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The effective actions of gauge bosons, fermions, and scalars, which are obtained within the hard-loop
approximation, are shown to have unique forms for a whole class of gauge theories including QED, scalar
QED, super QED, pure Yang-Mills, QCD, and super Yang-Mills. The universality occurs irrespective of a
field content of each theory and of a variety of specific interactions. Consequently, the long-wavelength or
semiclassical features of plasma systems governed by these theories such as collective excitations are
almost identical. An origin of the universality, which holds within the limits of applicability of the
hard-loop approach, is discussed.
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I. INTRODUCTION

The hard-loop approach is a practical tool to describe
plasma systems governed by QED or QCD in a gauge
invariant way which is free of infrared divergences; see the
reviews [1–4]. Initially, the approach was developed within
the thermal field theory [5,6] but it was soon realized that it
can be formulated in terms of quasiclassical kinetic theory
[7,8]. The plasma systems under consideration were assumed
to be in thermodynamical equilibrium but themethods can be
naturally generalized to plasmas out of equilibrium [9,10].
An elegant and concise formulation of the hard-loop

approach is achieved by introducing an effective action
derived for equilibrium and nonequilibrium systems in
[11–13] and [9,14], respectively. The action is a key quantity
that encodes an infinite set of hard-loop n-point functions. A
whole gamut of long-wavelength characteristics of a plasma
system is carried by the functions. In particular, the two-
point functions or self-energies provide response functions
like permeabilities or susceptibilities which control various
screening lengths. The self-energies also determine a spec-
trum of collective excitations (quasiparticles) that is a
fundamental characteristic of any many-body system.
One wonders how much a given plasma characteristic is

different for different plasma systems. It has been known
for a long time that the self-energies of gauge bosons in the
long-wavelength limit are of the same structure for QED
and QCD plasmas [15]. Consequently, the collective
excitations and many other characteristics are the same,
or almost the same, in the two plasma systems [16].
However, it should be remembered that these systems
are so similar in the domain of validity of the hard-loop

approach that this is when the momentum scale of
collective degrees of freedom is neither too long nor too
short. We return to this problem at the end of Sec. III.
Comparing systematically supersymmetric plasmas to

their nonsupersymmetric counterparts, we have considered
[17–19] a whole class of gauge theories including Abelian
cases: QED, scalar QED, and N ¼ 1 super QED and non-
Abelian ones: pure Yang-Mills, QCD, and N ¼ 4 super
Yang-Mills. We have observed that the self-energies of
gauge bosons, fermions, and scalars, which are computed
in the hard-loop approximation, have unique structures for
all considered theories irrespective of a field content and of
variety of specific interactions. Consequently, the hard-loop
effective actions are essentially the same and so are long-
wavelength characteristics of plasma systems governed by
the gauge theories of interest. Although our findings are
partially presented in [17–19], we have decided to collect
all our results in this paper and to systematically elaborate
on the problem. We explain an origin of the universality,
that is, how it happens that the microscopically different
systems are very similar to each other in the long-wave-
length limit. Physical consequences of the universality and
its limitations are also discussed.
Our paper is organized as follows. In the next section, we

briefly present the gauge theories taken into consideration.
The differences and similarities of the theories are under-
lined. Section III is devoted to the self-energies of gauge
bosons, fermions, and scalars which are computed in the
hard-loop approximation. Validity of the approximation is
also explained here. Knowing the self-energies, the effec-
tive action of the hard-loop approach is derived in Sec. IV.
An origin of the universality of the hard-loop action, its
physical consequences, and limitations are discussed in
Sec. V, which concludes our study.
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Throughout the paper, we use the natural system of units
with c ¼ ℏ ¼ kB ¼ 1; our choice of the signature of the
metric tensor is ðþ − −−Þ.

II. GAUGE THEORIES UNDER CONSIDERATION

We briefly present here the gauge theories under con-
sideration stressing differences and similarities among
them. We start with QED of the commonly known
Lagrangian density that is

LQED ¼ −
1

4
FμνFμν þ iΨ̄DΨ; ð1Þ

where the strength tensor Fμν is expressed through the
electromagnetic four-potential Aμ as Fμν ≡ ∂μAν − ∂νAμ,
Ψ is the Dirac bispinor electron field, D≡ γμDμ, and the
covariant derivative equals Dμ ≡ ∂μ − ieAμ. Since we are
interested in ultrarelativistic plasmas, where the plasma
constituents are treated as massless, the mass term is
neglected in Eq. (1) and in all other cases under study.
As is well known, the Lagrangian (1) describes a system of
electrons, positrons, and photons governed by a long-range
electromagnetic interaction represented by the term
eΨ̄γμΨAμ.
Replacing the electron bispinor Ψ with the scalar

complex field Φ, we get the scalar electrodynamics of
spinless charges and the Lagrangian reads

Lscalar QED ¼ −
1

4
FμνFμν − ðDμΦÞ�DμΦ: ð2Þ

Except for the interaction terms eð∂μΦ�ÞΦAμ and eΦ�×
ð∂μΦÞAμ, there is a four-boson coupling e2Φ�ΦAμAμ. Such
a contact interaction is qualitatively different than that
caused by a massless particle exchange. In absence of other
interactions, it gives the scattering which is isotropic in the
center-of-mass frame of colliding particles with character-
istic energy and momentum transfers which are much
bigger than those in one photon-exchange processes.
A peculiar combination of QED and scalar QED is

N ¼ 1 super QED, see, e.g., [20], with the Lagrangian of
the form

Lsuper QED ¼ LQED þ i
2
Λ̄∂Λþ ðDμΦLÞ�ðDμΦLÞ

þ ðD�
μΦRÞðDμΦ�

RÞ þ
ffiffiffi
2

p
eðΨ̄PRΛΦL

− Ψ̄PLΛΦ�
R þ Φ�

LΛ̄PLΨ − ΦRΛ̄PRΨÞ

−
e2

2
ðΦ�

LΦL − Φ�
RΦRÞ2; ð3Þ

where Λ is the Majorana bispinor photino field, ΦL and ΦR
represent the scalar left and right selectrons; the projectors
PL and PR are defined in a standard way, PL ≡ 1

2
ð1 − γ5Þ

and PR ≡ 1
2
ð1þ γ5Þ. The supersymmetric extension of

QED describes a mixture of photons, Majorana and
Dirac fermions, and scalars of two types with a variety
of interactions. Except for the long-range one-photon
exchanges, we have four-boson couplings and the
Yukawa interactions of non-electromagnetic nature. The
complete list of elementary processes, which is given in
[18], is thus very long and it makes the supersymmetric
plasma very different at the microscopic level from the
usual electromagnetic ones.
The first non-Abelian plasma under study is that gov-

erned by the pure Yang-Mills theory with the SUðNcÞ
gauge group. The Lagrangian of gluodynamics is

LYM ¼ −
1

4
Fμν
a Fa

μν; ð4Þ

where a; b ¼ 1; 2;…N2
c − 1 and the chromodynamic

strength tensor Fμν
a is expressed by the four-potential Aμ

a

as Fμν
a ≡ ∂μAν

a − ∂νAμ
a þ gfabcAμ

bA
ν
c with g being the

coupling constant and fabc the structure constant of the
SUðNcÞ group. Because of the self-interaction of Yang-
Mills fields, there is the three- and four-gluon coupling.
Enriching the pure gluodynamics with (massless) quarks

of Nf flavors, which belong to the fundamental represen-
tation of the SUðNcÞ gauge group, we get QCD with the
Lagrangian

LQCD ¼ LYM þ iΨ̄iDΨi; ð5Þ

where i ¼ 1; 2;…Nf and the covariant derivative equals
Dμ ≡ ∂μ − igτaAa

μ with τa being the generator of funda-
mental representation of the SUðNcÞ group. Except for the
three- and four-gluon couplings, gluons also interact with
the color quark current.
Finally, the Lagrangian of N ¼ 4 super Yang-Mills

theory, see, e.g., [21], can be written as

Lsuper YM ¼ LYM þ i
2
Ψ̄a

i ðDΨiÞa þ
1

2
ðDμΦAÞaðDμΦAÞa

−
1

4
g2fabefcdeΦa

AΦ
b
BΦ

c
AΦ

d
B

− i
g
2
fabcðΨ̄a

i α
p
ijX

b
pΨc

j þ iΨ̄a
i β

p
ijγ5Y

b
pΨc

jÞ; ð6Þ

where instead of quarks we have four Majorana fermions
represented by Ψa

i with i; j ¼ 1; 2; 3; 4 and six real scalar
fields which are assembled in the multiplet Φ ¼
ðX1; Y1; X2; Y2; X3; Y3Þ. The components of Φ are either
denoted as Xp for scalars, and Yp for pseudoscalars, with
p; q ¼ 1; 2; 3 or as ΦA with A;B ¼ 1; 2;…6. The
4 × 4 matrices αp; βp satisfy the relations

fαp;αqg¼−2δpq; fβp;βqg¼−2δpq; ½αp;βq�¼0: ð7Þ

In the super Yang-Mills theory all fields belong to the
adjoint representation of the SUðNcÞ gauge group and the
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covariant derivative is Dab
μ ≡ ∂μδ

ab þ gfabcAc
μ. As in QCD

there are the three- and four-gluon couplings and the gluon
interaction with the color fermion current. Additionally
there are the four-boson couplings g2ΦAΦAAμAμ and
g2ΦAΦBΦAΦB. There is also the Yukawa interaction of
fermions with scalars. The complete list of elementary
interactions, which is given in [22], is again rather long and
it makes the super Yang-Mills plasma quite different at the
microscopic level from the gluodynamic or QCD plasmas.

III. SELF-ENERGIES

Our objective is to derive the effective action of all
considered theories in the hard-loop approximation. The
action S can be found via the respective self-energies which
are the second functional derivatives of Swith respect to the
given fields. Thus, the self-energies of gauge boson,
fermion, and scalar fields equal

Πμνðx; yÞ ¼ δ2S
δAμðxÞδAνðyÞ

; ð8Þ

Σðx; yÞ ¼ δ2S

δΨ̄ðxÞδΨðyÞ ; ð9Þ

Pðx; yÞ ¼ δ2S
δΦ�ðxÞδΦðyÞ ; ð10Þ

where the field indices, which are different for different
theories under consideration, are suppressed. The action

will be obtained in the subsequent section by integrating the
formulas (8)–(10) over the respective fields.
We compute the self-energies, which enter Eqs. (8)–(10),

diagrammatically. The plasma systems under study are
assumed to be homogeneous in coordinate space (transla-
tionally invariant), locally colorless, and unpolarized, but
the momentum distribution may be arbitrary. Therefore, we
use the Keldysh-Schwinger or real-time formalism,
explained in, e.g., [23], which allows one to describe
many-body systems both in and out of equilibrium.
In the Tables I, III, and V we present the diagrams of the

lowest order (one-loop) contributions to the self-energies of
gauge bosons, fermions, and scalars, respectively, for all
studied theories. Needless to say that the coupling constant
g (or e) is assumed to be small. Since the Feynman gauge is
used, the ghost loop contributes to the gluon polarization
tensor. The curly, plain, dotted, and dashed lines denote,
respectively, the gauge, fermion, ghost, and scalar fields.
As seen in Table I, both the number of diagrams

contributing to the polarization tensor and their forms
are different for each theory. We have the fermion,
scalar, and gluon loops and the scalar and gluon tadpoles
which differently depend on the external momentum.
Accordingly, there is no surprise that the polarization
tensors ΠμνðkÞ are quite different for each theory.
However, when the external momentum k is much smaller
than the internal momentum p, which flows along the loop
and is carried by a plasma constituent, that is when the
hard-loop approximation ðk ≪ pÞ is applied, we get a very
striking result: the (retarded) polarization tensors of all
theories are of the same form

TABLE I. The diagrams of the lowest order contributions to the polarization tensors.

Plasma system Lowest order diagrams

QED

Scalar QED

N ¼ 1 super QED

Yang-Mills

QCD

N ¼ 4 super Yang-Mills
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ΠμνðkÞ ¼ CΠ

Z
d3p
ð2πÞ3

fΠðpÞ
Ep

×
k2pμpν − ðkμpν þ pμkν − gμνðk · pÞÞðk · pÞ

ðk · pþ i0þÞ2 ;

ð11Þ

where CΠ is the factor and fΠðpÞ the effective distribution
function of plasma constituents which are both given in
Table II for each plasma system. feðpÞ and f̄eðpÞ denote
the electron and, respectively, positron distribution func-
tions. The meaning of other functions can be easily
guessed. We only add that f ~γðpÞ is the distribution function
of photinos. All functions are normalized in such a way that

ρf ¼
Z

d3p
ð2πÞ3 ffðpÞ ð12Þ

is density of particles f of a given spin and color, if any.
Particles of the same type but different spin and/or color are
assumed to have the same momentum distribution. The left
and right selectrons in N ¼ 1 super QED have the same
momentum distribution as well. It is also assumed that
quarks of all flavors, similarly as all fermions and all scalars
in N ¼ 4 super Yang-Mills plasma, have the same
momentum distribution. In case of nonsupersymmetric
plasmas, there is subtracted from the formula (11) the

(infinite) vacuum contribution which otherwise survives
when fΠðpÞ is sent to zero. The subtraction is not needed
for the supersymmetric theories where the vacuum effect
cancels out. The polarization tensor (11), which is
chosen to obey the retarded initial condition, is symmetric
in Lorentz indices, ΠμνðkÞ ¼ ΠνμðkÞ, and transverse,
kμΠμνðkÞ ¼ 0, and thus it is gauge independent. We note
that the transversality of ΠμνðkÞ is not an assumption but it
automatically results from the calculations, the details of
which are given in [17,19,24] for the electromagnetic
theories, N ¼ 4 super Yang-Mills, and QCD, respectively.
In the case of non-Abelian theories, the transversality of
ΠμνðkÞ requires us to include the Faddeev-Popov ghosts
when the calculations are performed in a covariant gauge.
The problem of how to include the ghosts in the Keldysh-
Schwinger formalism is discussed in [24].
One wonders how the universality of the polarization

tensor emerges. This is not the case that every one-loop
contribution behaves in the same way in the long-wave-
length limit. Just the opposite, the fermion loops contribute
differently than boson ones, and the tadpoles are different
than the loops. However, every subset of diagrams which is,
as a sum of the diagrams, gauge independent, has the same
long-wavelength limit. For example, in the N ¼ 4 super
Yang-Mills theory we have three such subsets. The first
one is simply the fermion loop, the second one is the sum of
the scalar loop and scalar tadpole, and the third gauge

TABLE II. The factors entering the polarization tensors.

Plasma system CΠ fΠðpÞ
QED e2 2feðpÞ þ 2f̄eðpÞ
Scalar QED e2 fsðpÞ þ f̄sðpÞ
N ¼ 1 super QED e2 2feðpÞ þ 2f̄eðpÞ þ 2fsðpÞ þ 2f̄sðpÞ
Yang-Mills g2Ncδ

ab 2fgðpÞ
QCD g2Ncδ

ab
2fgðpÞ þ Nf

Nc
ðfqðpÞ þ f̄qðpÞÞ

N ¼ 4 super Yang-Mills g2Ncδ
ab 2fgðpÞ þ 8ffðpÞ þ 6fsðpÞ

TABLE III. The diagrams of the lowest order contributions to the fermion self-energies.

Plasma system Lowest order diagrams

QED

Electron in N ¼ 1 super QED

Photino in N ¼ 1 super QED

QCD

N ¼ 4 super Yang-Mills
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independent subset is the sum of the gluon loop, the gluon
tadpole, and the ghost loop. We also note that the
universality holds within the domain of validity of the
hard-loop approximation which is explained at the end of
this section after all self-energies of interest are given. A
physical origin of the universality is discussed in Sec. V.
In Table III there are listed the lowest order contributions

to the fermion self-energies of every theory. In case of the
N ¼ 1 super QED, there are the Dirac fermions and
Majorana fermions which have to be treated differently.
As in case of the polarization tensor, the fermion self-
energies ΣðkÞ are quite different for each theory. However,
when the external momentum k is much smaller than the
internal momentum p, that is when the hard-loop approxi-
mation is applied, the (retarded) self-energies of all theories
are of the same form

ΣðkÞ ¼ CΣ

Z
d3p
ð2πÞ3

fΣðpÞ
Ep

p
k · pþ i0þ

; ð13Þ

where CΣ and fΣðpÞ are both given in Table IV for
each plasma system. The indices m; n ¼ 1; 2;…Nc label
quark colors in the fundamental representation of the
SUðNcÞ group.
Table V shows the diagrams of the lowest order con-

tributions to the scalar self-energy of three theories where
scalars occur. As in case of the polarization tensors and
fermion self-energies, the self-energy of scalars PðkÞ are
quite different for each theory. However, within the hard-
loop approximation we obtain the amazingly repetitive
result—the scalar self-energies of all theories have the same
form

PðkÞ ¼ −CP

Z
d3p
ð2πÞ3

fPðpÞ
Ep

; ð14Þ

where CP and fPðpÞ are both given in Table VI for each
plasma system. As seen, the self-energy (14) is real,
negative, and it is independent of the wave vector k.

TABLE IV. The factors entering the fermion self-energies.

Plasma system CΣ fΣðpÞ
QED e2

2
2fγðpÞ þ feðpÞ þ f̄eðpÞ

Electron in N ¼ 1 super QED e2
2

2fγðpÞ þ feðpÞ þ f̄eðpÞ þ 2f ~γðpÞ þ fsðpÞ þ f̄sðpÞ
Photino in N ¼ 1 super QED e2

2
feðpÞ þ f̄eðpÞ þ fsðpÞ þ f̄sðpÞ

QCD g2

2
N2

c−1
2Nc

δmnδij 2fgðpÞ þ NfðfqðpÞ þ f̄qðpÞÞ
N ¼ 4 super Yang-Mills g2

2
Ncδ

abδij 2fgðpÞ þ 8ffðpÞ þ 6fsðpÞ

TABLE V. The diagrams of the lowest order contributions to the scalar self-energies.

Plasma system Lowest order diagrams

Scalar QED

N ¼ 1 super QED

N ¼ 4 super Yang-Mills

TABLE VI. The factors entering the scalar self-energies.

Plasma system CP fPðpÞ
Scalar QED e2 2fγðpÞ þ fsðpÞ þ f̄sðpÞ
N ¼ 1 super QED e2 2fγðpÞ þ feðpÞ þ f̄eðpÞ þ 2f ~γðpÞ þ fsðpÞ þ f̄sðpÞ
N ¼ 4 super Yang-Mills g2Ncδ

abδAB 2fgðpÞ þ 8ffðpÞ þ 6fsðpÞ
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The universal expressions of the self-energies (11), (13),
and (14) have been obtained in the hard-loop approxima-
tion, which is when the external momentum k is much
smaller than the internal momentum pwhich is carried by a
plasma constituent. However, it appears that the self-
energies (11), (13), and (14) are valid when the external
momentum k is not too small. It is most easily seen in the
case of the fermion self-energy (13) which diverges as
k → 0. When we deal with an equilibrium (isotropic)
plasma of the temperature T, the characteristic momentum
of (massless) plasma constituents is of the order T. One
observes that if the external momentum k is of the order
g2T, which is the so-called magnetic or ultrasoft scale, the
self-energy (13) is not perturbatively small as it is of the
order Oðg0Þ. Therefore, the expression (13) is meaningless
for k ≤ g2T. Since k must be much smaller than p ∼ T, one
arrives to the well-known conclusion that the self-energy
(13) is valid at the soft scale which is when k is of the order
gT. Analyzing higher order corrections to the self-energies
(11), (13), (14), one shows that they are indeed valid for
k ∼ gT and they break down at the magnetic scale because
of the infrared problem of gauge theories, see, e.g., [25] or
the review [4]. When the momentum distribution of plasma
particles is anisotropic, instead of the temperature T, we
have a characteristic four-momentum Pμ of plasma con-
stituents and the hard-loop approximation requires that
Pμ ≫ kμ which should be understood as a set of four
conditions for each component of the four-momentum kμ.
Validity of the self-energies (11), (13), and (14) is then
limited to kμ ∼ gPμ.

IV. EFFECTIVE ACTION

Having the self-energies ΠμνðkÞ, ΣðkÞ, and PðkÞ given
by Eqs. (11), (13), and (14), respectively, we can recon-
struct the effective action. Integrating the formulas (8)–(10)
over the respective fields, we obtain the Lagrangian
densities

LA
2 ðxÞ ¼

1

2

Z
d4yAμðxÞΠμνðx − yÞAνðyÞ; ð15Þ

LΨ
2 ðxÞ ¼

Z
d4yΨ̄ðxÞΣðx − yÞΨðyÞ; ð16Þ

LΦ
2 ðxÞ ¼

Z
d4yΦ�ðxÞPðx − yÞΦðyÞ: ð17Þ

In the case of N ¼ 4 super Yang-Mills, where the scalar
fields are real, there is an extra factor 1=2 in the rhs of
Eq. (17). The subscript “2” indicates that the above
effective actions generate only two-point functions. We
omit the field indices in Eqs. (15)–(17) to keep the
expressions applicable to all considered theories. The
action is obviously related to the Lagrangian density
as S ¼ R

d4xL. Using the explicit expressions of the

self-energies (11), (13), and (14), the Lagrangians (15)–
(17) can be manipulated, as first shown in [13], to the forms

LA
2 ðxÞ ¼ CΠ

Z
d3p
ð2πÞ3

fΠðpÞ
Ep

FμνðxÞ
pνpρ

ðp · ∂Þ2 F
μ
ρðxÞ; ð18Þ

LΨ
2 ðxÞ ¼ CΣ

Z
d3p
ð2πÞ3

fΣðpÞ
Ep

Ψ̄ðxÞ p · γ
p · ∂ ΨðxÞ; ð19Þ

LΦ
2 ðxÞ ¼ −CP

Z
d3p
ð2πÞ3

fPðpÞ
Ep

Φ�ðxÞΦðxÞ; ð20Þ

where the operator inverse to p · ∂ acts as

1

p · ∂ ΨðxÞ≡ i
Z

d4k
ð2πÞ4

eik·x

p · k
ΨðkÞ: ð21Þ

The operator ðp · ∂Þ−2 is defined analogously.
The n-point functions with n > 2, which are generated

by the actions (18)–(20), identically vanish, as the actions
are quadratic in fields. We also observe that the action of
scalars (20) is gauge invariant for every theory which
includes the scalar field. Moreover, the gauge boson action
(18) is invariant as well but only in the Abelian theories.
The fermion action is gauge dependent in all theories under
consideration. Therefore, the fermion action and, in gen-
eral, the gauge boson action need to be modified to comply
with the principle of gauge invariance. This is achieved by
simply replacing the usual derivative ∂μ by the covariant
derivative Dμ in Eqs. (18) and (19). Thus, we obtain

LA
HLðxÞ¼CΠ

Z
d3p
ð2πÞ3

fΠðpÞ
Ep

FμνðxÞ
pνpρ

ðp ·DÞ2F
μ
ρðxÞ; ð22Þ

LΨ
HLðxÞ ¼ CΣ

Z
d3p
ð2πÞ3

fΣðpÞ
Ep

Ψ̄ðxÞ p · γ
p ·D

ΨðxÞ; ð23Þ

LΦ
HLðxÞ ¼ −CP

Z
d3p
ð2πÞ3

fPðpÞ
Ep

Φ�ðxÞΦðxÞ: ð24Þ

The forms of covariant derivatives present in Eqs. (22) and
(23) depend on the theory under consideration. In the
electromagnetic theories, the derivative in the gauge boson
action (22) is, as already mentioned, the usual derivative
while that in the fermion action (23) is Dμ ¼ ∂μ − ieAμ.
The operator ðp ·DÞ−1 acts as

1

p ·D
ΨðxÞ≡ 1

p ·∂
X∞
n¼0

�
−iep ·AðxÞ 1

p ·∂
�

n
ΨðxÞ: ð25Þ

In theN ¼ 4 super Yang-Mills, the covariant derivatives in
Eqs. (22) and (23) are both in the adjoint representation of
the SUðNcÞ gauge group. The formula (25) should be then
appropriately modified. In QCD, the covariant derivative in
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Eq. (22) is in the adjoint representation but that in Eq. (23)
is in the fundamental one. As already mentioned, there is an
extra factor 1=2 in the rhs of Eq. (24) in the case of N ¼ 4
super Yang-Mills.
The hard-loop actions (22), (23), and (24) are all of the

universal form for a whole class of gauge theories. However,
the case of Abelian fields differs from that of non-Abelian
ones. In the electromagnetic theories the gauge boson and
scalar actions are quadratic in fields. Therefore, the n-point
functions generated by these actions vanish for n > 2. Only
the fermion action generates the nontrivial three-point and
higher functions. The action (23) is, in particular, responsible
for a modification of the electromagnetic vertex. In the non-
Abelian theories, both the gauge boson and fermion actions
generate the nontrivial three-point and higher functions.
Therefore, the gluon-fermion, three-gluon, and four-gluon
couplings are all modified.

V. DISCUSSION

We have shown that the hard-loop self-energies of gauge,
fermion, and scalar fields are of the universal structures and
so are the effective actions of QED, scalar QED, N ¼ 1
super QED, Yang-Mills, QCD, and N ¼ 4 super Yang-
Mills. One asks why the universality occurs physically.
Taking into account a diversity of the theories—various
field content and microscopic interactions—the uniqueness
of the hard-loop effective action is rather surprising.
To better understand the problem in physical terms, let us

consider the QED plasma of spin 1=2 electrons and
positrons and the scalar QED plasma of spin 0 particles
and antiparticles. The universality of hard-loop action
means that neither effects of quantum statistics of plasma
constituents are observable nor are the differences in
elementary interactions which govern the dynamics of
the two systems. Both facts can be understood as follows.
The hard-loop approximation requires that the momentum

at which a plasma is probed, which is the wave vector k, be
much smaller than the typical momentum of a plasma
constituent, p. Therefore, the length scale, at which the
plasma is probed, 1=k, is much greater than the character-
istic de Broglie wavelength of plasma particle, 1=p. The
hard-loop approximation thus corresponds to the classical
limit where fermions and bosons of the same masses
and charges are not distinguishable. The fact that the
differences in elementary interactions are not seen results
from the very nature of gauge theories—the gauge sym-
metry fully controls the interaction. And the hard-loop
effective actions obey the gauge symmetry.
The universality of hard-loop actions has far-reaching

physical consequences: the characteristics of all plasma
systems under consideration, which occur at the soft scale,
are qualitatively the same. In particular, spectra of collec-
tive excitations of gauge, fermion, and scalar fields are the
same. Therefore, if the electromagnetic plasma with a given
momentum distribution is, say, unstable, the quark-gluon
plasma with this momentum distribution is unstable as
well. We conclude that in spite of all differences, the plasma
systems under consideration are very similar to each other
at the soft scale. However, the hard-loop approach breaks
down for the momenta at and below the magnetic sale.
Then, systems governed by different theories can behave
very differently. In particular, the QED plasma is very
different from the QCD one, as in the latter case effects of
confinement apparently appear at the magnetic scale.
Recently, there have been undertaken several efforts to
extend methods of the hard-loop approach to the ultrasoft
scale [26–30]. These efforts explicitly show limitations of
the universality we have elaborated on here.
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