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QCD effective actions from the solutions of the transport equations
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We solve the collisionless transport equations of a quark-gluon plasma interacting through mean chromo-
dynamic fields. The system is assumed to be translation invariant in one or more space-time directions. We
present exact solutions that hold if the vector gauge fields in the direction of the translation invariance
commute with their covariant derivatives. We also solve the equations perturbatively when the commutation
condition is relaxed. Further, we derive the color current and the associated effective action. For the static
quasiequilibrium system, our results reproduce the full one-loop effective action of QCD in the presence of
constant background fields, where the above mentioned commutation condition is satisfied.
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I. INTRODUCTION [11] that the theory supplemented by the collision terms, ob-
tained by integrating out soft fluctuations around the mean
When the temperatur@ of the quark-gluon plasma is fields, agrees with the QCD effective approacig4?2]. The
much greater than the QCD scale paramétggp, the hard  relationship between the transport theory with classical color
modes, i.e. those with momenta of the ordefTobr larger, and QCD can be found through the study of the quantum
are weakly interacting and they can be described within perpath integral within a saddle-point approximatidi8].
turbative QCD[1]. The dynamics of the soft sector, however, In the second version of the QCD transport thelatyl 4],
remains nonperturbative even at arbitrarily large temperaturthe color charges are represented, in full accordance with
[2], as signaled by severe infrared divergeri&sThen, one QCD, by a matrix structure of the distribution function. The
has to refer to effective theories to get insight into the softVlasov transport equation of quarks was deriidd) di-
mode dynamics. Such theories, see Bigp], can be derived rectly from QCD, by analyzing the motion of quantum
from QCD by integrating out the hard modes, but constructquarks in the classical chromodynamic field. The gluon
ing them is by far not a simple task. Consequently, one ofteftransport equation was fourdd6,17, by splitting the gluon
relies on more or less heuristic approaches, usually exploifield into the mean field and the contribution representing the
ing a semiclassical or classical field approximation becausparticle excitations. It was further observ¢tlg] that the
the occupation numbers of the soft gluonic modes are largeguark and gluon transport equations are formally identical
A very natural effective approach is provided by the ki- when the first one is written in the fundamental representa-
netic theory, where the hard modes are treate@aasjpar-  tion and the second one in the adjoint representation. Then,
ticles while the soft gluonic ones contribute to the chromo-the quark and gluon distribution functions axgx N, and
dynamic mean field. The transport theory has beer{NZ—1)x(N2—1) matrices, respectively, for th8 U(N,)
formulated in two versions. The first one treats the colorgauge group. The early development of the quark-gluon ki-
degrees of freedom as a classical continuous variable whiclmetic theory was summarized at RE9].
as position or momentum, evolves in time. A starting point of  In quasiequilibrium, the matrix transport theory was
the theory are the Wong equatiditg, which describe a clas- proved[20] to be fully equivalent to the QCD hard-loop
sical particle that interacts with the chromodynamic field dueapproach[4,9,10. The kinetic approach, which can be
to the color charge. Then, one immediately gets the Liouvilletreated as a local representation of the nonlocal hard-loop
and the transport equatiofig] of a many-body quark-gluon action, is particularly useful to study the collective excita-
system. The physical content of the theory is rather transpations of the quark-gluon plasma, sgxl] for a review. More
ent and numerous results, for example transport coefficientsecently, the quasiequilibrium kinetic equations have been
can be easily obtained. Even the simplest collisionless transierived beyond the collisionless linji22] and the QCD ef-
port equations, where the dissipation phenomena are néective theorieg5] have again been correctly reproduced.
glected, provides a surprisingly rich dynamics. The transport A natural question that arises is where the agreement be-
theory with the classical color became really reliable whenween the kinetic theory, either with the classical color or in
the theory was found8] to reproduce the QCD hard- the matrix form, and the finite temperature diagrammatic ap-
thermal-loop dynamic$4,9,10. It was further established proach breaks down. Surprisingly enough, the effective ac-
tion of the static fields provided by the kinetic equations
agrees with that obtained within perturbative QCD even at
*Electronic address: cristina.manuel@cern.ch the g® order[23], where an operator responsible 1Brodd
"Electronic address: mrow@fuw.edu.pl processes appears for systems with finite baryon density.
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However, in a subsequent stufB4] the kinetic theory with Q(p,X)—=M(X)Q(p,x)MT(x). (2.2

the classical color has been found to reproducegtheon-

tribution to the effective action only in the limit of high- Here and most cases below, the color indices are suppressed.
dimensional color representations. Thus, the limitations ofrhe distribution function of hard gluons is a HermitiaRZ

the classical approach have been explicitly determined.  _ 1)x (N2—1) matrix, which transforms as
The aim of this paper is to clarify whether the difficulties ¢ ’
faced by the classical color transport theory can be overcome G(p,X)— M(X)G(p,x) M (x) 2.2

when the matrix formulation is used. We explore how far the
limits of the non-Abelian kinetic approach can be extended
For this purpose, we look for the solutions of the transport
equations for quarks and gluons interacting with a chromo- _ +
dynamic mean field. The system is assumed to be translation Map(X)=Tr 7aM () 7M 7)1,
Invariant in one or more space-time dlr_ectlons. Thus, our i 7., a=1,... N2~ 1 being theSU(N,) group genera-
considerations hold, in particular, for static and for homoge-, . ¢ ‘ :
neous systems. We first present exact solutions when the ve_—rlsé inthe fundamental representation with 7t;)
tor gauge fields in the direction of the translation invariance_iI ab- llision] limit. the distributi f . f
commute with their covariant derivatives. Then, we use per- n a collisionless limit, the distribution _unc'Flons 0
turbation theory to solve the transport equation when thequarks and gluons satisfy the transport equations:
commutation condition is relaxed. Once the solutions are
known, we derive the corresponding color current, and the 9 [ (?Q(p,x)] —
e : : : DD, Q(p,x)+ 5 P F LX), ——— =0, (2.3a
the associated effective action. In the case of thermodynamic  “ 2 a p,
equilibrium, our results agree with those obtained by com-
puting the one-loop effective action of QCD in the presence _ g
of a constant background field, which also corresponds to the*D ,Q(p,x) — Ep"{ F (X)),
effective potential of the dimensionally reduced the[®#y].
However, for static and nonconstant background fields such . G(p.x)
that the commutation condition is not satisfied, we find ad- .. 9 u A
ditional nonlocal operators that correct the effective potentialp DuG(px)+ 2P [j:“"(x)’ ap, ] 0. (2:39
of [27], in what seems to be a discrepancy between the two
approaches. whereg is the QCD coupling constang,. . ., ...} denotes
The paper is organized as follows. In Sec. Il we reviewthe anticommutator; the covariant derivatig andD,, act
the transport theory approach we use in this paper. Exacts
solutions of the transport equations for translation invariant
systems are discussed in Sec. Il while in Sec. IV we solve D,=4d,—ig[A,(X),...], D,=d,—ig[A,(x),...],
the equations perturbatively. The effective actions for static
and for homogeneous systems close to equilibrium are dea, and.4,, being four-potentials in the fundamental and ad-
rived in Sec. V and we conclude our considerations in Secoint representations, respectively,
VI. The evaluation of some momentum integrals is left for
Appendix A and we collect in Appendix B some formulas of ARX)=AKX)Ta,  AL(X)=—if 2pAXX),
the traces oS8 U(N.) generators in the adjoint representation.
Einally, .in Appendix C we briefly discuss the one-loop effec- 5 f.,. are the structure constants of t8&J(N,) group.
tive action[2,25,2 which is compared to our results. Since the generators &U(N,) in the adjoint representation
are given by T.)pc=—ifape, OnNe can also writed*

[1. TRANSPORT EQUATIONS =ALT?. The stress tensor in the fundamental representation
is F,,=d,A,—d,A,—ig[A,,A,], while F,, denotes the
field strength tensor in the adjoint representation.

Sometimes it is convenient to project the matrix equations
2.3 into their colorless and colored components. For the
uark distribution function we define

—0Q(p’x)] =0, (2.3b

P,

In this section we briefly review the transport theory of
guarks and gluongl9,18. While we will restrict the discus-
sion to QCD, withN; massless quarks and antiquarks carry-
ing color in the fundamental representation and gluons in th
adjoint, the results could easily be generalized to a different
non-Abelian theory with different field content. ~ a a

The distribution function of (antjquarks Q(p,X) Q(p.x)=4a(p.x)+a%(p.x) 7" (2.4

[6(p,x)] is a HermitianN. X N, matrix in color spacéfor a

SU(N,) color groug; x denotes the space-time quark coor- . : :

dinate andp its momentum, which is not constrained by the }\I/Ioc?rse forretg(;ec:|ff?l\r/2nftir::é)mponents Qf defined by Eq(2.4).

mass-shell condition. The spin of quarks and gluons is taken P Y.

into account as an internal degree of freedom. The distribu- g 3G%(p.X)

:\l/lor;sfunctlon transforms under a local gauge transformation P a,q(p,X)+ mpupzy(x)a—’zo, (2.53
Cc v

Then, we can deduce from E.39 a set of coupled equa-
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b 9 b b 3q°%(p,X) rent. In the remaining part of this article we will use this
p*Dq°(p,x) + Eda CD“FW(X)T approach to obtain the effective action in different physical
v situations.
Ja(p,x)
FOPFLX) p, -0 (259 I1l. EXACT SOLUTIONS

whered?°° are the totally symmetric structure constants of _ Finding exact solutions of the transport equatiéhSa—
SU(N,) and D= g, 62+ gfab°AP . Similar equations can (2.309 is in general a difficult task. However, it is possible to
w_n :

be written for the antiquark and gluon distribution functions. find such solutions under some restrictive conditions. Here

Equations(2.5a, (2.5b reflect in a very clear way that trans- we cqns_ider_ a system where .both .the vector gauge field.and
port phenomena of colorless and colored fluctuations arthe d|str|but|o_n functions are invariant under the space-time
coupled beyond the lowest order in the gauge coupling contranslatiorts), i.e.
stant. Equationg2.53, (2.5 might be very useful when
collisions are also taken into account. In this study, however, d, A“(x)=0, u©=0,1,2,3, (3.1
we find it more convenient to work with the matrix equations '
(2.39—(2.30.
Once the solution of the transport equations is known, weand
can obtain the color current associated to the plasma con-
stituents. The color current is expressed in the fundamental

representation as da; QPX)=0,,Q(p.X)=3,,G(p,x)=0, (3.2
. gf [ = 1 f i . . '
Bx)=—=| dP X)— X)— —Tr X or a fixeda;, wherea; can involve more than one Lorentz
150 2 P QX = Q(p.x) N¢ [Qlp.x) index. For example, ity;=0 the system is static while for

a;=1,2,3 the gauge field and the distribution functions de-
, (2.6) pend only on time. The condition E@3.1) is a choice of
gauge that, as we will show below, allows one to find solu-
tions to the transport equations that respect the translation
SO that] f,;(X)=2TI’(Taj I'L(X)), and the momentum measure invariance of the System_
To solve Eqs(2.33—(2.39 for translation invariant sys-
d*p ) tems along the directior“i, we will take into account two
dP= (277)32(po) a(p?) (2.7 known facts. First, in an electromagnetic plasma, an exact
solution of the corresponding transport equation is given by

takes into account the mass-shell conditigy=|p|. any function of the canonical momentumy, —eA(x), if

Throughout the paper, we neglect the quark masses, althougdl;A«=0 [28]. Second, the non-Abelian transport equations
those might easily be taken into account by modifying theof particles carrying a classical color chart for these
mass-shell constraint in the momentum measure. A sum ovédranslation invariant systems are also solved by any function
helicities, two per particle, and over quark flavédsis un-  of the canonical momenturpai—gAii(x)la, if aaiAf;:o
derstood in Eq(2.6), even though it is not explicitly written  [24]. Because the first case represents the Abelian limit of the
down. transport equation€.33—(2.39, while the second one cor-

In the transport theory framework one can consider tWoresponds to the limit of high-dimensional color
different physical situations(1) the gauge fields entering representations,one expects that the solutions of Egs.
into the transport equation®.33—(2.39 are external, not (2 .33—(2.3@ are of the form
due to the plasma constituent®) the gauge fields can be
generated self-consistently by the quarks and gluons. In the

- 6(D,X)] +2i 75f 4 G P, X)

latter case, one also has to solve the Yang-Mills equation Q(p.X) =Py, —gA,, (X))
14 — Vv * - n
DLFHOO=100), (=8 =3 O 0ALX) - ALX)
h=0 n! 1 2 n
where the color current is given by E@.6). .
The color current can be derived from an effective action d f(pai)
added to the Yang-Mills one. By means of the relation Xap Py - - Pa,’ (3.33
al a an
) S
ja=~3pa (2.9 _ o _
“ While we are considering here the transport equations only for

particles carrying color in the fundamental and adjoint representa-
whereS= [d*xL, one can obtain the effective action, up to tions, the equations are expected to have the same structure in any
an integration constant, from the knowledge of the color curother non-Abelian representation.
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Q(p.X) = (py,+gA,, (X))

*° n

| «

n

A (DAL (X)- - -A, (X)

=)

0

I"f(pg,)
X
P, ey - - - Pa,

: (3.3b

G(PX) =1 4(Pa,— G A, (X))

=3 B9 04,0 A, (0
n=0 N n

" o(Pa,)
X
PPy - - - IPa,

, (3.39

where it is understood that a sum is taken over the repeated
indices. The function$, f andf, are, in principle, arbitrary

but they can be fixed by additional considerations.

PHYSICAL REVIEW D 67, 014015(2003

n—-1
[x,\/“]zg0 Y[ X,Y]Y"s71

to derive Eq.(3.5. We have also taken into account that
F.a;=D A, because of Eq3.1).

It is easy to observe that the terms in E§.5 and Eq.
(3.6) that correspond to the same order of the derivative of
cancel each other exactly if

[D,Au A 1=0, u=0123, (3.7

whereAaj is also in the direction of the translation invari-

ance. The same condition is obtained for the antiquark dis-
tribution function, while for gluons one finds that E®.30
is an exact solution of Eq2.3¢ if

[DuAup A ]=0, £=01,23. (3.9

Let us note that the distribution functions given by Eqs.However, it is easy to prove that E(8.8) is automatically
(3.33—(3.39 transform covariantly, i.e. according to Eqs. satisfied if Eq.(3.7) holds.

(2.1) and(2.2), even though the potentials“, A*, in gen-
eral, do not. Indeed,

A%(x)—M(X)A%(X)MT(x) — Ia(a“iM (x)MT(x).
(3.4

However, the second term in the right-hand sig@1S) of

For static systemsa=0), Eq.(3.7) reduces to the com-
mutation relation between the color electric field akd In
a more general situation, the condition E§.7) simplifies
the non-Abelian field dynamics in the direction of the trans-
lation invariance. Note that the commutation condition is
trivially satisfied in the Abelian limit. IfT is a generator of
a representatioR of SU(N,), then, after a normalization of
these generators, one would gETg ,Tg]—>0 for high-

Eqg. (3.4), which transforms noncovariantly, is eliminated be- dimensional representations. Consequently, the commutation

cause of the conditiofB3.1).
Let us check under which conditions the ansatz,([B®),
solves the transport equations. We first note that(BE®3 is

condition would also be satisfied. This explains how to rec-
oncile the matrix results with those obtained with the non-
Abelian transport equations for classical color.

totally symmetric under the exchange of indices Once the solution for the quark, antiquark and gluon dis-
aq, ...,a,. Inserting Eq.(3.39 into the transport equation tribution functions are known, one can compute the color
(2.39, one finds current. Inserting Eq93.39—(3.39 into Eq. (2.6), we get
pMD,uQ(p!X) * (_g)n+l
“ (g I500=22 — AR (0 - AT ()
=p*2 > AuAa (DAL ) Ay
ai=o n! 0 1 R | n \
9"f(Pg,)
07nf(pa.) XJ de”‘ NfTr[TaTcl.”TCn] ap (9p
I ’ 3 ag an
PPy - P 39 B
. 9(Pa)
+(-)"l—
9 . F..(X) —&Q(p,x) v IPay P,
2P T,
anfg(pai)
, o (_g)n+1 —I—Tr[TaTC1~ . ~Tcn]m (39)
=—p = T{DuAaivAal' : 'Aan}
M (p,) The factor 2 in the above equation arises from the two he-

X : 3.6
IPaPay - - - P, 3.6

licities associated with every particle species. When the

functionsf, f and fy are determined, one can evaluate the
momentum integral of Eq3.9), and then, after solving Eq.

where we have used the following property of a commutator(2.9), one obtains the associated effective action.
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IV. PERTURBATIVE SOLUTIONS the unperturbed distribution function depends onIypgpas

A. General considerations in Eq. (4.3). The first-order correction tQ(®) is obtained by

. .. solving the equation
In Sec. lll we have found exact solutions of the collision- g g

less transport equatior{2.33—(2.3¢ for translation invari- f(p,) f(p,.)
ant systems that obey the extra condition E2)7). In this p“D,QW=—gp*F '
section we treat the transport equations perturbatively and
find solutions that are not constrained by the condition Eq. (4.5
(3.7).

We assume here that The solution readgup to a functionh, such thatp#D ,h

=0, that we will neglect throughoput
g<1, (4.1

ot(p,)
IPa,

i.e. we deal with the weak coupling regime of the theory, and QW(p,x)=—gA,. (X)
consider an expansion of the distribution function of the ' “
form

, (4.6

2 D1 2) and it coincides with the first term of the ans&&33.
Q=QW+Q™W+Q"+ ... (4.2) The transport equation at second order is

where the Oth term is a known function o2 H(p,)
D, QP =Z{P"DAu At 5o — (47
Q(p,x)=f(py,)- (4.3 g 217 Trreted gp, op,,
The higher-order terms are determined by the equation  but it can be rewritten as
~D QM (p,x) + 9w F o (X) M =0 g° azf(pai)
PERRTR T P P - D, QP =Zp D u(AuAy,) . (48)
2 1 %27 9p,.Ip
(4.4 A
Of course, the same treatments should be followed to studyhus, the second-order solution is
the antiquark and gluon distribution functions, but those are
nearly identical. g2 Ff(p,)
The iterative procedure based on E4.4) does not cor- Q@ (p,x)= ?Aal(x)Aaz(x) —_— (4.9
respond to a strict expansion in powersggofSuch an expan- IPa;Pa,

sion would force us to split all covariant derivatives into a

derivative and a commutator part, resulting in the breakingvhich again coincides with the respective term of the ansatz
of the gauge covariance of every term in the perturbative3.33.

series. We maintain the gauge covariance of every term in The third-order equation is

Eq. (4.2) at the expense of reorganizing the perturbative ex-

pansion. g Pf(p,)

It should be noticed that fdr being the equilibrium dis- p“D,Q®=—"1{p*D A, A A} ———,
tribution function, the first termr(=1) of the above pertur- a 4 I ] IO PN
bation series reproduces the hard thermal loops of QCD 4.10

[4,20]. Let us also stress that while we are applying here a

perturbative method to the transport equations in their matriand its RHS isot proportional to a covariant derivative of a
form, fully equivalent results can be obtained using the prothird power of A,. However, the anticommutator of the
jected equation$2.53, (2.5D. Such an approach has been rys of the equatilon can be rewritten as follows:

carried out by Bdeker and Laine to ordey? for static qua-

siequilibrium system§23]. We extend that analysis by push- 3

ing the perturbative procedure to higher orderginVe do p“D ,Q®)=— g p“D (A, A, A, )

not attempt to solve the transport equations in full generality, a 3! e “

as the solutions at every order then turn out to be highly 3¢
ion invari g 1 7*f(pg,)
nonlocal. We reduce our study to translation invariant sys +Z[[p*D A, A, 1A, ] i
tems when the solutions are much simplified. 2 KT e S 0P 4 0P, Py
(4.11

B. From g to g* order

In this subsection, we consider a translation invariant sysThe term with the commutator cannot be expressed as a total
tem that obeys Eq3.1) for a fixed«; . We also assume that covariant derivative. Thus, the solution of the above equation
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contains two pieces: a term that is local in the gauge fieldg he first anticommutator in the RHS of the equation can also
and a nonlocal part. Namely, be rewritten as a total covariant derivative plus an additional
commutator. Thus,

3 7*f(Pay)
QD)= = 37 Au, (A (0A(X) s — \

P, P, Pa g
. 17Fap%Fag pMD#QM):E(pMDM(AalAazAasA%)
+QP(x,p) (4.12 :
T [[ pMDMAal’Aaz] 1A0z3Aa4])

I*f(pa,) g 20
3 X ! + _l[ Mmoo ]

f(Pg,) IPa, PP a,IPa, 4! ap,
apalapazap%' (4.19

(4.13

One observes that when the condition E8}.7) is satisfied,
Qﬁﬂs)=0 and we recover the solution of ordgf of Eq.
(3.33. But this term is nonzero under more general circum-

with the non-local term obeying the equation

p*D,.QY =~ —[[p“D AapAa,lAg,]
We see that the solution is of the form

4

(4) =2
stances. We also notice that if Q™(X,P) = 77 Aa; (X)Aa,(X)Aa (X)Ag,(X)
4
[9,Aa A 1=0, (4.14 NI
b 9P IPw. 0P w. 0P P
al tlfz LI3 114
the nonlocal piece is proportional 5. (4.20

Let us solve Eq(4.13. Using theSU(N,) algebra, we

rewrite the commutator as WhereQ(“) represents the nonlocal contribution that vanishes

if the condition Eq.(3.7) is satisfied. We note that the local

3 . .. . 4
3 9 acdedeb a enc Ab piece coincides with the term” of the ansat£3.3a.
p“D,QR=~ 1_2f P (0D uAa)) A Ao In principle, we could solve the equation @} and for
3 the following terms of the perturbative expansion, finding
J f(pai) that every term contains both local and nonlocal pieces in the
Xm gauge fields. However, we stop our analysis here as the
o structure of the nonlocal terms becomes more and more com-
=R%7%, (4.15  plex.

Adding the contributions of quarks, antiquarks and glu-
ons, we can obtain the color current. Up to the tarm3,

B)=pBa_ a
ConsequentlyQp”=Qp with the color current still has a relatively simple form and is

given by
prDAQYP =R, (4.16
The solution can be expressed as s (— 9)”+1 ACL cn
h(x)= 22 AL(X)- - AT (x)
QP (0= [ (=S y)an RY), @27 (P,

X f dPp* NfTr[TaTCl- : ~Tcn] W
where 1p- D is the retarded Green function associated to the - ' !
differential equation(4.16). The explicit form of 1p-D can f(p,)
be found, for example, in Sec. Il $29]. +(—1)"

The fourth-order equation reads WPy IPa,
"fg(Pa,)
4 674f(p ) +T . R D O By
g aj r[TaTc Tc ] +] a nI(X)y
m H==_rpm 1 P, - IP, :
p D,u.Q 12{p D Aal AazAa3Aa4}&pa apazapaa&paA p 1 p n (4 21)
g* sQ® '
+ —{ Fuvs ] (4.189
24 p, where the nonlocal term reads
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. g’ p~
lg,m(x)zgj dPJ d4Y<X|p—D|Y>ab

X ZNfTr( Tb[[p ' DAalvAaz] vAa3])

[ P*f(pg,)

f(Pa,)
X + '
PP, Py

T
1 b
R DAL Al Au])

(93fg( pai)

X—— | 4.2
PP a,Pay (422

PHYSICAL REVIEW D 67, 014015 (2003

Nf )n+1 )
2 (n+1>' f dEE

d"fep(E)

[,f:
dE"

d"fep(E)

+(—1 n+1
(=1 4"

(5.9

TAG ()],

while that of gluons is

)n+l

L
?2 T folEE2 dBé( STiAg 001
(5.9

In the above expressions we have made use of the mass-shell
condition, which give€E=p,=|p|, and we have introduced

an infrared cutoff T>A>gT, which excludes the contribu-
tion of the soft modes to the integrals, as only the hard

In the following section we will get the effective action
for static systems close to equilibrium. In that case, it is easy
to see that fon=4 the local pieces do not contribute to the
current or effective action, as either the momentum integrals
(Appendix A or the traces of generators in the adjoint rep-
resentation(Appendix B vanish. However, the same does

modes behave as quasiparticles.
We note that the above Lagrangians can be written as

TN (>
£f=7T—2fTrf dEE[In(1+e AE-#-9A%)
A

not hold true for the nonlocal terms. +|n(1+e—B(E+M+gAO))], (5.6)

V. EFFECTIVE ACTION OF QUASIEQUILIBRIUM o= IzTI’fxdEEZM(l—e_B(E_gAO)), (5.7)

SYSTEMS R P
In this section we find the effective action for systemspecause
close to thermal equilibrium. Then, the functioind andf d 1
are of the Fermi-Dirac or Bose-Einstein form —In(lxe ) ===
dx e+l
1 — 1
feo(E) = FE M’ feo(E) = FE ] The Lagrangiang5.4), (5.5) differ from those given in Egs.

(5.6), (5.7) by field independent terms corresponding to the
1 free-quark and free-gluon contributions to the system’s pres-
foe(E)= : 5 SUe .
ePE_1 While it is not obvious from Eq(5.5), Eq. (5.7) shows
that the gluon action isot well defined without the infrared
cutoff because for energies smaller than the eigenvalues of
gA,, which are typically of ordegT, the logarithm in Eq.
(5.7 becomes a multivalued complex function. Of course,
there is an analogous problem with the Lagrangian(&dp.
The difficulty one encounters is not surprising—the kinetic
description breaks down for sufficiently soft modes. Then,
the equilibrium distribution function of gluons of the form
(3.30 becomes negative, losing its probabilistic interpreta-

The color current is given by E@3.9) with «; tion. . _
distribution functions are those in E¢p.1). We leave the evaluation of the energy integrals from Egs.

After performing the momentum integral, one observes(>-4 and (5.5 for Appendix A, where we first compute the
thatj.=0 since integrals with the cutoff. However, for all contributions the
a 40 cutoff dependent terms appear to be regular and subdomi-
\ i:
f 4 v'=0,

where=1/T, andT is the temperature, and is the quark
chemical potential.

A. Static systems
We first consider static systems satisfying the condition

[D,A¢,A0]=0, ©=0,1,2,3. (5.2

=0 while the

nant. Therefore, we take the limit— 0 and thus drop all the
cutoff dependent ternfsAs a result, we find the field depen-
dent fermionic contribution to the system’s Lagrangian as

(5.3

wherev'=p'/|p| is the particle velocity, and the integral is

performed over angular directions ef Thus, onlng, i.e.

the color current density, is nonvanishing. In the case of ?A matching procedure with the soft classical field theory allows
static systems, one easily finds the Lagrangian density bgne to eliminate the cutoff dependent terms but we will not pursue
integrating Eq.(2.9). The fermionic contribution arises from that procedure here.
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Li  u 2 Q?[T2 w2 of AE. We also observe that Eq&.8) and (5.9 after the
LK) T2+ — | TrAg+ >3 +— TrAg Wick rotationagreewith the dimensionally reduced effective
f ™ ™ action[27].
3 4 Now, let us briefly consider a static system that does not
9 _ 3, 9 4 satisfy Eq.(5.2). Using the solutions of Sec. IV B, we find
+“37T2TrA°+127T2TrA°' (5.8 that up to the ordeg* Egs.(5.8) and (5.9 still hold, but at

orderg®* and beyond there are corrections due to the nonlocal
We have kept here a linear term in the gauge potential thderms. The first nonlocal contribution appears at orgér
only survives in the Abelian limit where &g=A,. Taking  from the nonlocal current Eq4.22 with @;=0. To get the
into account that, as shown in Appendix B, the symmetriccorresponding term in the effective action, one should still

traces of an odd number of adjoint generators vanish, we fingolve Eq.(2.9). We have not found the solution, but we also
the following gluon contribution see no reason why the term should vanish. Thus, we con-

clude that the presence of the nonlocal contribution signals a

g2 g discrepancy with the dimensionally reduced effective action
Ly= TrAg— TrAé. (5.9 [27] at orderg®, whenever the condition Eq5.2) is not
6 2472 ot
™ satisfied.
It is also shown in Appendix B that the traces of the fields in B. Homogeneous systems

the adjoint representation can be expressed through the fun-

damental representation traces. We consider here time-dependent homogeneous systems

As already stressed, the integt8l?) is ill defined with-  that obey the condition Eq3.7) with ;=1,2,3. For a sys-
tem close to equilibrium, where the rotational symmetry is

out the infrared Cl.JtOﬁ' quever, the '|ntegral W'm:.o 'S _ not broken, the solution of the transport equations can only
regular after a Wick rotation to Euclidean space-time. For

. . . depend on the modulus of the canonical three-momentum
const_anEt background fieldso, and after the Wick rotation |[p—gA(t)|. The color current in this situation is given by
Ap—iA; we observe that Eqg5.6) and (5.7) with A=0 . —
fully agreewith the complete one-loop contribution to the Ed- (3:9 With f(p,), f(ps,) and fq(p,) replaced by
effective potential for the phase of the Polyakov line fep(|pl), feo(|p]), andfge(|p|), respectively.

[2,25,28. It should be mentioned that a constant background The color current is then given by E(B.9), but now «;

field Ay can always be chosen in diagonal fof#j, and thus =1,2,3. To get the expression for the color current, we first
satisfies the condition Eq5.2). The Wick rotated integral need to perform the momentum integral of E§.9). The

(5.7) is discussed in Appendix C. We note here that exceppartial derivatives appearing in E€3.9) can be explicitly

for the terms analogous to those present in ) it pro-  evaluated. Using the chain rule, they can be expressed as
vides non-analytic terms which are cubic in the eigenvaluegartial derivatives oE=|p|. Therefore,

of  9E df 9°f 9’E df 9E 9E d?*f

_:__’ - o _+___’
ap; dp; dE’ dpidp; dIpidp; dE  Ip; Ip; dE?

93f PE df [JE &PE JE G°E  JE °E \d*f JE JE JE d3f
= — 4| — +— +— —+——-——, efc,
Ip;dp;Ipx  IP;idp;Ipx dE |\ Ip; dpjdpx  Ipj IPidPk  IPk IPidPj/ dEZ  IP; IP; IPk dE3
|
wherei,j,k=1,2,3. The partial derivatives & can be writ- The angular integral of every term in the series of Eq.

ten as functions of the particle velocities. Let us define (3.9 can be easily calculated. Since the integrals of an even
number ofv' vanish we only need

P (5.10
() api,- P ' daQ, . . 1 _
f yp= v'v’=§5”, (5.11
An explicit evaluation of the first terms gives
. . o1 dQ, . . 1 . Lo
— — _ ikl — ¢ oij okl ik §jl il ojk
Ly=v', L'(JZ)—E(5” v'v)), f 2, Vvl 15(5 S+ 8%+ 8" 8. (5.12

The integrals oveE are the same as those used in the pre-

Lik=——(LLyo*+ LS+ L0, etc. . : ;
@~ " gltav tlev'tlep) vious subsectiorisee Appendix A
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The evaluation of the momentum integrals gives, as exthese nonlocal operators are not present.
pected,j2=0. The space components of the color current We have limited our analysis to translation invariant sys-
are, of course, nonzero with the quark and gluon contributems, when the solutions of the transport equations are local

tions given, respectively, as in the lower orders of the perturbative expansion. It would be
desirable to solve the equations in full generality. However,
L gTP W j 4 Nini the solutions are then complex nonlocal functions of the
la=3 13" 2 Tr(7.A)) + 1572 (Tr(m,ATATAT) gauge fields, and their structure beyond orgeiis not par-
ticularly enlightening. It is presumably more promising to
+Tr(r,ATAIA) + Tr(r,AIATAN)), (5.13  explore the combined set of equatiof®.33—(2.39 and
(2.8) numerically, thus allowing for a nonperturbative study
- g?T? g* S of dynamical phenomena at soft scales, even beyond the hard
ji= 5 Tr(T,A)+ @(Tr(TaAJA'A') thermal loop approximation.
FTr(TL A ATAY +Tr(T A AT AD)). (5.19 ACKNOWLEDGMENTS
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ngz g4 APPENDIX A: MOMENTUM INTEGRALS
ﬁg: —1—8Tr(AJ-AJ-) - W(TF(A]-AJ'A;AO 1. Bosons

The bosonic integrals to be evaluated are of the form

|2(A)=T3*”Fdx XZLEH(X), (A1)
A dx

1
+ ETr(AiAJ-AiA,-)). (5.16

We should point out that the terms proportionalyfoin Eq.

(5.19 and Eq.(5.16 agree with the hard thermal loop

Lagrangians in the homogeneous ||r[~mﬂ If the condition whereA=A/T. Expanding the Bose-Einstein distribution as

Eq. (3.7) is not satisfied, the color current, and thus the as- "

sociated effective Lagrangians, are corrected at ayfiemd f _ 1 _ E —mx

beyond by the addition of the nonlocal terms, exactly as Be(X)= -1 = ¢

happened for the static systems. However, we will not write

down these explicit terms here. and interchanging the order of summation and integration,
the integral that has to be performed reduces to

VI. CONCLUSIONS
2 2A A?
2 m

: A2
st (A2)

Our results show the efficiency of transport theory in de- J dx e MX=g~ma
scribing the quark-gluon plasma at soft scales. We have A
shown how the solutions of the collisionless transport equa-
tions for the static systems close to equilibrium reproduce thd Nerefore,
one-loop effective potential for the phase of the Polyakov
line. Up to now, the results of the transport theory and quan-  |b(A)=2(— 1)n-|-3n( Liz_n(e %) +ALiy_ (%)
tum field theoretical computations have been known to agree

only for the lower-dimensional operators, but our computa- A2
tions indicate that the agreement extends to the full one-loop i 1n(e—A)) (A3)
effective action. We find a complete match of the transport 2

results with those of the one-loop effective potential in the
presence of a constant background field. For nonconstatff
static background fields, transport theory predicts the appea‘Q
ance of nonlocal operators in the effective action, starting at © _m

4 . . def Z
orderg™ and beyond. This result then suggests a discrepancy Liyz) = 2 £ (A%)
with the dimensionally reduced effective theorj@g], where ° m=1 M®’

here the solution is expressed in terms of the Euler poly-
garithm function
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The function Li(e %) can be expanded in powers afas
(30,31

k

- A
Liny(e™d) Z 1)k Z(N=K) (A5)
for N<1 and
Line =X (-DN4N-k
k=0k#N—-1 .
N—-1
_\W_T _
+(—1) (N—l)!(InA Hyo1)  (AB)
for N>1; the zeta function is defined as
def = 1
{(s) = E e Re>1 (A7)
andHy=1+3+3+---+1N.

While the seriegA4) is convergent fofz| <1, the series
(AB), (A6) with the zeta function defined by EGA7) seem

PHYSICAL REVIEW D 67, 014015(2003

d"fep(x—a)

n

"a)= fwdx X2 (A11)
A

X

Expanding the Fermi-Dirac distribution as

—1)m e

m(x—a)

fro(x—a)= o a+1

m=l

and interchanging the order of summation and integration,
we obtain after performing the integréd2)

JL(a,A>=2<—1)”1(Li3_n<—eaA>+ALi2_n<—e“>

AZ
+ 7|_i 1-n(— ea-A)> . (A12)
Using the formuld 32]
Lin(— e—*>—2( 1“+1X 2(N=n)  (A13)

to be divergent because the zeta argument is repeatedly equal

to or smaller than 1. This happens due to the “illegal” inter-
changing of the two summations. As is well known, the
problem is resolved by means of the zeta function regular-

ization procedur¢32,31], where the analytic continuation of
£(s) instead of the definitiofA7) is used. Then{(1) re-
mains truly divergent while

1
5(0)——5,
Bk
§(1—2k)=—ﬁ, k=123...
[(—2k)=0, k=1,23...

whereB, are the Bernoulli polynomials.
Using Eqgs.(A5), (A6) one finds that wherA —0

Lin(e™%)=¢(N)+0O(4) (A8)

for N#1. Since Li(z)=—In(1-2), Li;(e *) diverges as
—InA. Therefore, whem\ —0

1P-2(—1)"T3 "¢(3—n) (A9)

for n#2. The n-even contributions to the effective action
vanish anyway because the respective trace ofAthields
equals zero; see Appendix B.

2. Fermions

The fermionic integrals of interest are
Ih(a,8)=T3""(J}(a,a)+(~1)"" 1 (~a,4))

(A10)
wherea=gBu and

where 7(s) is the alternating zeta function defined as

ee]
def

n(s) = >

m=1

(-1 )ml

Res>1

(Al4)

=(1-2"9(s),

we find that
® |

; a
IMa,A)=2(-1)"> T 73=n=D+0(4), (A15)
i=o I’
whenA—0.
Inserting the serieA15) into Eq. (A10) one gets

*© |
1(2,0)=2T "% Sp(3=n-DI(~1)"~(~1)']
(A16)

As seen in Eq(A16), the argument of is always an even
number for non-vanishing terms. Sineg —2k)=0 for k

=1,2,... theseries in Eq(A16) terminates. Then, one ob-
serves that!(a,0)=0 for n=4, while
2 w1
f _T3 43 — T3 53
1o(a,00=T% 4an(2)+ 3a 77(0)) 3 a-+ 3a
77_2
I1(a,00=T?(—47(2)—2a%7(0))=—T? ?+a2
I5(a,00=4aT»(0)=2aT, (A17)
153(a,00=~47(0)=-2,

where 7(2)= 7?/12 and7(0)=1/2.
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APPENDIX B: ADJOINT REPRESENTATION TRACES always be chosen in the diagonal fOATﬁ= 5‘330/9 whereC

To compute the effective action of E(.8) and Eq.(5.9) is a real constant. The respective gauge field in the adjoint
one needs to evaluate traces in the fundamental and adjoiftPresentation then reads
representations. We present here some useful formulas which )
relate the traces of the fundamental and adjoint representa- 0 —iC/g 0
tions. A%=| iClg 0 0
First, it is easy to prove that the total symmetric traces of 0 0 0
an odd number of adjoint generators vanish. In order to

prove this, note that Now, we plug this expression in E@5.7) and expand the

TLAT =T (4™, (B1) logarithm and the exponential. Taking the tracer.A3™
=2(C/g)®™, TrAZ™ 1=0], we end up with a series which
where the superscripf denotes transposition. The adjoint after resumming reads
representation oSU(N.) is real, and the generators obey

T_ T =
Ta=—Ta. Therefore, £g=?JO dEEYIn(1—e AE~9)+In(1—e AEFC))],

TAGT=(—1)"TrAZ]. (B2) (C1)
Thus, the trace vanishes for odu Rotating to Euclidean timely—i.A£, and thusC—iCE, we
Two other useful formulas are find
TrA2=2N,TrA3, (B3)

T (= _ _
cg=?f dEEYIn(1—e PEICH) 4 |n(1—e AEHICH],
0

TrAg=6(TrA3)%+ 2N TrAj. (B4)
(C2
For N.=2 andN.=3, one also has
which matches the result found in E@3) of [25]. The in-
tegral is evaluated if25], and nonanalytic cubic terms ®&F
are found. When rotated back to the real time these terms
provide imaginary contributions to the effective action. Its
presence in the Minkowski effective action could have been
anticipated from Eq(C1), as for soft energieE<C the
In this appendix we show how the solutions of the transdogarithm becomes a multivalued complex function. The real
port equations allow one to reproduce the results ofime integral is not well-defined and an additional prescrip-
[2,25,26. We consider only the bosonic case for BE(2) tion, such as going to Euclidean time, is necessary in order to
gauge group. The fermionic one can be treated similarly. Duevaluate it. With the infrared cutofh>C, these problems
to a global color rotation a constant background figjdcan  are absent, and the Minkowski effective action is real.

1
TrAgzz(TrAg)% (B5)
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