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We generalize the hard-thermal-loop effective action of the equilibrium quark-gluon plasma to a nonequi-
librium system which is space-time homogeneous but for which the parton momentum distribution is aniso-
tropic. We show that the manifestly gauge-invariant Braaten-Pisarski form of the effective action can be
straightforwardly generalized and we verify that it then generates alln-point functions following from colli-
sionless gauge-covariant transport theory for a homogeneous anisotropic plasma. On the other hand, the
Taylor-Wong form of the hard-thermal-loop effective action has a more complicated generalization to the
anisotropic case. Already in the simplest case of anisotropic distribution functions, it involves an additional
term that is gauge invariant by itself, but nontrivial also in the static limit.
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I. INTRODUCTION

The hard-thermal-loop�HTL� approach�1,2� has proved
to be a crucial tool in describing the equilibrium quark-gluon
plasma. In particular it is absolutely necessary for computing
equilibrium and near-equilibrium quantities in a manner
which is systematic and gauge independent. However, we are
often interested in nonequilibrium plasmas as in the case of
relativistic heavy-ion collisions where a nonequilibrium par-
ton system is expected to emerge during the early stages of
the collision. To understand how the plasma evolves and
thermalizes one has to go beyond the equilibrium descrip-
tion. In this paper we focus on a specific nonequilibrium
configuration which is�at least approximately� homogeneous
and stationary but anisotropic in momentum space. Such an
anisotropic quark-gluon plasma appears to be qualitatively
different from the isotropic one as the quasiparticle collective
modes can then be unstable�3–7�. And the presence of these
instabilities can dramatically influence the system’s evolu-
tion leading, in particular, to its faster equilibration.

The gluon polarization tensor of a homogeneous and sta-
tionary but anisotropic plasma has been derived within semi-
classical transport theory�6,8� and diagrammatically�8�, fol-
lowing the formal rules of the HTL approach, and the two
approaches have been found to agree. The anisotropic quark
self-energy has been derived so far only diagrammatically
�8,9�. However, the derivation is also possible within trans-
port theory as it has been done in�10� for the equilibrium
plasma. The two-point functions—the gluon polarization and
quark self energy—are sufficient to obtain, in particular, the
spectrum of quasiparticles and of unstable modes in the lin-
ear regime. However, one often needs then-point functions
to, for example, go beyond the lowest order of perturbative
expansion. In the presence of instabilities, softn-point func-
tions will be of importance to the nonlinear phenomenon of
saturation of instabilities, if the latter is predominantly
through interactions among the soft modes.

For the equilibrium plasma, the effective action, which

summarizes the infinite set of hard-thermal-loopn-point
functions, was first derived by Taylor and Wong�11�, see
also �12,13�, and then a very elegant form was found by
Braaten and Pisarski�14�. The HTL effective action was also
rederived within semiclassical transport theory�10,15�, see
also�16�. The aim of this paper is to generalize the result to
a nonequilibrium system which is space-time homogeneous
but anisotropic in momentum space.�We call it the ‘‘hard-
loop action;’’ the word ‘‘thermal’’ is dropped as it refers to
equilibrium.�

We show that the HTL effective action as written down by
Braaten and Pisarski�14� generalizes naturally to the aniso-
tropic case. We verify that this more general hard-loop effec-
tive action is still equivalent to gauge-covariant semiclassical
transport theory�10�. On the other hand, the HTL effective
action in the form of Taylor and Wong�11� has a more com-
plicated generalization for anisotropic plasmas. In addition to
the structure which is present in the equilibrium case and
which has a ‘‘secret’’ Chern-Simons nature�13�, there are
additional manifestly gauge-invariant contributions which
have a nontrivial static limit. Finally, we derive explicit ex-
pressions for the quark-gluon, triple-gluon, and four-gluon
vertices for an anisotropic system, verify that they satisfy the
appropriate Ward-Takahashi identities, and compare their in-
tegral representations with those of the isotropic case.

II. EFFECTIVE ACTION

To construct the effective action we will first find a form
which can generate the anisotropic gluon polarization tensor
and quark self-energy which have been obtained in previous
works �6–8�. We will then use the requirement of gauge
invariance to extend the result to the full effective action for
quarks and gluons.

The anisotropic gluon polarization tensor derived in�6,8�
can be written in momentum space as
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where�,� denote Lorentz indices anda,b color indices in
adjoint representation;g is the coupling constant and

�
p
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•••�

p0��p�
.

The distribution functionf (p) in Eq. �1� is the effective par-
ton momentum distribution which describes partons�quarks
and gluons� which are on mass-shell. We assume that it only
depends on three-momentum and is independent of the spa-
tial coordinates�homogeneous� and therefore has the form

f �p�	2Nf�n�p��n̄�p���4Ncng�p�, �2�

wheren, n̄, andng are the distribution functions of quarks,
antiquarks and gluons. In equilibrium these distribution func-
tions reduce to the standard Fermi-Dirac and Bose-Einstein
distributions

neq�p��
1

exp� �p����/T�1
,

n̄eq�p��
1

exp� �p����/T�1
,

ng
eq�p��

1

exp� �p�/T��1
, �3�

with T and� denoting the temperature and chemical poten-
tial and both quarks and gluons are assumed to be massless.
We note the gluon self-energy in the form�1� is explicitly
Lorentz covariant, symmetric with respect to the Lorentz in-
dices and transversal�k��

��(k)�0�.
The quark self-energy for an anisotropic system has been

obtained previously�8� and is given by

��k��
CF

4
g2�

p
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�p�
p•�
p•k

, �4�

whereCF	(Nc
2�1)/2Nc and

f̃ �p�	2�n�p��n̄�p���4ng�p�.

We now attempt to find an action which can generate the
anisotropic gluon polarization tensor�1� and quark self-
energy�4�. The corresponding terms in the action will have
the form

L 2
(A)�x��

1

2�y
A�

a �x��ab
���x�y�A�

b�y�, �5�

L 2
(
)�x���
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where

�
y
•••	� d4y•••;

and the subscript ‘‘2’’ indicates that the effective actions
above only generate two-point functions. These actions will
then be extended to generate alln-point functions by writing
them in a gauge invariant form.

Using the explicit form of the quark self-energy�4�, one
immediately rewrites the action�6� as

L 2
(
)�x��� i

CF

4
g2�

p

f̃ �p�

�p�

̄�x�

p•�
p•� 
�x�, �7�

where

1

p•� 
�x�	 i �
k

e� ikx

p•k

�k�.

Following Braaten and Pisarski�14�, we modify the action
�7� to comply with the requirement of gauge invariance. We
simply replace the derivative�� by the covariant derivative
D����� igA� in the fundamental representation. Thus, we
obtain

L (
)�x��� i
CF

4
g2�

p

f̃ �p�

�p�

̄�x�

p•�
p•D


�x�. �8�

Note that when expanding the covariant derivative in the
denominator above one needs to take care about the ordering
of the fields and operators.

1

p•D

�x��

1

p•� �n�0

� � igp•A�x�
1

p•� �
n


�x�, �9�

so that, for example, the first and second order expansions
are

igp•A�x�

p•� 
�x���gp•A�x��
k

e� ikx

p•k

�k�, �10�

and

� ig p•A�x�

p•� � 2


�x��2p•A�x��
q

e� iqx

p•q �
x�

eiqx�

�p•A�x���
k

e� ikx�

p•k

�k�. �11�
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In equilibrium, where the quark and gluon distribution
functions are given by Eqs.�3�, the integrals over the mo-
mentum length and over the angle factorize, and the action
�8� reduces to the Braaten-Pisarski result

L HTL
(
) �x��� imq

2� 
̄�x�
p̂•�
p̂•D


�x��
p̂

,

where

mq
2�

CF

4
g2�

p

f̃ eq�p�

�p�
�

CF

8
g2� T2�

�2


2� ,

and�•••� p̂	�(d2�/4
)••• denotes an average over the ori-
entation of the unit vectorp̂	p/�p� which defines the four-
vector p̂	(1,p̂).

Let us now discuss the gluon effective action. At first, we
look for an operatorM ��(x)ab that satisfies the equation

1

2�y
A�

a �x��ab
���x�y�A�

b�y�

�
1

4
���A�

a�x����A�
a �x��M ab

���x����A
b��x�

���A�
b�x��,

giving

�ab
���k���2k2M ab

���k�P��
���k�, �12�

where

P�����k��
1

k2�k
2g��g���k�k�g��

�k�k�g���k�k�g���.

Since P is the projection operator�P����(k)P��
��(k)

��P����(k)�, P�1 does not exist. Therefore, there is no
unique solution of Eq.�12�; various solutions differ from
each other by the components parallel tok. Because
k�P����(k)�k�P

����(k)�0, Eq. �12� complies with the
transversality of���(k).

Substituting the explicit form of the gluon self-energy�1�
in Eq. �12�, one finds that the equation is satisfied by

M ab
���k����ab

g2

2 �
p

f �p�

�p�
p�p�

�p•k�2
,

which gives
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(A)�x���
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a�x����A�
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p�p�

�p•��2���Aa��x����A�
a�x��. �13�

In order to generate the higher-order vertices we invoke the
requirement of gauge invariance, replacing��Aa

����Aa
� by

the field strength tensorFa
��	��Aa

����Aa
��g fabcAb

�Ac
� ,

and�� by the covariant derivative in the adjoint representa-
tion Dab

� 	���ab�g facbAc
� . Thus, we obtain the effective

action

L (A)�x���
g2

2 �
p

f �p�

�p�
F��

a �x�� p�p�

�p•D �2�
ab

F�
b��x�.

�14�

In equilibrium, the gluon action�14� reduces, as the quark
action, to the respective Braaten-Pisarski result

L HTL
(A) �x���m�

2 � F��
a �x�� p̂�p̂�

� p̂•D �2
�

ab

F�
b��x��
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,
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p
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�p�
,

�
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6
g2T2�

Nf

12
g2� T2�

3


2�
2� .

To summarize, the generalization of the HTL effective
action of Braaten and Pisarski to the anisotropic case is sim-
ply given by

Saniso��
g2

2 �
x
�

p
� f �p�F��

a �x�� p�p�

�p•D �2�
ab

F�
b��x�

� i
CF

2
f̃ �p�
̄�x�

p•�
p•D


�x�.

�15�

III. EQUIVALENCE WITH GAUGE-COVARIANT KINETIC
THEORY

The hard loop effective action�15� is manifestly gauge
invariant and it contains the two-point functions obtained
previously from gauge-covariant transport equations�8�.
Hence, it is a good candidate for generating all of the hard-
loop vertex functions of a gauge-covariant kinetic theory.
That this is indeed the case is not entirely obvious, at least
for the gauge-boson part of the effective action, since the
latter contains higher powers of inverse gauge-covariant line
derivatives than is suggested by the structure of the kinetic
equations. Fortunately, however, the proof of equivalence
that has been worked out in detail in Ref.�10�, can be shown
to carry over almost line by line as long as the distribution
functionsf and f̃ arex-independent.

Vertex functions containing external fermion lines are
generated by the fermionic current���S/�
̄ and this is
indeed of the same form as the fermionic current one can
define in gauge-covariant kinetic theory�10�. The generali-
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zation of this proof of equivalence to anisotropic distribu-
tions functions f̃ in the fermionic effective action�8� is
trivial since f̃ (p) appears in undifferentiated form in either
formalism �see the appendix of Ref.�10��.

Vertex functions containing only external gauge-boson
fields can be obtained by expanding the induced current
j ��A� in powers of the gauge fieldA�. Solving the gauge-
covariant transport equations in the isotropic�10� as well as
in the anisotropic case�8� yields an induced current of the
form

j ��A���g2� d4p

�2
�3
� (�)�p�

�p�
� f �p�

�p�
�p•D�A���1F���A�p

�, �16�

where for emphasis we have written out�p as a four-
dimensional momentum integral with � (�)(p)
	�(p0)�(p2).

The hard-loop effective action�15�, on the other hand,
involves an undifferentiated distribution functionf (p), so as
a first step we should partially integrate the derivative with
respect top. This is in fact possible without picking up con-
tributions from the integration measure, because differentiat-
ing �(p2) would producep�, but p�p�F��(A)�0. Also,
differentiating�(p0) is harmless if limp→0p2f (p)�0, since
it involves

� d� p̂�
0

�

d�p��� �p���p�2f �p�� p̂i� p̂•D�A���1F0 j�A�p̂
j�.

We can therefore write

j ��A��g2�
p
f �p�

�

�p�
�p��p•D�A���1F���A�p

��.

�17�

From this form one can immediately infer that this induced
current is covariantly conserved,

D�A�•J�A� ��
p
f �p�F���A�g

���0.

This implies that an effective action from which this induced
current can be derived according toj ���S/�A� must be
gauge invariant, since gauge invariance is equivalent to
D�A��S/�A	0 �which further differentiated gives all the
Ward identities�.

In the form �17�, the induced current is indeed exactly
analogous to the HTL case for which Ref.�10� has shown
equivalence with the first functional derivative of the
Braaten-Pisarski effective action. The corresponding proof is
somewhat lengthy�see Eqs.�C.15�–�C.27� of Ref. �10�� and
we shall not repeat it here. It involves representing formal
relations like

��p•D ��1,D��ab���p•D ��1�D�,p•D��p•D ��1�ab

��p•D �ac
�1g fcedFe

��p��p•D �db
�1

in terms of gauge-covariant parallel transporters. The essen-
tial point to notice is that oncej ��A� is expressed in terms of
an undifferentiated distribution function, the remaining steps
are independent of the formf (p) as long as it is homoge-
neous inx-space.

Another point that should be noted is that the equivalence
of the effective action with the kinetic equations strictly
speaking holds true only on the space of fieldsR where all
gauge-covariant line derivativesp•D(A) have vanishing
kernel and can be inverted without regard of boundary con-
ditions �10�. For unrestricted fields it is only at the level of
vertex functions or kinetic equations that the formal expres-
sions become well-defined, because only then can one im-
pose specific boundary conditions.

IV. TAYLOR-WONG FORM

Originally, the HTL effective action was obtained by Tay-
lor and Wong�11� in a form which is not manifestly gauge
invariant, but involves only a single power of inverse gauge-
covariant line derivatives. The Taylor-Wong form has also
the advantage of making it evident that all higher-point HTL
vertex functions vanish in the static limit, and that the two-
point functions then reduce to a simple momentum-
independent mass term.

Explicit calculations of the two-point functions have
shown that this simplicity of the static limit does not carry
over to the anisotropic case�6,17�. However, it is instructive
to see explicitly where anisotropic distributions functions
spoil the equivalence of the Braaten-Pisarski form�which
does easily generalize to the anisotropic case� with the
Taylor-Wong form�which evidently does not�. To this end,
we start by rewriting the induced current in the form of Eq.
�16� as

j ��A���g2�
p
p�

� f �p�

�p�

1

p•D
�F�0p0�F� i p

i �. �18�

In the isotropic case one has� f (p)/�p��� j
�pj , so the

second term in the parentheses vanishes becauseFi j is anti-
symmetric, whereas in the first one can use thatF�0
�D�A0��0A� andF00	0 so that

j iso
� �A���g2�

p

p�

�p�
f �� �p��� A0�

1

p•D
�0�p•A� � , �19�

which is exactly the first functional derivative of the Taylor-
Wong effective action.

In the anisotropic case, these manipulations are clearly no
longer possible. Specializing to the case wheref depends on
just the energyp0��p� and a projection ofp on a fixed
spatial directionn̂, one can write

� f �p�

�p�
�� j

�� pj

p0
2 f 1�

nj

p0
f 2� .

MRÓWCZYŃSKI, REBHAN, AND STRICKLAND PHYSICAL REVIEW D 70, 025004 �2004�

025004-4



The induced current for the anisotropic case can then be
decomposed according to

j aniso
� �A���g2�

p

p�

�p� � f 1� A0�
1

p•D
�0�p•A� �

� f 2

1

p•D
njF j�p

�	 . �20�

In this form one has one contribution� f 1 which is exactly
analogous to the Taylor-Wong effective action. This part is
gauge invariant by itself, although its gauge invariance is not
manifest, and it reduces to a simple�constant� mass term for
A0 in the static limit. On the other hand, the second part,
which is specific to the anisotropic case (f 2�0) is mani-
festly gauge invariant, but it has nontrivial momentum-
dependence even in the static limit, and correspondingly gen-
erates nontrivial higher-point functions also in the static
limit.

V. VERTEX FUNCTIONS

In this section we collect expressions for the quark-gluon,
triple-gluon, and four-gluon vertex functions for an aniso-
tropic system. We also show explicitly that these vertex func-
tions satisfy the appropriate Ward-Takahashi identities. As
we have discussed previously the effective action�15� is
gauge invariant by construction so that these identities are
guaranteed to be satisfied; however, due to the complexity of
the resulting vertex functions the explicit checks provide
confidence that the vertex functions derived are correct.

A. Quark-gluon vertex function

When the effective action�15� is expanded in powers of
the quark and gluon fields there appears a term of the form

�
y
�

z

̄�x����x,y,z�
�y�A��z�,

where��(x,y,z) is the quark-gluon vertex function. To ob-
tain this term we need only expand the action�8� to leading
order in the gluon field strength

L (
)�x���
iCF

4
g2�

p

f̃ �p�

�p�

̄�x�

p•�
p•D


�x�,

��
iCF

4
g2�

p

f̃ �p�

�p�

̄�x�

p•�
p•� ,

��
n�0

� � igp•A�x�

p•� � n


�x�. �21�

After Fourier transformation theO(g3) contribution above
gives

�a
��q1 ,q2 ,k�� igta�2
�4� (4)�q1�q2�k����q1 ,q2 ,k�,

�22�

with

���q1 ,q2 ,k��
CF

4
g2�

p

f̃ �p�

�p�
p̂•�

p̂•q1 p̂•q2

p̂�, �23�

whereq1 andq2 are outgoing quark momentum andk is the
outgoing gluon momentum. The matrixta is in the funda-
mental representation of theSU(Nc) algebra with the stan-
dard normalization tr(tatb)� 1

2 �
ab. To verify that this vertex

function �23� obeys the Ward-Takahashi identity we contract
it with the external gluon momentum to obtain

k��
��q1 ,q2 ,k����q1����q2�, �24�

which is just the Ward-Takahashi identity.

B. Triple-gluon vertex

In order to obtain the triple-gluon coupling or gluon three-
point vertex we have to expand the action�14� to orderA3 to
obtain all terms of the form

 ����x,y,z�A��x�A��y�A��z�,

where ���(x,y,z) is the triple-gluon vertex function.
At this order there are two types of contributions. One

comes from terms which are of the form (�A)AA coming
from the leading-order expansion of the kernel contracted
with the non-Abelian part of the field strength tensor and the
others are of the form (�A)2A coming from the next-to-
leading order expansion of the covariant derivative in the
kernel contracted against the Abelian part of the field
strength tensor. The first type are given by

L1!2���A"
c ��"A�

c �T "����Aa
�A�

b f abc, �25�

and the second type are given by

L2!2���A"
a��"A�

a �T "����A�
bT �������A�

c ���Ac
�� f abc,

�26�

where f abc are theSU(Nc) structure constants and we have
introduced then-tensor

T �1�2•••�n�����p•���n�
i �1

n

p� i, �27�

which in momentum-space is defined by

T �1�2•••�n�k���p•k��n�
i �1

n

p� i. �28�

Note that these tensors are totally symmetric in all Lorentz
indices and that products of these tensors are also symmetric
in the resulting indices, e.g.,T �(k)T �(q)�T �(k)T �(q).

We then Fourier transform the resulting expressions and
relabel indices so that all contributions are of the form of a
three tensor contracted withA�

a (k)A�
b(q)A�

c(r ) f abc where
k,q,r are the incoming gluon momentum which satisfyk
�q�r �0. This gives
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2��q•r �T ���r �T ��q��T ��r �T ��q�q��.

From here we must sum over all permutations of the sets
(k,�,a), (q,�,b), and (r ,�,c) taking into account the mi-
nus signs coming fromf abc whenever appropriate. Defining

 abc
����k,q,r �� ig�2
�4� (4)�k�q�r � f abc ����k,q,r �

�29�

we obtain

 ����k,q,r ��
g2

2 �
p

f �p�

�p� ��
k•r ��T ���k�T ��r ��T ���r �T ��k����q•k��T ���q�T ��k��T ���k�T ��q����q•r �

��T ���r �T ��q��T ���q�T ��r ���T ��r �T ��q�q��T ��k�T ��r �k��T ��k�T ��q�k��T ��q�T ��r �r �

�T ��k�T ��r �r��T ��q�T ��k�q��. �30�

Note that ���(k,q,r ) is totally symmetric in its three indi-
ces and traceless in any pair of indices, e.g.,g��T ����0,
and that it is odd�even� under odd�even� permutations of the
momentak, q, and r. To verify that this vertex obeys the
Ward-Takahashi identity we contract it withk� to obtain

k� 
����k,q,r ��

g2

2 �
p

f �p�

�p� �
T ��q�q��T ��q�q�

�q2T ���q��g���T ��r �r ��T ��r �r �

�r 2T ���r ��g���. �31�

When expressed in terms of theT tensors the gluon self-
energy�1� is

����q��
g2

2 �
p

f �p�

�p� �
T ��q�q��T ��q�q��q2T ���q��g���,

�32�

thus we can see that

k� 
����k,q,r ������q������r �, �33�

which is simply the Ward-Takahashi identity.
Note also that it is possible to simplify Eq.�30� by inte-

grating by parts to obtain

 ����k,q,r ��
g2

2 �
p

� f �p�

�p�
p̂��r �T ��r �T ��q�

�k�T ��k�T ��q��, �34�

which is explicitly

 ����k,q,r ��
g2

2 �
p

� f �p�

�p�
p̂�p̂�p̂�� r �

p̂•q p̂•r
�

k�

p̂•k p̂•q
� .

�35�

For isotropic systems the distribution function only depends
on the length of the three-momentum,�p��p0, so that de-
rivative of the distribution function becomes

� f �p�

�p�
�
� f �p0�

�p0
�� i p̂

i , �
� f �p0�

�p0
���0� p̂��, �36�

so that this reduces to the well-known isotropic HTL vertex

 HTL
����k,q,r ��2m�

2 � p̂�p̂�p̂�� r 0

p̂•q p̂•r
�

k0

p̂•k p̂•q
� �

p̂

.

�37�

C. Four-gluon vertex

Similar methods can be used to determine the anisotropic
four-gluon vertex. The resulting four-gluon vertex for gluons
with outgoing momentak, q, r, ands, Lorentz indices�, �,
�, and�, and color indicesa, b, c, andd is

 abcd
�����k,q,r ,s��2ig2�2
�4� (4)�k�q�r �s�

�tr� ta� tbtctd�tdtctb�� �����k,q,r ,s�

�2 cyclic permutations, �38�

where the cyclic permutations are of (q,�,b), (r ,�,c), and
(s,�,d). The tensor ����(k,q,r ,s) is defined only fork
�q�r �s�0,

 �����k,q,r ,s�

�g2�
p

� f �p�

�p�
p̂�p̂�p̂�p̂�� k�

p̂•k p̂•q p̂•�q�r �

�
�k�q��

p̂•q p̂•r p̂•�r �s�
�

�k�q�r ��

p̂•r p̂•s p̂•�k�s�
� . �39�

This tensor is totally symmetric in its four indices and trace-
less in any pair of indices, e.g.,g�� 

�����0. It is even
under cyclic or anticyclic permutations of the momentak, q,
r, ands. It satisfies the ‘‘Ward identity’’
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q� 
�����k,q,r ,s�� ����k�q,r ,s�� ����k,r �q,s�.

�40�

It also reduces to the standard HTL result in the isotropic
limit.

VI. CONCLUSIONS AND DISCUSSIONS

In this paper we have shown that the Braaten-Pisarski
form of the HTL effective action can be straightforwardly
extended to systems in which the parton distribution func-
tions depend on the direction of the three-momentum but are
homogeneous in space. We have also verified that the same
result is obtained using collisionless gauge-covariant trans-
port theory. The resulting ‘‘hard-loop’’�HL� effective action
given by Eq.�15� is manifestly gauge invariant and allows us
to easily construct all of then-point functions for soft quarks
and gluons. We have derived explicit expressions for the HL
quark-gluon vertex�23�, the triple-gluon vertex�35�, and the
four-gluon vertex�39�. By construction these vertices obey
the appropriate Ward-Takahashi identities and reduce to the
standard HTL results in the isotropic limit.

We have also discussed the extension of the Taylor-Wong
form of the HTL effective action to anisotropic systems. In
this case the extension does not seem to be as straightforward
because of the presence of terms which are nontrivial also in
the static limit. This can also be seen from the explicit ex-
pressions for the vertices resulting from the expansion of the
HL effective action. In the isotropic limit the HTL vertices
are all proportional to the 0-components of the four-
momentum flowing through the vertex so that in the static
limit these vertices vanish. This means that the static effec-
tive potential for isotropic QCD contains only bare vertices

plus electric screening of longitudinal modes coming from
the static limit of�00. In the anisotropic case, however, even
the gluon two-point function has a highly nontrivial static
limit involving three mass scales some of which are imagi-
nary �6�. The static limit of the higher gluonn-point func-
tions, Eqs.�35� and �39�, also appears to be nontrivial since
the resultingn-point functions are no longer simply propor-
tional to the 0-components of the four-momentum flowing
through them.

The results contained in this paper are relevant to deter-
mining the time scales associated with the possible saturation
of soft gluonic instabilities. At the level of the two-point
function the static effective potential contains terms with a
negative curvature due to the presence of electric and mag-
netic instabilities. Depending on the sign of the contributions
from the highern-point functions these terms could either
increase the instability or provide for an additional non-
Abelian saturation of the instabilities at some nonvanishing
vector potential. It is interesting to note that in relativistically
hot QED plasmas the Weibel instability�18� saturates to a
quasisteady state magnetic Bernstein-Greene-Kruskal wave
�19,20� which causes a strong residual anisotropy to be
maintained over rather long time scales compared to the col-
lisional time scale�21,22�. It will be interesting to see if an
analogous state exists for anisotropic QCD plasmas. Answer-
ing this question will require a detailed study of the static
and quasistatic limits of the effective action and associated
vertex functions derived in this paper.
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