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We solve the collisionless transport equations of a quark-gluon plasma interacting through mean chromo-
dynamic fields. The system is assumed to be translation invariant in one or more space-time directions. We
present exact solutions that hold if the vector gauge fields in the direction of the translation invariance
commute with their covariant derivatives. We also solve the equations perturbatively when the commutation
condition is relaxed. Further, we derive the color current and the associated effective action. For the static
quasiequilibrium system, our results reproduce the full one-loop effective action of QCD in the presence of
constant background fields, where the above mentioned commutation condition is satisfied.
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I. INTRODUCTION

When the temperatureT of the quark-gluon plasma is
much greater than the QCD scale parameter�QCD, the hard
modes, i.e. those with momenta of the order ofT or larger,
are weakly interacting and they can be described within per-
turbative QCD�1�. The dynamics of the soft sector, however,
remains nonperturbative even at arbitrarily large temperature
�2�, as signaled by severe infrared divergences�3�. Then, one
has to refer to effective theories to get insight into the soft
mode dynamics. Such theories, see e.g.�4,5�, can be derived
from QCD by integrating out the hard modes, but construct-
ing them is by far not a simple task. Consequently, one often
relies on more or less heuristic approaches, usually exploit-
ing a semiclassical or classical field approximation because
the occupation numbers of the soft gluonic modes are large.

A very natural effective approach is provided by the ki-
netic theory, where the hard modes are treated as�quasi�par-
ticles while the soft gluonic ones contribute to the chromo-
dynamic mean field. The transport theory has been
formulated in two versions. The first one treats the color
degrees of freedom as a classical continuous variable which,
as position or momentum, evolves in time. A starting point of
the theory are the Wong equations�6�, which describe a clas-
sical particle that interacts with the chromodynamic field due
to the color charge. Then, one immediately gets the Liouville
and the transport equations�7� of a many-body quark-gluon
system. The physical content of the theory is rather transpar-
ent and numerous results, for example transport coefficients,
can be easily obtained. Even the simplest collisionless trans-
port equations, where the dissipation phenomena are ne-
glected, provides a surprisingly rich dynamics. The transport
theory with the classical color became really reliable when
the theory was found�8� to reproduce the QCD hard-
thermal-loop dynamics�4,9,10�. It was further established

�11� that the theory supplemented by the collision terms, ob-
tained by integrating out soft fluctuations around the mean
fields, agrees with the QCD effective approaches�5,12�. The
relationship between the transport theory with classical color
and QCD can be found through the study of the quantum
path integral within a saddle-point approximation�13�.

In the second version of the QCD transport theory�7,14�,
the color charges are represented, in full accordance with
QCD, by a matrix structure of the distribution function. The
Vlasov transport equation of quarks was derived�15� di-
rectly from QCD, by analyzing the motion of quantum
quarks in the classical chromodynamic field. The gluon
transport equation was found�16,17�, by splitting the gluon
field into the mean field and the contribution representing the
particle excitations. It was further observed�18� that the
quark and gluon transport equations are formally identical
when the first one is written in the fundamental representa-
tion and the second one in the adjoint representation. Then,
the quark and gluon distribution functions areNc�Nc and
(Nc

2�1)�(Nc
2�1) matrices, respectively, for theSU(Nc)

gauge group. The early development of the quark-gluon ki-
netic theory was summarized at Ref.�19�.

In quasiequilibrium, the matrix transport theory was
proved �20� to be fully equivalent to the QCD hard-loop
approach �4,9,10�. The kinetic approach, which can be
treated as a local representation of the nonlocal hard-loop
action, is particularly useful to study the collective excita-
tions of the quark-gluon plasma, see�21� for a review. More
recently, the quasiequilibrium kinetic equations have been
derived beyond the collisionless limit�22� and the QCD ef-
fective theories�5� have again been correctly reproduced.

A natural question that arises is where the agreement be-
tween the kinetic theory, either with the classical color or in
the matrix form, and the finite temperature diagrammatic ap-
proach breaks down. Surprisingly enough, the effective ac-
tion of the static fields provided by the kinetic equations
agrees with that obtained within perturbative QCD even at
the g3 order �23�, where an operator responsible forC-odd
processes appears for systems with finite baryon density.
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However, in a subsequent study�24� the kinetic theory with
the classical color has been found to reproduce theg4 con-
tribution to the effective action only in the limit of high-
dimensional color representations. Thus, the limitations of
the classical approach have been explicitly determined.

The aim of this paper is to clarify whether the difficulties
faced by the classical color transport theory can be overcome
when the matrix formulation is used. We explore how far the
limits of the non-Abelian kinetic approach can be extended.
For this purpose, we look for the solutions of the transport
equations for quarks and gluons interacting with a chromo-
dynamic mean field. The system is assumed to be translation
invariant in one or more space-time directions. Thus, our
considerations hold, in particular, for static and for homoge-
neous systems. We first present exact solutions when the vec-
tor gauge fields in the direction of the translation invariance
commute with their covariant derivatives. Then, we use per-
turbation theory to solve the transport equation when the
commutation condition is relaxed. Once the solutions are
known, we derive the corresponding color current, and then
the associated effective action. In the case of thermodynamic
equilibrium, our results agree with those obtained by com-
puting the one-loop effective action of QCD in the presence
of a constant background field, which also corresponds to the
effective potential of the dimensionally reduced theory�27�.
However, for static and nonconstant background fields such
that the commutation condition is not satisfied, we find ad-
ditional nonlocal operators that correct the effective potential
of �27�, in what seems to be a discrepancy between the two
approaches.

The paper is organized as follows. In Sec. II we review
the transport theory approach we use in this paper. Exact
solutions of the transport equations for translation invariant
systems are discussed in Sec. III while in Sec. IV we solve
the equations perturbatively. The effective actions for static
and for homogeneous systems close to equilibrium are de-
rived in Sec. V and we conclude our considerations in Sec.
VI. The evaluation of some momentum integrals is left for
Appendix A and we collect in Appendix B some formulas of
the traces ofSU(Nc) generators in the adjoint representation.
Finally, in Appendix C we briefly discuss the one-loop effec-
tive action�2,25,26� which is compared to our results.

II. TRANSPORT EQUATIONS

In this section we briefly review the transport theory of
quarks and gluons�19,18�. While we will restrict the discus-
sion to QCD, withNf massless quarks and antiquarks carry-
ing color in the fundamental representation and gluons in the
adjoint, the results could easily be generalized to a different
non-Abelian theory with different field content.

The distribution function of �anti�quarks Q(p,x)

�Q̄(p,x)� is a HermitianNc�Nc matrix in color space�for a
SU(Nc) color group�; x denotes the space-time quark coor-
dinate andp its momentum, which is not constrained by the
mass-shell condition. The spin of quarks and gluons is taken
into account as an internal degree of freedom. The distribu-
tion function transforms under a local gauge transformation
M as

Q�p,x�→M �x�Q�p,x�M†�x�. �2.1�

Here and most cases below, the color indices are suppressed.
The distribution function of hard gluons is a Hermitian (Nc

2

�1)�(Nc
2�1) matrix, which transforms as

G�p,x�→M�x�G�p,x�M †�x�, �2.2�

where

Mab�x��Tr��aM �x��bM†�x��,

with �a , a�1, . . . ,Nc
2�1 being theSU(Nc) group genera-

tors in the fundamental representation with Tr(�a�b)
� 1

2 �ab .
In a collisionless limit, the distribution functions of

quarks and gluons satisfy the transport equations:

p�D�Q�p,x��
g

2
p�� F�	�x�,


Q�p,x�


p	
� �0, �2.3a�

p�D�Q̄�p,x��
g

2
p�� F�	�x�,


Q̄�p,x�


p	
� �0, �2.3b�

p�D�G�p,x��
g

2
p��F�	�x�,


G�p,x�


p	
� �0, �2.3c�

whereg is the QCD coupling constant,� . . . , . . .� denotes
the anticommutator; the covariant derivativesD� andD� act
as

D��
�� ig�A��x�, . . . �, D��
�� ig�A��x�, . . . �,

A� andA� being four-potentials in the fundamental and ad-
joint representations, respectively,

A��x��Aa
��x��a , A ab

� �x��� i f abcAc
��x�,

and f abc are the structure constants of theSU(Nc) group.
Since the generators ofSU(Nc) in the adjoint representation
are given by (Ta)bc�� i f abc , one can also writeA �

�Aa
�Ta. The stress tensor in the fundamental representation

is F�	�
�A	�
	A�� ig�A� ,A	�, while F�	 denotes the
field strength tensor in the adjoint representation.

Sometimes it is convenient to project the matrix equations
�2.3� into their colorless and colored components. For the
quark distribution function we define

Q�p,x��q̃�p,x��qa�p,x��a. �2.4�

Then, we can deduce from Eq.�2.3a� a set of coupled equa-
tions for the different components ofQ defined by Eq.�2.4�.
More precisely, we find

p�
�q̃�p,x��
g

2Nc
p�F�	

a �x�

qa�p,x�


p	
�0, �2.5a�
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p�D�
abqb�p,x��

g

2
dabcp�F�	

b �x�

qc�p,x�


p	

�g p�F�	
a �x�


q̃�p,x�


p	
�0, �2.5b�

wheredabc are the totally symmetric structure constants of
SU(Nc) and D�

ac�
��ac�g fabcA�
b . Similar equations can

be written for the antiquark and gluon distribution functions.
Equations�2.5a�, �2.5b� reflect in a very clear way that trans-
port phenomena of colorless and colored fluctuations are
coupled beyond the lowest order in the gauge coupling con-
stant. Equations�2.5a�, �2.5b� might be very useful when
collisions are also taken into account. In this study, however,
we find it more convenient to work with the matrix equations
�2.3a�–�2.3c�.

Once the solution of the transport equations is known, we
can obtain the color current associated to the plasma con-
stituents. The color current is expressed in the fundamental
representation as

j ��x���
g

2� dPp��Q�p,x��Q̄�p,x��
1

Nc
Tr�Q�p,x�

�Q̄�p,x���2i �af abcGbc�p,x�� , �2.6�

so thatj a
�(x)�2Tr„�aj �(x)…, and the momentum measure

dP�
d4p

�2
�3
2��p0� ��p2� �2.7�

takes into account the mass-shell conditionp0��p�.
Throughout the paper, we neglect the quark masses, although
those might easily be taken into account by modifying the
mass-shell constraint in the momentum measure. A sum over
helicities, two per particle, and over quark flavorsNf is un-
derstood in Eq.�2.6�, even though it is not explicitly written
down.

In the transport theory framework one can consider two
different physical situations:�1� the gauge fields entering
into the transport equations�2.3a�–�2.3c� are external, not
due to the plasma constituents;�2� the gauge fields can be
generated self-consistently by the quarks and gluons. In the
latter case, one also has to solve the Yang-Mills equation

D�F�	�x�� j 	�x�, �2.8�

where the color current is given by Eq.�2.6�.
The color current can be derived from an effective action

added to the Yang-Mills one. By means of the relation

j a
���

�S

�A�
a , �2.9�

whereS��d4xL, one can obtain the effective action, up to
an integration constant, from the knowledge of the color cur-

rent. In the remaining part of this article we will use this
approach to obtain the effective action in different physical
situations.

III. EXACT SOLUTIONS

Finding exact solutions of the transport equations�2.3a�–
�2.3c� is in general a difficult task. However, it is possible to
find such solutions under some restrictive conditions. Here
we consider a system where both the vector gauge field and
the distribution functions are invariant under the space-time
translation�s�, i.e.


� i
A��x��0, ��0,1,2,3, �3.1�

and


� i
Q�p,x��
� i

Q̄�p,x��
� i
G�p,x��0, �3.2�

for a fixed� i , where� i can involve more than one Lorentz
index. For example, if� i�0 the system is static while for
� i�1,2,3 the gauge field and the distribution functions de-
pend only on time. The condition Eq.�3.1� is a choice of
gauge that, as we will show below, allows one to find solu-
tions to the transport equations that respect the translation
invariance of the system.

To solve Eqs.�2.3a�–�2.3c� for translation invariant sys-
tems along the directionx� i, we will take into account two
known facts. First, in an electromagnetic plasma, an exact
solution of the corresponding transport equation is given by
any function of the canonical momentump� i

�eA� i
(x), if


� i
A��0 �28�. Second, the non-Abelian transport equations

of particles carrying a classical color chargeI a for these
translation invariant systems are also solved by any function
of the canonical momentump� i

�gA� i

a (x)I a, if 
� i
A�

a �0

�24�. Because the first case represents the Abelian limit of the
transport equations�2.3a�–�2.3c�, while the second one cor-
responds to the limit of high-dimensional color
representations,1 one expects that the solutions of Eqs.
�2.3a�–�2.3c� are of the form

Q�p,x�� f „p� i
�gA� i

�x�…

� �
n�0

�
��g�n

n!
A�1

�x�A�2
�x�•••A�n

�x�

�

nf �p� i

�


p�1

p�2

. . . 
p�n

, �3.3a�

1While we are considering here the transport equations only for
particles carrying color in the fundamental and adjoint representa-
tions, the equations are expected to have the same structure in any
other non-Abelian representation.
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Q̄�p,x�� f̄ „p� i
�gA� i

�x�…

� �
n�0

�
gn

n!
A�1

�x�A�2
�x�•••A�n

�x�

�

nf̄ �p� i

�


p�1

p�2

. . . 
p�n

, �3.3b�

G�p,x�� f g„p� i
�gA� i

�x�…

� �
n�0

�
��g�n

n!
A�1

�x�A�2
�x�•••A�n

�x�

�

nf g�p� i

�


p�1

p�2

. . . 
p�n

, �3.3c�

where it is understood that a sum is taken over the repeated
indices. The functionsf, f̄ and f g are, in principle, arbitrary
but they can be fixed by additional considerations.

Let us note that the distribution functions given by Eqs.
�3.3a�–�3.3c� transform covariantly, i.e. according to Eqs.
�2.1� and �2.2�, even though the potentialsA�, A �, in gen-
eral, do not. Indeed,

A� i�x�→M �x�A� i�x�M†�x��
i

g
„
� iM �x�…M†�x�.

�3.4�

However, the second term in the right-hand side�RHS� of
Eq. �3.4�, which transforms noncovariantly, is eliminated be-
cause of the condition�3.1�.

Let us check under which conditions the ansatz, Eq.�3.3�,
solves the transport equations. We first note that Eq.�3.3a� is
totally symmetric under the exchange of indices
�1 , . . . ,�n . Inserting Eq.�3.3a� into the transport equation
�2.3a�, one finds

p�D�Q�p,x�

�p� �
n�0

�
��g�n

n! �
s�0

n�1

A�1
•••A�s

�D�A�s�1
�•••A�n

�

nf �p� i

�


p�1

p�2

. . . 
p�n

, �3.5�

g

2
p�� F�	�x�,


Q�p,x�


p	
�

��p� �
n�0

�
��g�n�1

2n!
�D�A� i

,A�1
•••A�n

�

�

n�1f �p� i

�


p� i

p�1

. . . 
p�n

, �3.6�

where we have used the following property of a commutator:

�X,Yn�� �
s�0

n�1

Ys�X,Y�Yn�s�1

to derive Eq.�3.5�. We have also taken into account that
F�� i

�D�A� i
because of Eq.�3.1�.

It is easy to observe that the terms in Eq.�3.5� and Eq.
�3.6� that correspond to the same order of the derivative off
cancel each other exactly if

�D�A� i
,A� j

��0, ��0,1,2,3, �3.7�

whereA� j
is also in the direction of the translation invari-

ance. The same condition is obtained for the antiquark dis-
tribution function, while for gluons one finds that Eq.�3.3c�
is an exact solution of Eq.�2.3c� if

�D�A� i
,A� j

��0, ��0,1,2,3. �3.8�

However, it is easy to prove that Eq.�3.8� is automatically
satisfied if Eq.�3.7� holds.

For static systems (��0), Eq. �3.7� reduces to the com-
mutation relation between the color electric field andA0. In
a more general situation, the condition Eq.�3.7� simplifies
the non-Abelian field dynamics in the direction of the trans-
lation invariance. Note that the commutation condition is
trivially satisfied in the Abelian limit. IfTR

a is a generator of
a representationR of SU(Nc), then, after a normalization of
these generators, one would get�TR

a ,TR
b �→0 for high-

dimensional representations. Consequently, the commutation
condition would also be satisfied. This explains how to rec-
oncile the matrix results with those obtained with the non-
Abelian transport equations for classical color.

Once the solution for the quark, antiquark and gluon dis-
tribution functions are known, one can compute the color
current. Inserting Eqs.�3.3a�–�3.3c� into Eq. �2.6�, we get

j a
��x��2�

n�0

�
��g�n�1

n!
A�1

c1 �x�•••A�n

cn �x�

�� dPp��NfTr��a�c1
•••�cn

�� 
nf �p� i
�


p�1
•••
p�n

���1�n�1

nf̄ �p� i

�


p�1
•••
p�n

�
�Tr�TaTc1

•••Tcn
�


nf g�p� i
�


p�1
•••
p�n

� . �3.9�

The factor 2 in the above equation arises from the two he-
licities associated with every particle species. When the
functions f, f̄ and f g are determined, one can evaluate the
momentum integral of Eq.�3.9�, and then, after solving Eq.
�2.9�, one obtains the associated effective action.
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IV. PERTURBATIVE SOLUTIONS

A. General considerations

In Sec. III we have found exact solutions of the collision-
less transport equations�2.3a�–�2.3c� for translation invari-
ant systems that obey the extra condition Eq.�3.7�. In this
section we treat the transport equations perturbatively and
find solutions that are not constrained by the condition Eq.
�3.7�.

We assume here that

g�1, �4.1�

i.e. we deal with the weak coupling regime of the theory, and
consider an expansion of the distribution function of the
form

Q�Q(0)�Q(1)�Q(2)� . . . �4.2�

where the 0th term is a known function

Q(0)�p,x�� f �p� i
�. �4.3�

The higher-order terms are determined by the equation

p�D�Q(n)�p,x��
g

2
p�� F�	�x�,


Q(n�1)�p,x�


p	
� �0.

�4.4�

Of course, the same treatments should be followed to study
the antiquark and gluon distribution functions, but those are
nearly identical.

The iterative procedure based on Eq.�4.4� does not cor-
respond to a strict expansion in powers ofg. Such an expan-
sion would force us to split all covariant derivatives into a
derivative and a commutator part, resulting in the breaking
of the gauge covariance of every term in the perturbative
series. We maintain the gauge covariance of every term in
Eq. �4.2� at the expense of reorganizing the perturbative ex-
pansion.

It should be noticed that forf being the equilibrium dis-
tribution function, the first term (n�1) of the above pertur-
bation series reproduces the hard thermal loops of QCD
�4,20�. Let us also stress that while we are applying here a
perturbative method to the transport equations in their matrix
form, fully equivalent results can be obtained using the pro-
jected equations�2.5a�, �2.5b�. Such an approach has been
carried out by Bo¨deker and Laine to orderg2 for static qua-
siequilibrium systems�23�. We extend that analysis by push-
ing the perturbative procedure to higher orders ing. We do
not attempt to solve the transport equations in full generality,
as the solutions at every order then turn out to be highly
nonlocal. We reduce our study to translation invariant sys-
tems when the solutions are much simplified.

B. From g to g4 order

In this subsection, we consider a translation invariant sys-
tem that obeys Eq.�3.1� for a fixed� i . We also assume that

the unperturbed distribution function depends only onp� i
as

in Eq. �4.3�. The first-order correction toQ(0) is obtained by
solving the equation

p�D�Q(1)��gp�F��1


 f �p� i
�


p�1

��gp�D�A�1


 f �p� i
�


p�1

.

�4.5�

The solution reads�up to a functionh, such thatp�D�h
�0, that we will neglect throughout�

Q(1)�p,x���gA�1
�x�


 f �p� i
�


p�1

, �4.6�

and it coincides with the first term of the ansatz�3.3a�.
The transport equation at second order is

p�D�Q(2)�
g2

2
�p�D�A�1

,A�2
�


2f �p� i
�


p�1

p�2

, �4.7�

but it can be rewritten as

p�D�Q(2)�
g2

2
p�D��A�1

A�2
�


2f �p� i
�


p�1

p�2

. �4.8�

Thus, the second-order solution is

Q(2)�p,x��
g2

2
A�1

�x�A�2
�x�


2f �p� i
�


p�1

p�2

, �4.9�

which again coincides with the respective term of the ansatz
�3.3a�.

The third-order equation is

p�D�Q(3)��
g3

4
�p�D�A�1

,A�2
A�3

�

3f �p� i

�


p�1

p�2


p�3

,

�4.10�

and its RHS isnot proportional to a covariant derivative of a
third power of A� i

. However, the anticommutator of the
RHS of the equation can be rewritten as follows:

p�D�Q(3)��
g3

3! � p�D��A�1
A�2

A�3
�

�
1

2
†�p�D�A�1

,A�2
�,A�3

‡� 
3f �p� i
�


p�1

p�2


p�3

.

�4.11�

The term with the commutator cannot be expressed as a total
covariant derivative. Thus, the solution of the above equation
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contains two pieces: a term that is local in the gauge fields
and a nonlocal part. Namely,

Q(3)�x,p���
g3

3!
A�1

�x�A�2
�x�A�3

�x�

3f �p� i

�


p�1

p�2


p�3

�Qnl
(3)�x,p� �4.12�

with the non-local term obeying the equation

p�D�Qnl
(3)��

g3

12
†�p�D�A�1

,A�2
�,A�3

‡

3f �p� i

�


p�1

p�2


p�3

.

�4.13�

One observes that when the condition Eq.�3.7� is satisfied,
Qnl

(3)�0 and we recover the solution of orderg3 of Eq.
�3.3a�. But this term is nonzero under more general circum-
stances. We also notice that if

�
�A� i
,A� j

��0, �4.14�

the nonlocal piece is proportional tog4.
Let us solve Eq.�4.13�. Using theSU(Nc) algebra, we

rewrite the commutator as

p�D�Qnl
(3)��

g3

12
f acdf deb�a�p�D�A�1

�eA�2

c A�3

b

�

3f �p� i

�


p�1

p�2


p�3

�Ra�a. �4.15�

Consequently,Qnl
(3)�Qnl

(3)a�a with

p�D�
acQnl

(3)c�Ra. �4.16�

The solution can be expressed as

Qnl
(3)a�p,x��� d4y�x�

1

p•D
�y�ab Rb�y�, �4.17�

where 1/p•D is the retarded Green function associated to the
differential equation�4.16�. The explicit form of 1/p•D can
be found, for example, in Sec. II of�29�.

The fourth-order equation reads

p�D�Q(4)�
g4

12
�p�D�A�1

,A�2
A�3

A�4
�


4f �p� i
�


p�1

p�2


p�3

p�4

�
g4

24� F�	 ,

Qnl

(3)


p	
� . �4.18�

The first anticommutator in the RHS of the equation can also
be rewritten as a total covariant derivative plus an additional
commutator. Thus,

p�D�Q(4)�
g4

4!
�p�D��A�1

A�2
A�3

A�4
�

�†�p�D�A�1
,A�2

�,A�3
A�4

‡�

�

4f �p� i

�


p�1

p�2


p�3

p�4

�
g4

4! � F�	 ,

Qnl

(3)


p	
� .

�4.19�

We see that the solution is of the form

Q(4)�x,p��
g4

4!
A�1

�x�A�2
�x�A�3

�x�A�4
�x�

�

4f �p� i

�


p�1

p�2


p�3

p�4

�Qnl
(4)�x,p�,

�4.20�

whereQnl
(4) represents the nonlocal contribution that vanishes

if the condition Eq.�3.7� is satisfied. We note that the local
piece coincides with the termg4 of the ansatz�3.3a�.

In principle, we could solve the equation forQnl
(4) and for

the following terms of the perturbative expansion, finding
that every term contains both local and nonlocal pieces in the
gauge fields. However, we stop our analysis here as the
structure of the nonlocal terms becomes more and more com-
plex.

Adding the contributions of quarks, antiquarks and glu-
ons, we can obtain the color current. Up to the termn�3,
the color current still has a relatively simple form and is
given by

j a
��x��2�

n�0

3
��g�n�1

n!
A�1

c1 �x�•••A�n

cn �x�

�� dPp��NfTr��a�c1
•••�cn

�� 
nf �p� i
�


p�1
•••
p�n

���1�n�1

nf̄ �p� i

�


p�1
•••
p�n

�
�Tr�TaTc1

•••Tcn
�


nf g�p� i
�


p�1
•••
p�n

�� j a,nl
� �x�,

�4.21�

where the nonlocal term reads
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j a,nl
� �x��

g4

6 � dP� d4y�x�
p�

p•D
�y�ab

��2NfTr��b��p•DA�1
,A�2

�,A�3
� �

�� 
3f �p� i
�


p�1

p�2


p�3

�

3 f̄ �p� i

�


p�1

p�2


p�3

�
�

1

Nc
Tr�Tb��p•DA�1

,A�2
�,A�3

� �

�

3f g�p� i

�


p�1

p�2


p�3

� . �4.22�

In the following section we will get the effective action
for static systems close to equilibrium. In that case, it is easy
to see that forn�4 the local pieces do not contribute to the
current or effective action, as either the momentum integrals
�Appendix A� or the traces of generators in the adjoint rep-
resentation�Appendix B� vanish. However, the same does
not hold true for the nonlocal terms.

V. EFFECTIVE ACTION OF QUASIEQUILIBRIUM
SYSTEMS

In this section we find the effective action for systems
close to thermal equilibrium. Then, the functionsf, f̄ and f g
are of the Fermi-Dirac or Bose-Einstein form

f FD�E��
1

e�(E��)�1
, f̄ FD�E��

1

e�(E��)�1
,

f BE�E��
1

e�E�1
, �5.1�

where��1/T, andT is the temperature, and� is the quark
chemical potential.

A. Static systems

We first consider static systems satisfying the condition

�D�A0 ,A0��0, ��0,1,2,3. �5.2�

The color current is given by Eq.�3.9� with � i�0 while the
distribution functions are those in Eq.�5.1�.

After performing the momentum integral, one observes
that j a

i �0 since

� d�v

4

v i�0, �5.3�

wherev i�pi /�p� is the particle velocity, and the integral is
performed over angular directions ofv. Thus, only j a

0 , i.e.
the color current density, is nonvanishing. In the case of
static systems, one easily finds the Lagrangian density by
integrating Eq.�2.9�. The fermionic contribution arises from

Lf��
Nf


2�
n�0

�
��g�n�1

�n�1�! ��

�

dEE2�dnf FD�E�

dEn

���1�n�1
dnf̄ FD�E�

dEn �Tr�A0
n�1�x��, �5.4�

while that of gluons is

Lg��
1


2 �
n�0

�
��g�n�1

�n�1�! ��

�

dEE2
dnf BE�E�

dEn
Tr�A 0

n�1�x��.

�5.5�

In the above expressions we have made use of the mass-shell
condition, which givesE�p0��p�, and we have introduced
an infrared cutoff,T���gT, which excludes the contribu-
tion of the soft modes to the integrals, as only the hard
modes behave as quasiparticles.

We note that the above Lagrangians can be written as

Lf�
TNf


2 Tr�
�

�

dEE2� ln�1�e��(E���gA0)�

� ln�1�e��(E���gA0)��, �5.6�

Lg�
T


2Tr�
�

�

dEE2ln�1�e��(E�gA 0)�, �5.7�

because

d

dx
ln�1�e�x���

1

ex�1
.

The Lagrangians�5.4�, �5.5� differ from those given in Eqs.
�5.6�, �5.7� by field independent terms corresponding to the
free-quark and free-gluon contributions to the system’s pres-
sure.

While it is not obvious from Eq.�5.5�, Eq. �5.7� shows
that the gluon action isnot well defined without the infrared
cutoff because for energies smaller than the eigenvalues of
gA0, which are typically of ordergT, the logarithm in Eq.
�5.7� becomes a multivalued complex function. Of course,
there is an analogous problem with the Lagrangian Eq.�5.5�.
The difficulty one encounters is not surprising—the kinetic
description breaks down for sufficiently soft modes. Then,
the equilibrium distribution function of gluons of the form
�3.3c� becomes negative, losing its probabilistic interpreta-
tion.

We leave the evaluation of the energy integrals from Eqs.
�5.4� and �5.5� for Appendix A, where we first compute the
integrals with the cutoff. However, for all contributions the
cutoff dependent terms appear to be regular and subdomi-
nant. Therefore, we take the limit�→0 and thus drop all the
cutoff dependent terms.2 As a result, we find the field depen-
dent fermionic contribution to the system’s Lagrangian as

2A matching procedure with the soft classical field theory allows
one to eliminate the cutoff dependent terms but we will not pursue
that procedure here.
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Lf

Nf
�g

�

3 � T2�
�2


2� TrA0�
g2

2 � T2

3
�

�2


2� TrA0
2

��
g3

3
2
TrA0

3�
g4

12
2
TrA0

4 . �5.8�

We have kept here a linear term in the gauge potential that
only survives in the Abelian limit where TrA0�A0. Taking
into account that, as shown in Appendix B, the symmetric
traces of an odd number of adjoint generators vanish, we find
the following gluon contribution

Lg�
g2T2

6
TrA 0

2�
g4

24
2
TrA 0

4 . �5.9�

It is also shown in Appendix B that the traces of the fields in
the adjoint representation can be expressed through the fun-
damental representation traces.

As already stressed, the integral�5.7� is ill defined with-
out the infrared cutoff. However, the integral with��0 is
regular after a Wick rotation to Euclidean space-time. For
constant background fieldsA0, and after the Wick rotation
A0→ iA0

E we observe that Eqs.�5.6� and �5.7� with ��0
fully agree with the complete one-loop contribution to the
effective potential for the phase of the Polyakov line
�2,25,26�. It should be mentioned that a constant background
field A0 can always be chosen in diagonal form�2�, and thus
satisfies the condition Eq.�5.2�. The Wick rotated integral
�5.7� is discussed in Appendix C. We note here that except
for the terms analogous to those present in Eq.�5.9� it pro-
vides non-analytic terms which are cubic in the eigenvalues

of A0
E . We also observe that Eqs.�5.8� and �5.9� after the

Wick rotationagreewith the dimensionally reduced effective
action �27�.

Now, let us briefly consider a static system that does not
satisfy Eq.�5.2�. Using the solutions of Sec. IV B, we find
that up to the orderg4 Eqs.�5.8� and �5.9� still hold, but at
orderg4 and beyond there are corrections due to the nonlocal
terms. The first nonlocal contribution appears at orderg4

from the nonlocal current Eq.�4.22� with � i�0. To get the
corresponding term in the effective action, one should still
solve Eq.�2.9�. We have not found the solution, but we also
see no reason why the term should vanish. Thus, we con-
clude that the presence of the nonlocal contribution signals a
discrepancy with the dimensionally reduced effective action
�27� at orderg4, whenever the condition Eq.�5.2� is not
satisfied.

B. Homogeneous systems

We consider here time-dependent homogeneous systems
that obey the condition Eq.�3.7� with � i�1,2,3. For a sys-
tem close to equilibrium, where the rotational symmetry is
not broken, the solution of the transport equations can only
depend on the modulus of the canonical three-momentum
�p�gA(t)�. The color current in this situation is given by
Eq. �3.9� with f (p� i

), f̄ (p� i
) and f g(p� i

) replaced by

f FD(�p�), f̄ FD(�p�), and f BE(�p�), respectively.
The color current is then given by Eq.�3.9�, but now� i

�1,2,3. To get the expression for the color current, we first
need to perform the momentum integral of Eq.�3.9�. The
partial derivatives appearing in Eq.�3.9� can be explicitly
evaluated. Using the chain rule, they can be expressed as
partial derivatives ofE��p�. Therefore,


 f


pi
�


E


pi

d f

dE
,


2f


pi
pj
�


2E


pi
pj

d f

dE
�


E


pi


E


pj

d2f

dE2
,


3f


pi
pj
pk
�


3E


pi
pj
pk

d f

dE
�� 
E


pi


2E


pj
pk
�


E


pj


2E


pi
pk
�


E


pk


2E


pi
pj
� d2f

dE2
�


E


pi


E


pj


E


pk

d3f

dE3
, etc.,

wherei , j ,k�1,2,3. The partial derivatives ofE can be writ-
ten as functions of the particle velocities. Let us define

L (n)
i 1••• i n�


nE


pi 1
•••
pi n

. �5.10�

An explicit evaluation of the first terms gives

L (1)
i �v i , L (2)

i j �
1

E
�� i j �v iv j �,

L (3)
i jk ��

1

E
�L (2)

i j vk�L (2)
ik v j�L (2)

jk v i �, etc.

The angular integral of every term in the series of Eq.
�3.9� can be easily calculated. Since the integrals of an even
number ofv i vanish we only need

� d�v

4

v iv j�

1

3
� i j , �5.11�

� d�v

4

v iv jvkv l�

1

15
�� i j �kl�� ik� j l �� i l � jk�. �5.12�

The integrals overE are the same as those used in the pre-
vious subsection�see Appendix A�.
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The evaluation of the momentum integrals gives, as ex-
pected, j a

0�0. The space components of the color current
are, of course, nonzero with the quark and gluon contribu-
tions given, respectively, as

j a
j �

g2

3 � T2

3
�

�2


2� Tr��aAj ��
g4

45
2
„Tr��aAjAiAi �

�Tr��aAiAjAi ��Tr��aAiAiAj �…, �5.13�

j a
j �

g2T2

9
Tr�TaA��

g4

90
2
„Tr�TaA jA iA i �

�Tr�TaA iA jA i ��Tr�TaA iA iA j �…. �5.14�

These currents arise from the following Lagrangian densi-
ties:

Lf

Nf
��

g2

6 � T2

3
�

�2


2� Tr�AjAj ��
g4

90
2 � Tr�AjAjAiAi �

�
1

2
Tr�AjAiAjAi � � �5.15�

and

Lg��
g2T2

18
Tr�AjAj ��

g4

180
2 � Tr�AjAjAiAi �

�
1

2
Tr�AiAjAiAj � � . �5.16�

We should point out that the terms proportional tog2 in Eq.
�5.15� and Eq. �5.16� agree with the hard thermal loop
Lagrangians in the homogeneous limit�4�. If the condition
Eq. �3.7� is not satisfied, the color current, and thus the as-
sociated effective Lagrangians, are corrected at orderg4 and
beyond by the addition of the nonlocal terms, exactly as
happened for the static systems. However, we will not write
down these explicit terms here.

VI. CONCLUSIONS

Our results show the efficiency of transport theory in de-
scribing the quark-gluon plasma at soft scales. We have
shown how the solutions of the collisionless transport equa-
tions for the static systems close to equilibrium reproduce the
one-loop effective potential for the phase of the Polyakov
line. Up to now, the results of the transport theory and quan-
tum field theoretical computations have been known to agree
only for the lower-dimensional operators, but our computa-
tions indicate that the agreement extends to the full one-loop
effective action. We find a complete match of the transport
results with those of the one-loop effective potential in the
presence of a constant background field. For nonconstant
static background fields, transport theory predicts the appear-
ance of nonlocal operators in the effective action, starting at
orderg4 and beyond. This result then suggests a discrepancy
with the dimensionally reduced effective theories�27�, where

these nonlocal operators are not present.
We have limited our analysis to translation invariant sys-

tems, when the solutions of the transport equations are local
in the lower orders of the perturbative expansion. It would be
desirable to solve the equations in full generality. However,
the solutions are then complex nonlocal functions of the
gauge fields, and their structure beyond orderg2 is not par-
ticularly enlightening. It is presumably more promising to
explore the combined set of equations�2.3a�–�2.3c� and
�2.8� numerically, thus allowing for a nonperturbative study
of dynamical phenomena at soft scales, even beyond the hard
thermal loop approximation.
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APPENDIX A: MOMENTUM INTEGRALS

1. Bosons

The bosonic integrals to be evaluated are of the form

I n
b����T3�n�

�

�

dx x2
dnf BE�x�

dxn
, �A1�

where���/T. Expanding the Bose-Einstein distribution as

f BE�x��
1

ex�1
� �

m�1

�

e�mx

and interchanging the order of summation and integration,
the integral that has to be performed reduces to

�
�

�

dx x2e�mx�e�m�� 2

m3
�

2�

m2
�

�2

m � . �A2�

Therefore,

I n
b����2��1�nT3�n� Li3�n�e�����Li2�n�e���

�
�2

2
Li1�n�e��� � �A3�

where the solution is expressed in terms of the Euler poly-
logarithm function

Li s�z� �
def

�
m�1

�
zm

ms . �A4�
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The function LiN(e��) can be expanded in powers of� as
�30,31�

LiN�e���� �
k�0

�

��1�k
�k

k!
��N�k� �A5�

for N�1 and

LiN�e���� �
k�0,k�N�1

�

��1�k
�k

k!
��N�k�

���1�N
�N�1

�N�1�!
� ln ��HN�1� �A6�

for N	1; the zeta function is defined as

��s� �
def

�
m�1

�
1

ms , Res	1. �A7�

andHN�1� 1
2 � 1

3 �•••�1/N.
While the series�A4� is convergent for�z��1, the series

�A5�, �A6� with the zeta function defined by Eq.�A7� seem
to be divergent because the zeta argument is repeatedly equal
to or smaller than 1. This happens due to the ‘‘illegal’’ inter-
changing of the two summations. As is well known, the
problem is resolved by means of the zeta function regular-
ization procedure�32,31�, where the analytic continuation of
�(s) instead of the definition�A7� is used. Then,�(1) re-
mains truly divergent while

��0���
1

2
,

��1�2k���
B2k

2k
, k�1,2,3, . . .

���2k��0, k�1,2,3, . . .

whereBl are the Bernoulli polynomials.
Using Eqs.�A5�, �A6� one finds that when�→0

LiN�e������N��O��� �A8�

for N�1. Since Li1(z)�� ln(1�z), Li1(e��) diverges as
� ln�. Therefore, when�→0

I n
b→2��1�nT3�n��3�n� �A9�

for n�2. The n-even contributions to the effective action
vanish anyway because the respective trace of theA fields
equals zero; see Appendix B.

2. Fermions

The fermionic integrals of interest are

I n
f �a,���T3�n„Jn

f �a,�����1�n�1Jn
f ��a,��…

�A10�

wherea��� and

Jn
f �a���

�

�

dx x2
dnf FD�x�a�

dxn
. �A11�

Expanding the Fermi-Dirac distribution as

f FD�x�a��
1

ex�a�1
� �

m�1

�

��1�m�1e�m(x�a),

and interchanging the order of summation and integration,
we obtain after performing the integral�A2�

Jn
f �a,���2��1�n�1� Li3�n��ea�����Li2�n��ea���

�
�2

2
Li1�n��ea��� � . �A12�

Using the formula�32�

LiN��e�x�� �
n�0,

�

��1�n�1
xn

n!
��N�n� �A13�

where�(s) is the alternating zeta function defined as

��s� �
def

�
m�1

�
��1�m�1

ms
��1�21�s���s�, Res	1

�A14�

we find that

Jn
f �a,���2��1�n�

l �0

�
al

l !
��3�n� l ��O���, �A15�

when�→0.
Inserting the series�A15� into Eq. �A10� one gets

I n
f �a,0��2T3�n�

l �0

�
al

l !
��3�n� l ����1�n���1� l �.

�A16�

As seen in Eq.�A16�, the argument of� is always an even
number for non-vanishing terms. Since�(�2k)�0 for k
�1,2, . . . theseries in Eq.�A16� terminates. Then, one ob-
serves thatI n

f (a,0)�0 for n�4, while

I 0
f �a,0��T3� 4a��2��

2

3
a3��0� ��T3� 
2

3
a�

1

3
a3� ,

I 1
f �a,0��T2��4��2��2a2��0����T2� 
2

3
�a2� ,

I 2
f �a,0��4aT��0��2aT, �A17�

I 3
f �a,0���4��0���2,

where�(2)�
2/12 and�(0)�1/2.
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APPENDIX B: ADJOINT REPRESENTATION TRACES

To compute the effective action of Eq.�5.8� and Eq.�5.9�
one needs to evaluate traces in the fundamental and adjoint
representations. We present here some useful formulas which
relate the traces of the fundamental and adjoint representa-
tions.

First, it is easy to prove that the total symmetric traces of
an odd number of adjoint generators vanish. In order to
prove this, note that

Tr�A 0
m��Tr��A 0

m�T�, �B1�

where the superscriptT denotes transposition. The adjoint
representation ofSU(Nc) is real, and the generators obey
Ta

T��Ta . Therefore,

Tr�A 0
m����1�mTr�A 0

m�. �B2�

Thus, the trace vanishes for oddm.
Two other useful formulas are

TrA 0
2�2NcTrA0

2 , �B3�

TrA 0
4�6�TrA0

2�2�2NcTrA0
4 . �B4�

For Nc�2 andNc�3, one also has

TrA0
4�

1

2
�TrA0

2�2. �B5�

APPENDIX C: THE ONE-LOOP BOSONIC ACTION

In this appendix we show how the solutions of the trans-
port equations allow one to reproduce the results of
�2,25,26�. We consider only the bosonic case for theSU(2)
gauge group. The fermionic one can be treated similarly. Due
to a global color rotation a constant background fieldA0 can

always be chosen in the diagonal formA0
a��a3C/g whereC

is a real constant. The respective gauge field in the adjoint
representation then reads

A 0�� 0 � iC/g 0

iC/g 0 0

0 0 0
� .

Now, we plug this expression in Eq.�5.7� and expand the
logarithm and the exponential. Taking the trace�TrA 0

2m

�2(C/g)2m, TrA 0
2m�1�0], we end up with a series which

after resumming reads

Lg�
T


2�
0

�

dEE2� ln�1�e��(E�C)�� ln�1�e��(E�C)��.

�C1�

Rotating to Euclidean timeA0→ iA 0
E , and thusC→ iCE, we

find

L g
E�

T


2�
0

�

dEE2� ln�1�e��(E� iCE)�� ln�1�e��(E� iCE)��,

�C2�

which matches the result found in Eq.�23� of �25�. The in-
tegral is evaluated in�25�, and nonanalytic cubic terms inCE

are found. When rotated back to the real time these terms
provide imaginary contributions to the effective action. Its
presence in the Minkowski effective action could have been
anticipated from Eq.�C1�, as for soft energiesE�C the
logarithm becomes a multivalued complex function. The real
time integral is not well-defined and an additional prescrip-
tion, such as going to Euclidean time, is necessary in order to
evaluate it. With the infrared cutoff�	C, these problems
are absent, and the Minkowski effective action is real.
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