives the momentum
profile towards isotropy. For the adopted schematic collision
rate, which corresponds to an initial relaxation time of
tc(t0)�t0, the reduction amounts to roughly a factor of 3.

Thus, overall, we find that the degree of amplification of
the Weibel filamentation modes is not expected to be spec-
tacular for any particular wave vectork. On the other hand,
it appears that the effect may not be negligible either. Fur-
thermore, it should be kept in mind that there are typically a
large number of such unstable collective modes, so their
combined effect on the overall dynamics may be significant.

We therefore wish to conclude by speculating about the
possible dynamical consequences of the color filamentation
phenomenon. One obvious aspect concerns the energy dissi-
pation. Since the agitation of these collective modes would
drain energy from the background system, the occurrence of
color filamentation presents an additional agency for energy
dissipation. Therefore, in principle, to the extent that these
modes are agitated, one may expect a correspondingly faster
equilibration of the parton system.

Furthermore, since the perfect azimuthal symmetry in an
idealized head-on collision will be spontaneously broken by
the appearance of the color currents, one may generally ex-
pect that the emergent filamentation pattern will manifest
itself in the angular correlations among the final hadrons. In
particular, a nonstatistical distribution of collective energy
flow will emerge along the local Poynting vectors associated
with each amplified filamentation mode. This expectation is
qualitatively different from that based on the parton cascade
simulations�20�. The breaking of the azimuthal symmetry is
then caused by jets produced in hard parton-parton interac-
tions and, consequently, the effect is carried by only a few
partons with large transverse momenta. By contrast, due to
the collective character of the filamentation instability, the
azimuthal symmetry breaking will presumably involve a
large number of partons having relatively small transverse
momenta.

It has already been speculated that color filamentation
may have observable consequences for the elliptic flow�21�,
based on the argument that the parton trajectories tend to
become concentrated within the centers of the filaments. The
conservation of phase-space volume then expands the mo-
mentum distribution perpendicular to the filaments. A corre-
sponding quantum-mechanical argument can be made on the
basis of the uncertainty relation.
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Finally, it would appear that color filamentation might
delay hadronization. This possibility is due to the basic fact
that no hadronization can occur in the presence of color cur-
rents, since the hadronic phase is constituted entirely of col-
orless entities and thus unable to sustain any colored agita-
tions. Thus, any collective color currents induced by the
filamentation phenomenon would have to subside before the
chromodynamic plasma could transform itself into an assem-
bly of color singlets. It would thus be of interest, in a future
study, to estimate how quickly the induced color currents
dissolve again.

In conclusion, while it appears that color filamentation
may occur in the early parton plasma, a quantitative assess-
ment of the significance of the phenomenon will require de-
tailed dynamical treatments that are not yet sufficiently de-

veloped. As a step in this direction, it might be interesting to
solve the self-consistent Vlasov equations�10�–�12� in sche-
matic collision scenarios in order to investigate how the fila-
mentation modes manifest themselves.
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