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We discuss how to introduce Faddeev-Popov ghosts to the Keldysh-Schwinger formalism describing
equilibrium and nonequilibrium statistical systems of quantum fields such as the quark-gluon plasma,
which is considered. The plasma is assumed to be homogeneous in a coordinate space but the momentum
distribution of plasma constituents is arbitrary. Using the technique of the generating functional, we derive
the Slavnov-Taylor identities and one of them expresses the ghost Green’s function, which we look for,
through the gluon one. As an application, the Green’s function of ghosts is used to compute the gluon
polarization tensor in the hard loop approximation that appears to be automatically transverse, as required
by the gauge invariance.
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I. INTRODUCTION

In field theories obeying a gauge symmetry the number
of fields exceeds the number of physical degrees of
freedom. The unphysical degrees of freedom can be
eliminated completely by a properly chosen gauge
condition. However, such a condition usually breaks the
Lorentz covariance of the theory and computations get
complicated. To get rid of unphysical degrees of freedom
in a manifestly Lorentz covariant way, one introduces the
fictitious fields known as Faddeev-Popov ghosts, which
play a crucial role in non-Abelian field theories where
unphysical degrees of freedom interact with physical ones.
The ghosts naturally appear in the path integral formulation
of quantum theory as a tricky representation of a Jacobian
of gauge transformation. Then the generating functional
of Green’s functions, which is obtained in an explicit
form, determines the propagator of the free ghost field.
This is almost everything we need to include the ghosts
in perturbative diagrammatic calculations; see, e.g., [1].
In statistical field theory, which is formulated in several
ways, the situation is more complicated.
In the Matsubara or imaginary time formalism, which

applies to equilibrium systems, the ghosts are needed even
in an Abelian theory [2]. However, such noninteracting
ghosts serve only to cancel unphysical degrees of freedom
in the ideal gas contribution. In non-Abelian theories the
ghosts are also included in the Feynman rules, but the ghost
propagator is obtained automatically when the explicit
form of generating functional is computed [2,3], provided
the fermionic ghost fields obey the bosonic periodic
boundary conditions, as argued in [4]; see also [5].
Sometimes a real time contour is included in the

Matsubara approach and then one deals with the real time

formalism of equilibrium systems, which allows one to
study time-dependent phenomena. The physical and
unphysical degrees of freedom of gauge fields are usually
treated on the same footing [3,6]. The Faddeev-Popov
ghosts are thermalized with the bosonic distribution func-
tion. Within the alternative “frozen ghosts” approach, the
unphysical degrees of freedom and ghosts are kept at zero
temperature, that is, their free Green’s functions have no
thermal contribution [7,8].
The problem of ghosts is least understood in the

Keldysh-Schwinger formalism, which provides a natural
framework to study statistical systems out of equilibrium
[9,10]. The formalism is obviously applicable to equilib-
rium systems as well. The main difficulty is that the
generating functional cannot be computed in an explicit
form even in noninteracting theory because of, in general,
the unknown density operator that enters the generating
functional. Nevertheless, the functional provides various
relations among the Green’s functions. To get free propa-
gators, which are the basis of perturbative calculus, one
solves the respective equations of motion. It should be
noted here that free functions of the Keldysh-Schwinger
formalism are much richer than those of the usual vacuum
field theory. (We use the term vacuum field theory to
contrast it with the statistical field theory.) The Green’s
functions carry information not only about microscopic
degrees of freedom of the system but about its statistical
features as well. And it is unclear how to proceed with
ghosts—whether these unphysical particles are constituents
of the system of gauge fields or should be merely included
in scattering matrix elements.
The Faddeev-Popov ghosts result from the gauge free-

dom of a theory. Therefore, the gauge symmetry should
completely determine a structure of the ghost sector of the
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theory, and we demonstrate here that in the Keldysh-
Schwinger formalism this is also the case. For this purpose,
we derive the Slavnov-Taylor identities of quantum
chromodynamics and show that one specific identity
provides the ghost Green’s function expressed through
the gluon one. In this way the missing element of the
diagrammatic computation scheme is found. An attempt
to derive the Slavnov-Taylor identities within the Keldysh-
Schwinger formalism was undertaken in [11], but, as
explained at the end of Sec. V, the result was rather
unsatisfactory.
The system of quarks and gluons under consideration is,

in general, out of equilibrium, but the system is assumed
here to be translationally invariant. It is thus homogeneous
(in coordinate space), but the momentum distribution is
arbitrary. In particular, the system can be strongly aniso-
tropic. The translational invariance greatly simplifies our
analysis, as each two-point function depends on its two
arguments only through their difference. When the
assumption of homogeneity is relaxed, the analysis gets
very complicated—the equations of motion and Slavnov-
Taylor identities are rather complex. One has to refer to
the so-called gradient expansion to simplify them but it
causes new difficulties. For this reason, we focus here on
the homogeneous systems. A much longer analysis of
inhomogeneous ones will be presented elsewhere.
The paper is organized as follows. In Sec. II we introduce

the Keldysh-Schwinger formalism in the context of QCD
and in the subsequent section the generating functional is
written down. Section IV is devoted to the free Green’s
functions. We start with the equation of motion in a general
covariant gauge, showing that covariant gauges different
than the Feynman one produce ill-defined expressions in
the Keldysh-Schwinger approach. Therefore, we use the
the Feynman gauge. Section V presents a derivation of the
Slavnov-Taylor identities. One of them expresses the free
ghost Green’s function through the gluon one. As an
application of the developed method, we compute the
gluon polarization tensor at one loop level where, as is
well known, the ghost loop contributes. The tensor found
in the hard loop approximation is shown to be automati-
cally transverse, as required by the gauge invariance. In
Section VIII we summarize our study, list the conclusions,
and give an outlook. Some formulas, which are needed to
perform calculations, are collected in the appendixes.
Throughout the paper, we use the natural system of units

with c ¼ ℏ ¼ 1; our choice of the signature of the metric
tensor is ðþ − −−Þ. Lorentz indices are denoted with
μ; ν ¼ 0; 1; 2; 3. The color indices of the fundamental
representation of the SUðNcÞ gauge group are i; j ¼
1; 2;…Nc and those of the adjoint one are
a; b ¼ 1; 2;…N2

c − 1. The field operators in the operator
formulation of quantum field theory are denoted in the
same way as the classical fields in the path integral
formulation.

II. KELDYSH-SCHWINGER FORMALISM

We start our consideration with a brief presentation
of the Keldysh-Schwinger formalism. Since the Yang-Mills
fields are of our special interest, the formalism is presented
in terms of Green’s functions of the gauge vector field
Aa
μðxÞ. The main object of the approach is the contour-

ordered Green’s function defined as

iDab
μνðx; yÞ¼def

Tr½ρðt0Þ ~TAa
μðxÞAb

νðyÞ�
Tr½ρðt0Þ�

; (1)

where the trace is understood as a summation over a
complete set of states of the system Tr½…� ¼P

α < αj…jα >, and ρðt0Þ is a density operator at time
t0. The time arguments x0 and y0 are complex with an
infinitesimal positive or negative imaginary part that locates
them on the upper or lower branch of the contour shown in
Fig. 1. The real time t0 is smaller than the real parts of x0
and y0 and the real time tmax is greater than the real parts of
x0 and y0. The times t0 and tmax are usually shifted to −∞
and þ∞, respectively. The contour ordering operation ~T is
defined in the following way:

~TAa
μðxÞAb

νðyÞ¼defΘðx0; y0ÞAa
μðxÞAb

νðyÞ
þ Θðy0; x0ÞAb

νðyÞAa
μðxÞ; (2)

where Θðx0; y0Þ is the contour step function defined as

Θðx0;y0Þ¼
�
1; if x0 succeedsy0alongthecontour;

0; if y0 succeedsx0alongthecontour:
(3)

The contour Green’s function involves four Green’s
functions with real time arguments. They can be thought
of as corresponding to propagation along the upper branch
of the contour, along the lower one, from the lower branch
to the upper one and from the upper branch to the lower
one. This can be expressed in the following way:

FIG. 1. Time contour of the Keldysh-Schwinger formalism.
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Dab
μνðx; yÞ ¼ ðDab

μνÞcðx; yÞ for x0; y0 on the upper branch;

Dab
μνðx; yÞ ¼ ðDab

μνÞaðx; yÞ for x0; y0 on the lower branch;

Dab
μνðx; yÞ ¼ ðDab

μνÞ>ðx; yÞ for x0 on the lower branch;

and y0 on the upper one;

Dab
μνðx; yÞ ¼ ðDab

μνÞ<ðx; yÞ for x0 on the upper branch;

and y0 on the lower one:

The real time argument Green’s functions are thus
defined as

iðDab
μνÞcðx; yÞ¼def

Tr½ρðt0ÞTcAa
μðxÞAb

νðyÞ�
Tr½ρðt0Þ�

; (4)

iðDab
μνÞaðx; yÞ¼def

Tr½ρðt0ÞTaAa
μðxÞAb

νðyÞ�
Tr½ρðt0Þ�

; (5)

iðDab
μνÞ>ðx; yÞ¼def

Tr½ρðt0ÞAa
μðxÞAb

νðyÞ�
Tr½ρðt0Þ�

; (6)

iðDab
μνÞ<ðx; yÞ¼def

Tr½ρðt0ÞAa
μðyÞAb

νðxÞ�
Tr½ρðt0Þ�

; (7)

where Tc and Ta are the usual chronological and anti-
chronological time orderings. Directly from the definitions
(4)–(7) one finds the following identities:

Dcðx; yÞ þDaðx; yÞ ¼ D>ðx; yÞ þD<ðx; yÞ; (8)

D
c
aðx; yÞ ¼ Θðx0 − y0ÞD≷ðx; yÞ þ Θðy0 − x0ÞD≶ðx; yÞ;

(9)

which show that the four components of the contour
Green’s function are not independent from each other.
The contour Green’s function carries information about

microscopic interactions in the system under consideration
and its statistical properties. The function Dc describes a
particle disturbance propagating forward in time and an
antiparticle disturbance propagating backward in time. The
meaning of Da is analogous, but particles are propagated
backward in time and antiparticles forward. In the zero
density limit Dc coincides with the usual Feynman propa-
gator. The functions D≶ play a role of the phase-space
densities of (quasi)particles, so they can be treated as
quantum analogs of the classical distribution functions.
Other Green’s functions of gauge fields, which are used in
Sec. VII, are briefly discussed in Appendix A. Some
formulas of the fermionic functions, which are needed to
include quarks into our considerations, are collected in
Appendix B.
The main task of the Keldysh-Schwinger formalism is to

derive contour Green’s functions of the system under study.
It can be achieved by solving properly approximated

equations of motion analogous to the Dyson-Schwinger
equation or by performing a perturbative expansion.
Although the Green’s functions of gauge fields are gauge
dependent, they provide physical information that is
independent of a gauge choice. For example, a spectrum
of collective excitations obtained from the dispersion
equation, where the polarization tensor enters, is gauge
independent, provided the tensor is transverse.

III. GENERATING FUNCTIONAL

The Keldysh-Schwinger approach can be formulated by
defining the generating functional that is particularly useful
to develop perturbative diagrammatic methods. We will
need the functional to derive the Slavnov-Taylor identities
discussed in Sec. V. So in this section we discuss the
generating functional of quantum chromodynamics. To fix
the notation and convention, which are used, wewrite down
the fundamental Lagrangian of QCD as

LQCD ¼ −
1

4
Fμν
a Fa

μν þ ψ̄ðiγμDμ −mÞψ ; (10)

where Fμν
a ≡ ∂μAν

a − ∂νAμ
a þ gfabcAμ

bA
ν
c is the strength

tensor with g being the QCD coupling constant and fabc

being the structure constants of the SUðNcÞ gauge group; ψ
is the quark field of mass m and Dμ ≡ ∂μ − igAμ

aτa is
the covariant derivative with τa being a generator of the
SUðNcÞ group in the fundamental representation. The
Lagrangian (10) includes only one quark flavor but adding
more flavors is straightforward.
Constructing the generating functional we follow [10],

where the functional was given for nongauge fields. So the
procedure has to be modified. The fundamental Lagrangian
(10) is replaced by the effective one:

Leff ¼ LQCD −
1

2α
ð∂μAa

μÞ2 − c�að∂μ∂μδ
ab − g∂μfabcAc

μÞcb
þ JμaAa

μ þ χ�aca þ χac�a: (11)

The term, which follows LQCD, fixes the general covariant
gauge and the subsequent one with c� and c being the ghost
Grassmann fields allows one to properly count the volume
of a gauge orbit [1]. The remaining three terms describe
interactions of the fields A; c, and c� with external sources
J; χ�, and χ. The sources of ghosts are Grassmannian. The
terms of interaction of quark fields with external sources are
missing in Eq. (11). Since we are mostly interested in the
gauge fields, the quarks are ignored all together from now
on to simplify the form of generating functional, which is
anyway rather complex.
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Let us first write down the generating functional:

W0½J; χ; χ�� ¼ N0

Z
Að−∞þi0þ ;xÞ¼A0ðxÞ
Að−∞−i0þ ;xÞ¼A″ðxÞ

DAðxÞ
Z

cð−∞þi0þ ;xÞ¼c0ðxÞ
cð−∞−i0þ ;xÞ¼c″ðxÞ

DcðxÞ

×
Z

c�ð−∞þi0þ ;xÞ¼c�0ðxÞ
c�ð−∞−i0þ ;xÞ¼c�″ðxÞ

Dc�ðxÞ

× exp

�
i
Z
C
d4xLeffðxÞ

�
; (12)

which is labeled with the index “0” as it strongly resembles
that of vacuum field theory. N0 is the normalization
constant and DAðxÞ, DcðxÞ, Dc�ðxÞ are the standard
functional integration measures of the fields AðxÞ; cðxÞ;
c�ðxÞ, which depend on x0 and x with x0 from the contour
C shown in Fig. 1. The fields obey the indicated boundary
conditions at t ¼ −∞� i0þ with the fields A0ðxÞ, A″ðxÞ,
c0ðxÞ, c″ðxÞ, c�0ðxÞ, c�″ðxÞ, which are now unspecified.
The integration over x0 is performed along the time contour
and we have denoted

Z
C
d4x…≡

Z
C
dt

Z
d3x � � � : (13)

The functional W0½J; χ; χ�� depends functionally on the
boundary fields A0ðxÞ, A00ðxÞ, c0ðxÞ, c00ðxÞ, c�0ðxÞ, c�00ðxÞ,
which are not shown as arguments to simplify the notation.
If the boundary fields all vanish and the contour C is
replaced by the straight line from −∞ to ∞, the functional
(12) coincides with the standard one of the vacuum field
theory [1].
The generating functional of Keldysh-Schwinger for-

malism is obtained from the functional (12) by integrating it
over the boundary fields A0ðxÞ, A00ðxÞ, c0ðxÞ, c00ðxÞ, c�0ðxÞ,
c�00ðxÞ weighted with the density matrix

ρ½A0ðxÞ; c0ðxÞ; c�0ðxÞjA00ðxÞ; c00ðxÞ; c�00ðxÞ�; (14)

which describes the system of fields at t ¼ −∞. The matrix
is not really physical because of the unphysical degrees of
freedom of gauge fields and of the ghosts that enter the
formula (14). However, our results do not depend on a form
of the density matrix. The complete generating functional
equals

W½J;χ;χ��

¼ N
Z

DA0ðxÞDA00ðxÞDc0ðxÞDc00ðxÞDc�0ðxÞDc�00ðxÞ

× ρ½A0ðxÞ; c0ðxÞ; c�0ðxÞjA00ðxÞ; c00ðxÞ; c�00ðxÞ�W0½J; χ; χ��:
(15)

The constant N is chosen in such a way that W½J ¼ 0;
χ ¼ 0; χ� ¼ 0� ¼ 1.

It should be stressed that the results presented in the
subsequent sections are fully independent of a form of the
density operator that enters the generating functional (15).
So we do not need to specify the operator but we could
consider various forms of it. In particular, we could choose
the boundary conditions of the ghost fields as c0ðxÞ ¼
c�0ðxÞ ¼ c00ðxÞ ¼ c�00ðxÞ ¼ 0 and the density operator,
which acts on the ghost fields, as j0ih0j. Then the ghost
fields are treated exactly as in the vacuum theory.
Consequently, the functional integral over the ghost fields,
which is Gaussian, can be taken explicitly and one obtains
the Fadeev-Popov determinant in the standard form.
However, we do not follow this path.
The generating functional (15) provides various Green’s

functions by differentiating it with respect to the sources J,
χ, or χ�. In particular, the two-point gluon contour function,
which will be needed further on, is given as

iDab
μνðx; yÞ ¼ ð−iÞ2 δ2

δJμaðxÞδJνbðyÞ
W½J; χ; χ��

����
J¼χ¼χ�¼0

:

(16)

Locating x0 and y0 on the upper or lower branch of the
contour C, one gets the function Dc, Da, D>, or D<.
The functional (15) can be used to derive the perturbative

series that expresses the interacting Green’s function D
through the free Green’s functions. The functions of free
gluons D are found by solving the respective equations of
motion, as it is done in the subsequent section, but there is a
problem—also explained in the next section—with the free
ghost functions that enter the perturbative expansion.
Consequently, the expansion is not meaningful yet.
Contrary to the vacuum field theory, the generating

functional of the Keldysh-Schwinger formalism cannot
be expressed in a closed explicit form even for a free
theory because of the unspecified density operator that is
present in Eq. (15). Nevertheless, the functional (15)
provides various relations among the Green’s functions.
In particular, one derives the Slavnov-Taylor identities,
which result from the gauge symmetry of the theory. The
relations—generalizing the Ward-Takahashi identities of
QED to Yang-Mills theories—are discussed in Sec. V.

IV. FREE GREEN’S FUNCTIONS

In this section we derive an explicit form of the contour
two-point Green’s function of free gauge fields. The free
function is denoted byD to distinguish it from the interacting
one D. A method of derivation, which uses the equation of
motion, is rather standard and it can be found, for example,
in [12]. Nevertheless, there are some peculiarities because of
the general covariant gauge we start with.
The equation of motion of the contour Green’s function

of the free gluon field in a general covariant gauge reads
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�
□xgμν −

�
1 −

1

α

�
∂μ
x∂ν

x

�
Dab

νρ ðx; yÞ ¼ gμρδabδ
ð4Þ
C ðx; yÞ;

(17)

where the contour Dirac delta function δð4ÞC ðx; yÞ is
defined as

δð4ÞC ðx;yÞ

¼

8>><
>>:
δð4Þðx−yÞ for x0;y0 from the upper branch;

0 for x0;y0 from the different branches;

−δð4Þðx−yÞ for x0;y0 from the lower branch:

(18)

As already mentioned, the system under consideration
is homogeneous but the momentum distribution is, in
principle, arbitrary. Due to the translational invariance,
the propagators depend on the coordinates x and y only
through their difference, that is, Dðx; yÞ ¼ Dðx − yÞ.
One observes that using covariant gauges different than

the Feynman one with α ¼ 1 leads to ill-defined expres-
sions in the Keldysh-Schwigner formalism. The reason is
the following. Performing the Fourier transformation of
Eq. (17), one finds that the structure of Lorentz indices of
gluon Green’s functions is

gμν − ð1 − αÞp
μpν

p2
: (19)

The contour Green’s function includes the medium part
describing gluons on the mass shell p2 ¼ 0 and,
consequently, there appears a contribution to the Green’s
function proportional to

δðp2Þ
�
gμν − ð1 − αÞp

μpν

p2

�
; (20)

where the second term is ill defined. It might well be that
the term can be regulated by replacing it by a function with
a double pole at p2 ¼ 0. However, such a prescription
needs to be checked in detail. Instead, we simply get rid of
the ill-defined term by choosing the Feynman gauge
with α ¼ 1.
The Fourier transformed equation of motion of the

Green’s functions D≶ reads

p2ðDab
μνÞ≶ðpÞ ¼ 0: (21)

The solutions can be written down as

iðDab
μνÞ>ðpÞ ¼ 2πgμνδabδðp2ÞhðpÞ; (22)

iðDab
μνÞ<ðpÞ ¼ 2πgμνδabδðp2ÞgðpÞ; (23)

where hðpÞ and gðpÞ are unknown functions. Splitting the
functions into positive and negative parts and using the fact
that the differenceD> −D< must equal the Jordan function

i½ðDab
μνÞ>ðpÞ − ðDab

μνÞ<ðpÞ�
¼ −

π

Ep
gμνδab½δðp0 − EpÞ − δðp0 þ EpÞ�; (24)

one finds the unordered functions as

ðDab
μνÞ>ðpÞ ¼

iπ
Ep

gμνδab½δðp0 − EpÞðngðpÞ þ 1Þ

þ δðp0 þ EpÞngð−pÞ�; (25)

ðDab
μνÞ<ðpÞ ¼

iπ
Ep

gμνδab½δðp0 − EpÞngðpÞ

þ δðp0 þ EpÞðngð−pÞ þ 1Þ�; (26)

where ngðpÞ is a distribution function of gluons that are
assumed to be unpolarized with respect to spin and color
degrees of freedom. The function is normalized in such a
way that the gluon density is given as

ρg ¼ 2ðN2
c − 1Þ

Z
d3p
ð2πÞ3 ngðpÞ; (27)

where the factor of 2 takes into account two gluon spin
states. So the function ngðpÞ takes into account only
physical transverse gluons.
The FeynmanDc and antiFeynmanDa propagators obey

the equation of motion

p2ðDab
μνÞcaðpÞ ¼ ∓δabgμν; (28)

where the upper sign is for c and the lower one is for a. One
finds the functions recalling the relation (9), which gives

ðDab
μνÞcðpÞ ¼ −gμνδab

�
1

p2 þ i0þ
−

iπ
Ep

ðδðp0 − EpÞngðpÞ

þ δðp0 þ EpÞngð−pÞÞ
�

(29)

ðDab
μνÞaðpÞ ¼ gμνδab

�
1

p2 − i0þ
þ iπ
Ep

ðδðp0 − EpÞngðpÞ

þ δðp0 þ EpÞngð−pÞÞ
�
: (30)

As seen, the functions Dc and Da contain the propagator
parts combined with the medium contributions that vanish
in the vacuum limit ngðpÞ → 0. Then we have usual
propagators.
The free Green’s functions of a fermion field can be

derived in a similar way by solving the appropriate
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equations of motion, see, e.g., [12]. We do not derive the
functions of quarks, but in Appendix B we list some
formulas that will be used in Sec. VII. One could also find
the Green’s functions of ghost fields solving the equations
of motion, but it is fairly unclear what the distribution
function of ghosts is. The Slavnov-Taylor identity, which is
derived in the next section, allows one to resolve the
ambiguity.

V. SLAVNOV-TAYLOR IDENTITIES

In this section we derive the Slavnov-Taylor identities of
gluodynamics in the Keldysh-Schwinger approach. As
already mentioned, we ignore quarks to simplify our
considerations, which are focused on the gauge and ghost
fields. We do not refer to the Becchi-Rouet-Stora-Tyutin
(BRST) symmetry, which is used nowadays to obtain
the Slavnov-Taylor identities, see, e.g., [1], but we adapt
the original Slavnov’s method [13], see also [14], to the
Keldysh-Schwinger formalism. The point is that the
BRST symmetry is global and then the fields, which are

arguments of the density matrix present in the generating
functional (15), change under the BRST symmetry but
the transformation properties of the matrix are unknown.
To avoid the problem, we look at how the generating
functional (15) changes under the local gauge transforma-
tion, which, as suggested in [10], vanishes at t ¼ −∞.
In this way we first derive a general Slavnov-Taylor identity
and then we look for a specific relation that allows
one to express the ghost Green’s function through the
gluon one.

A. Derivation of the general identity

To derive the Slavnov-Taylor identities, we first rewrite
the functional (15) in the form that strongly resembles that
of vacuum field theory, that is,

W½J; χ; χ�� ¼ N
Z
BC

DAΔ½A� exp
�
i
Z
C
d4xL

�
; (31)

where we use a very compact notation,

Z
BC

DA…≡
Z

DA0ðxÞDA00ðxÞDc0ðxÞDc00ðxÞDc�0ðxÞDc�00ðxÞ × ρ½A0ðxÞ; c0ðxÞ; c�0ðxÞjA00ðxÞ; c00ðxÞ; c�00ðxÞ�

×
Z

Að−∞þi0þ ;xÞ¼A0ðxÞ
Að−∞−i0þ ;xÞ¼A00ðxÞ

DAðxÞ… (32)

and

Δ½A�≡
Z

cð−∞þi0þ ;xÞ¼c0ðxÞ
cð−∞−i0þ ;xÞ¼c00ðxÞ

DcðxÞ
Z

c�ð−∞þi0þ ;xÞ¼c�0ðxÞ
c�ð−∞−i0þ ;xÞ¼c�00ðxÞ

Dc�ðxÞ × exp

�
−i

Z
C
d4xðc�að∂μ∂μδ

ab − gfabcAc
μ∂μÞcb − χ�aca − χac�aÞ

�
; (33)

which is the analog of the Faddeev-Popov determinant.
The Lagrangian in Eq. (31) is given by

L ¼ LQCD −
1

2
ð∂μAa

μÞ2 þ JμaAa
μ: (34)

As already mentioned, we use the Feynman gauge
with α ¼ 1.
The general Slavnov-Taylor identity results from the

invariance of the generating functional (31) with respect to
the infinitesimal gauge transformations

Aa
μ → ðAa

μÞU ¼ Aa
μ þ fabcωbAc

μ −
1

g
∂μω

a þOðω2Þ; (35)

where the parameter ω is small, jωj ≪ 1. We assume that
the gauge transformation (35) does not work at t ¼ −∞,
that is, ωðt ¼ −∞;xÞ ¼ 0, and, consequently, the density
matrix ρ in the expression (32) remains unchanged.

Expressing the generating functional of gluodynamics
(31) by the transformed fields, one finds

W0½J; χ�; χ�

¼ N
Z
BC

DAΔ½A� exp
�
i
Z
C
d4x

�
L −

1

g
Mabωb∂νAa

ν

−
1

g
Jμa∂μω

a þ JμafabcAc
μω

b

��
; (36)

where the operator M, which functionally depends on Aμ
a,

equals

Mab½Ajx�≡ −∂μ∂μδ
ab þ gfabc∂μAc

μðxÞ: (37)

We have also taken into account in Eq. (36) that the QCD
Lagrangian (10) and the integration measure DAΔ½A� are
invariant under the transformation (35).
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The invariance of the theory with respect to the gauge
transformation (35) is reflected by the independence of the
functional (36) of the parameter ω. Therefore, the derivative
ofW0½J; χ�; χ� with respect to ω should vanish. However, if
the functional (36) is independent of ω, it is also indepen-
dent of any function of ω. For the reasons that will be clear
later on, we are going to differentiate the functional (36)
over the function ξaðxÞ, which is

ξaðxÞ ¼ Mab½Ajx�ωbðxÞ: (38)

Introducing the operatorM−1, which is inverse toM, that is,

Mab½Ajx�M−1
bc ½Ajx; y� ¼ δacδ

ð4Þ
C ðx; yÞ; (39)

one expresses the gauge parameter ω as

ωaðxÞ ¼
Z
C
d4yM−1

ab ½Ajx; y�ξbðyÞ: (40)

One guesses thatM−1
ab ½Ajx; y� is related to the ghost Green’s

function; see below. Substituting the expression (40) into
the functional (36), one finds

W0½J; χ�; χ� ¼ N
Z
BC

DAΔ½A� exp
�
i
Z
C
d4x

�
LðxÞ − 1

g
∂μ
ðxÞA

a
μðxÞMab½Ajx�

Z
C
d4yM−1

bd ½Ajx; y�ξdðyÞ

−
1

g
JμaðxÞ∂ðxÞ

μ

Z
C
d4yM−1

ad ½Ajx; y�ξdðyÞ þ JμaðxÞfabcAc
μðxÞ

Z
C
d4yM−1

bd ½Ajx; y�ξdðyÞ
��

: (41)

The transformation (35) can be treated as a change of
integration variables but such a change cannot change a
value of the integral. Thus, we get the condition

δW0½J; χ�; χ�
δξdðzÞ

����
ξ¼0

¼ 0: (42)

Differentiating the functional (41) with respect to ξ and
putting ξ ¼ 0, one finds

Z
BC

DAΔðAÞ exp
�
i
Z
C
d4xLðxÞ

�

×

�
−∂μ

ðzÞA
d
μðzÞ −

Z
C
d4xJμaðxÞð∂ðxÞ

μ δab

− gfabcAc
μðxÞÞM−1

bd ½Ajx; z�
�

¼ 0: (43)

Performing the functional differentiation, one should
remember that x0, y0, and z0 are on the contour and thus

δξaðxÞ
δξbðyÞ

¼ δabδ
ð4Þ
C ðx; yÞ: (44)

Replacing the field Aa
μðxÞ by the corresponding

derivative

Aa
μðxÞ →

1

i
δ

δJμaðxÞ ; (45)

the relation (43) can be rewritten as

�
i∂μ

ðzÞ
δ

δJμdðzÞ
−
Z
C
d4xJμaðxÞ

�
∂ðxÞ
μ δab þ igfabc

δ

δJμcðxÞ
�

×M−1
bd

�
1

i
δ

δJ

����x; z
��

W½J; χ�; χ� ¼ 0; (46)

which is the generalized Slavnov-Taylor identity in the
Feynman gauge. In the subsequent section we discuss one
specific identity following from Eq. (46).

B. The Slavnov identity for the gluon propagator

We are going to derive the identity that relates the gluon
Green’s function to the ghost one. Differentiating the
general relation (46) with respect to JνeðyÞ and putting
χ ¼ χ� ¼ J ¼ 0, we obtain

�
i∂μ

ðzÞ
δ2

δJμdðzÞδJνeðyÞ
−
�
∂ðyÞ
ν δeb þ igfebc

δ

δJμcðyÞ
�

×M−1
bd

�
1

i
δ

δJ

����y; z
��

W½J; χ�; χ�
����
χ¼χ�¼J¼0

¼ 0; (47)

which requires further manipulations. Using the equa-
tion (39) together with (37), one observes that

ð−∂ðyÞ
ν δebþgfebcAc

νðyÞÞM−1
bd ½Ajy;z�¼−∂ðyÞ

ν Δedðy;zÞ; (48)

where Δedðy; zÞ is the Green’s function of the free ghost
field obeying the equation of motion

−∂ν
ðyÞ∂ðyÞ

ν Δedðy; zÞ ¼ δedδ
ð4Þ
C ðy; zÞ: (49)

The equality (48) holds up to the function independent of y,
which is eliminated due to the boundary conditions obeyed
by M−1½Ajy; z� and Δðy; zÞ.
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Eq. (48) allows one to write down the relation (47) as

∂μ
ðzÞD

ab
μνðz; yÞ ¼ ∂ðyÞ

ν Δabðy; zÞ; (50)

where we have used the definition of the gluon Green’s
function (16). Equation (50) relates the contour Green’s
functions of gluons and ghosts to each other. Locating the
time arguments y0 and z0 on the upper or lower branch of
the contour shown in Fig. 1, we get the relations for the
Green’s functions of real arguments,

∂μ
ðzÞðDab

μνÞ≶ðz; yÞ ¼ ∂ðyÞ
ν ðΔabÞ≷ðy; zÞ; (51)

∂μ
ðzÞðDab

μνÞcaðz; yÞ ¼ ∂ðyÞ
ν ðΔabÞcaðy; zÞ: (52)

Since the system under study is translationally invariant,
the Fourier transformed identity (50) gets the desired form

−pμDab
μνðpÞ ¼ pνΔabð−pÞ; (53)

which relates the longitudinal part of the gluon Green’s
function to the free ghost function. Equation (53) also
expresses the well-known fact that the longitudinal part of
the gluon Green’s function is not modified by interaction,
and, consequently, the polarization tensor, which results
from the interaction, is purely transversal.
As already mentioned, an attempt to derive the Slavnov-

Taylor identities within the Keldysh-Schwinger formalism
was undertaken in [11]. However, there were serious flaws
in the derivation. The fields present in the generating
functional (15) were stated to obey periodic boundary
conditions, which effectively meant that the density matrix
was diagonal. There was no justification for such an
assumption. Since the global BRST transformation was
used, the density matrix was assumed to be invariant under
the transformation to guarantee the invariance of the
generating functional. Again, there was no justification
for this assumption. It was also overlooked that the ghost
contour Green’s function includes the medium contribu-
tion, see the subsequent section, and, consequently, the
relations that were obtained were simply incorrect.

VI. GREEN’S FUNCTION OF THE FREE
GHOST FIELD

In this section we write down the Green’s function of the
free ghost field using the identity (53), which holds for
every component of the contour functionD andΔ. With the
explicit expressions of the gluon functions given by
Eqs. (25), (26), (29), and (30), the relation (53) together
with (51) and (52) provides

Δ>
abðpÞ ¼ −δab

iπ
Ep

½δðEp − p0ÞðngðpÞ þ 1Þ

þ δðEp þ p0Þngð−pÞ�; (54)

Δ<
abðpÞ ¼ −δab

iπ
Ep

½δðEp − p0ÞngðpÞ

þ δðEp þ p0Þðngð−pÞ þ 1Þ�; (55)

Δc
abðpÞ ¼ δab

�
1

p2 þ i0þ
−

iπ
Ep

ðδðp0 − EpÞngðpÞ

þ δðp0 þ EpÞngð−pÞÞ
�
; (56)

Δa
abðpÞ ¼ −δab

�
1

p2 − i0þ
þ iπ
Ep

ðδðp0 − EpÞngðpÞ

þ δðp0 þ EpÞngð−pÞÞ
�
: (57)

As seen, the gluon distribution function ngðpÞ, which
describes the physical gluons, enters the ghost Green’s
functions.
The relation (53) also provides the retarded ðþÞ,

advanced ð−Þ, and symmetric (sym) ghost Green’s
functions,

Δ�
abðpÞ ¼

δab
p2 � i × sgnðp0Þ0þ

; (58)

Δsym
ab ðpÞ ¼ −δab

iπ
Ep

�
δðEp − p0Þð2ngðpÞ þ 1Þ

þ δðEp þ p0Þð2ngð−pÞ − 1Þ
�
; (59)

which are used in the subsequent section.

VII. GLUON POLARIZATION TENSOR

As an application of the Green’s functions of the free
ghost field, which are derived in the previous sections, and
of the Slavnov-Taylor identity, which requires transversal-
ity of the gluon polarization tensor, we discuss here the
retarded polarization tensor of a quark-gluon plasma. We
note that the Ward-Takahashi identities—Abelian analogs
of the Slavnov-Taylor identities—were studied in real time
formalism in [15]; see also [16]. Our computation is
performed within the hard loop approach, see the reviews
[17,18], which was generalized to anisotropic systems in
[19,20]. The retarded polarization tensor is an important
characteristic of a plasma system, as it carries information
about its chromodynamic properties like collective excita-
tions or screening lengths.
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The gluon polarization tensor Πμν can be defined by
means of the Dyson-Schwinger equation

iDμνðkÞ ¼ iDμνðkÞ þ iDμρðkÞiΠρσðkÞiDσνðkÞ; (60)

where Dμν and Dμν is the interacting and free gluon
propagator, respectively. The lowest order contributions
to the gluon polarization tensor are given by four diagrams
shown in Fig. 2. The curly, plain, and dotted lines denote,
respectively, gluon, quark, and ghost fields.
Applying the Feynman rules, the contribution to the

contour Π coming from the quark loop corresponding to
the graph in Fig. 2(a) is immediately written down in the
coordinate space as

ðaÞΠ
μν
abðx; yÞ ¼ −ig2NcδabTr½γμSijðx; yÞγνSjiðy; xÞ�; (61)

where Sijðx; yÞ is the quark contour Green’s function and
the trace is taken over spinor indices. The factor ð−1Þ due to
the fermion loop is included and the relation facdfbcd ¼
δabNc is used here.
Since we are interested in the retarded polarization

tensor, which is expressed through Π≶ as

Πþðx; yÞ ¼ Θðx0 − y0ÞðΠ>ðx; yÞ − Π<ðx; yÞÞ; (62)

the polarization tensors Π≶ are found from the contour
tensor (61) by locating the argument x0 on the upper
(lower) and y0 on the lower (upper) branch of the contour.
Then one gets

ððaÞΠ≶ðx; yÞÞμνab ¼
i
2
g2δabTr½γμS≶ijðx; yÞγνS≷jiðy; xÞ�: (63)

As the system under study is assumed to be translation-
ally invariant and Sðx; yÞ ¼ Sðx − yÞ, we put y ¼ 0 and
write Sðx; yÞ as SðxÞ and Sðy; xÞ as Sð−xÞ. Then Eq. (63) is

ððaÞΠ≶ðxÞÞμνab ¼
i
2
g2δabTr½γμS≶ijðxÞγνS≷jið−xÞ�: (64)

Since the functions S� are expressed through S≷ analo-
gously to Eq. (62), the Fourier transformed retarded
polarization tensor ΠþðkÞ is found as

ððaÞΠþðkÞÞμνab ¼ i
g2

4
δab

Z
d4p
ð2πÞ4 Tr½γ

μSþijðpþ kÞγνSsymji ðpÞ

þ γμSsymij ðpÞγνS−jiðp − kÞ�: (65)

Further on, the index þ is dropped and Πþ is denoted as
Π, as only the retarded polarization tensor is discussed.
Substituting the functions S�; Ssym given by Eqs. (B1) and
(B4) into the formula (65), one finds

ðaÞΠ
μν
abðkÞ ¼ −g2δab

Z
d3p
ð2πÞ3

nqðpÞ þ n̄qðpÞ − 1

Ep

×

�
2pμpν þ kμpν þ pμkν − gμνðk · pÞ
ðpþ kÞ2 þ isgnððpþ kÞ0Þ0þ

þ 2pμpν − kμpν − pμkν þ gμνðk · pÞ
ðp − kÞ2 − isgnððp − kÞ0Þ0þ

�
; (66)

where pμ ≡ ðEp;pÞ with Ep ≡ jpj; the traces of gamma
matrices are computed and it is taken into account that
p2 ¼ 0. We also note that after performing the integration
over p0, the momentum p was changed into −p in the
negative energy contribution.
In the hard loop approximation, when p ≫ k, we have

1

ðpþ kÞ2 þ i0þ
þ 1

ðp − kÞ2 − i0þ

¼ 2k2

ðk2Þ2 − 4ðk · pÞ2 − isgnðk · pÞ0þ

≈ −
1

2

k2

ðk · pþ i0þÞ2 ; (67)

1

ðpþ kÞ2 þ i0þ
−

1

ðp − kÞ2 − i0þ

¼ 4ðk · pÞ
ðk2Þ2 − 4ðk · pÞ2 − isgnðk · pÞ0þ

≈
k · p

ðk · pþ i0þÞ2 : (68)

We note that ðpþ kÞ0 > 0 and ðp − kÞ0 > 0 for p ≫ k.
With the formulas (67) and (68), Equation (66) gives

ðaÞΠ
μν
abðkÞ ¼ g2δab

Z
d3p
ð2πÞ3

nqðpÞ þ n̄qðpÞ− 1

Ep

×
k2pμpν − ðkμpν þpμkν − gμνðk ·pÞÞðk ·pÞ

ðk ·pþ i0þÞ2 ;

(69)

which has the well-known structure of the polarization
tensor of gauge bosons in ultrarelativistic QED and QCD
plasmas. As seen, the tensor is symmetric with respect
to Lorentz indices ðaÞΠ

μν
ab
ðkÞ ¼ ðaÞΠ

νμ
ab
ðkÞ and transverse

FIG. 2. The one-loop contributions to the gluon polarization
tensor.
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kμðaÞΠ
μν
ab
ðkÞ ¼ 0, as required by the gauge invariance.

When nq and n̄q both vanish, the polarization tensor
(69) is still nonzero. It is actually infinite and it represents
the vacuum effect. Equation (69) gives the contribution of
massless quarks of one flavor. The integral should be

multiplied by Nf to get the contribution of Nf flavors of
massless quarks.
Analogously to the quark-loop expression (65), one finds

the gluon-loop contribution to the retarded polarization
tensor shown in Fig. 2(b) as

ðbÞΠ
μν
abðkÞ ¼ −i

g2

4
Ncδab

Z
d4p
ð2πÞ4

Z
d4q
ð2πÞ4D

sym
0 ðpÞ½ð2πÞ4δð4Þðkþ p − qÞMμνðk; q; pÞDþ

0 ðqÞ

þ ð2πÞ4δð4Þðk − pþ qÞMμνðk;−q;−pÞD−
0 ðqÞ�; (70)

where D�
0 and Dsym

0 are the free gluon Green’s functions
D� and Dsym given by Eqs. (A7) and (A8) stripped off the
Lorentz and color factors, that is, Dμν

abðkÞ ¼ gμνδabD0ðkÞ.
The combinatorial factor 1=2 is included in Eq. (70) and

Mμνðk; q; pÞ≡ Γμσρðk;−q; pÞΓσ
ν
ρðq;−k;−pÞ; (71)

with the three-gluon coupling

Γμνρðk; p; qÞ≡ gμνðk − pÞρ þ gνρðp − qÞμ þ gρμðq − kÞν:
(72)

Within the hard loop approximation, the tensor (71) is
computed as

Mμνðk; p� k;�pÞ
≈�2gμνðk · pÞ þ 10pμpν � 5ðkμpν þ pμkνÞ; (73)

where we have taken into account that p2 ¼ 0. Substituting
the expressions (73) into Eq. (70) and using the explicit
form of the functions D� and Dsym, we get

ðbÞΠ
μν
abðkÞ¼

g2

4
Ncδab

Z
d3p
ð2πÞ3

2ngðpÞþ1

Ep

×
5k2pμpν−2gμνðk ·pÞ2−5ðkμpνþpμkνÞðk ·pÞ

ðk ·pþi0þÞ2 :

(74)

The gluon-tadpole contribution to the retarded polariza-
tion tensor, which is shown in Fig. 2(c), equals

ðcÞΠ
μν
abðkÞ ¼ −i

g2

2

Z
d4p
ð2πÞ4 Γ

μνρ
abccρD

<ðpÞ; (75)

where the combinatorial factor 1=2 is included and the
four-gluon coupling Γμνρσ

abcd equals

Γμνρσ
abcd ≡ fabefecdðgμσgνρ − gμρgνσÞ

þ facefedbðgμρgνσ − gμνgρσÞ
þ fadefebcðgμνgρσ − gμσgνρÞ: (76)

With the explicit form of the function D<ðpÞ given by
Eq. (26), the formula (75) provides

ðcÞΠ
μν
abðkÞ ¼

3

2
g2Ncδabgμν

Z
d3p
ð2πÞ3

2ngðpÞ þ 1

Ep
: (77)

The ghost-loop contribution to the retarded polarization
tensor, which is shown in Fig. 2(d), equals

ðdÞΠ
μν
abðkÞ ¼ i

g2

2
Ncδab

Z
d4p
ð2πÞ4Δ

symðpÞ

× ½ðpþ kÞμpνΔþðpþ kÞ
þ pμðp − kÞνΔ−ðp − kÞ�; (78)

where the factor ð−1Þ is included as we deal with a fermion
loop and the color factor is put in front of the integral.
Using the explicit forms of the functions Δ� and Δsym,
which are given by Eqs. (58) and (59), the formula (78) is
manipulated to

ðdÞΠ
μν
abðkÞ ¼ −

g2

4
Ncδab

Z
d3p
ð2πÞ3

2ngðpÞ þ 1

Ep

×
k2pμpν − ðkμpν þ pμkνÞðk · pÞ

ðk · pþ i0þÞ2 ; (79)

which holds in the hard loop approximation.
As already mentioned, the quark-loop contribution to the

retarded polarization tensor (69) is symmetric and trans-
verse with respect to Lorentz indices. The same holds for
the sum of the contributions of pure gluodynamics: gluon
loop, gluon tadpole, and ghost loop. The complete QCD
result is obtained by summing up all four contributions
and subtracting the vacuum effect. Then one gets the final
formula,

Πμν
abðkÞ ¼ g2δab

Z
d3p
ð2πÞ3

nqðpÞ þ n̄qðpÞ þ 2NcngðpÞ
Ep

×
gμνðk · pÞ2 − ðkμpν þ pμkνÞðk · pÞ þ k2pμpν

ðk · pþ i0þÞ2 ;

(80)
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which is obviously symmetric and transverse. To our best
knowledge, this is the first computation of the complete
QCD polarization tensor in hard loop approximation
performed in the Keldysh-Schwinger (real time) formalism
that automatically gives the transversal tensor. In
Refs. [19,21], where the equilibrium and nonequilibrium
anisotropic plasmas were considered, respectively, the
transversality of ΠμνðkÞ was actually assumed. In the case
of imaginary time formalism, the computation of the gluon
polarization tensor in the hard loop approximation is the
textbook material [2,3]. We note that the structure of the
polarization tensor of gauge bosons in the hard loop
approximation is the same in QED, N ¼ 1 SUSY QED
[22], QCD, and N ¼ 4 super Yang-Mills theory [23].
A computation of the polarization tensor, which is very

similar to that presented above, has been recently done in
the context of N ¼ 4 super Yang-Mills theory in our paper
[23]. However, the form of free ghost Green’s functions
(54)–(59) has been postulated with no solid justification.
This deficiency has been the motivation of the present study.

VIII. SUMMARY, CONCLUSIONS, ANDOUTLOOK

We have constructed the generating functional of the
Keldysh-Schwinger formalism of QCD in a general covar-
iant gauge. The functional provides various relations among
the Green’s functions, in particular, the perturbative series
expressing the interacting Green’s functions through the free
ones. Deriving the free gluon functions, which are needed
for the perturbative calculus, we have found that only the
Feynman gauge is free of ill-defined expressions in the
Keldysh-Schwinger approach. Using the generating func-
tional, a general Slavnov-Taylor identity has been found. The
identity allows one, in particular, to express theghostGreen’s
function through the gluon one. In this way we managed to
obtain the contourGreen’s function of the free ghost field that
enters the perturbative series. The functions have been used
to compute the retarded gluon polarization tensor in the
hard loop approximation. The tensor has appeared to be
automatically transverse, as required by the gauge symmetry.
This opens a possibility to perform other real time calcu-
lations in the Feynman gauge that are usually much simpler
than those in physical gauges like the Coulomb one.
The quark-gluon plasma under consideration has been

assumed to be, in general, beyond equilibrium but homo-
geneous in coordinate space. In other words, the plasma
momentum distribution is arbitrary but the system is
translationally invariant. The invariance has greatly sim-
plified our analysis but the assumption of homogeneity has
to be relaxed to describe a generally nonequilibrium
situation. Then the Fourier transformation is replaced by
theWigner one and one has to refer to the so-called gradient
expansion to handle very complex equations. One also
faces a difficult problem of interplay of perturbative
expansion with the gradient one. These are the problems
to be discussed in our subsequent publication.
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APPENDIX A: MORE GREEN’S FUNCTIONS
OF GAUGE FIELDS

Except in the functionsDc,Da,D>,D<, one often needs
the retarded ðþÞ, advanced ð−Þ, and symmetric (sym)
Green’s functions, which are defined as

iðDab
μνÞþðx; yÞ¼defΘðx0 − y0Þ

Tr½ρðt0Þ½Aa
μðxÞ; Ab

νðyÞ��
Tr½ρðt0Þ�

; (A1)

iðDab
μνÞ−ðx; yÞ¼def − Θðy0 − x0Þ

Tr½ρðt0Þ½Aa
μðxÞ; Ab

νðyÞ��
Tr½ρðt0Þ�

;

(A2)

iðDab
μνÞsymðx; yÞ¼def

Tr½ρðt0ÞfAa
μðxÞ; Ab

νðyÞg�
Tr½ρðt0Þ�

; (A3)

where ½…;…� indicates a commutator and f…;…g an
anticommutator of operators. The retarded Green’s function
Dþ describes the propagation of both particle and anti-
particle disturbance forward in time, while D− governs the
evolution backward in time. The functions Dþ, D−, Dsym

can be expressed through D>, D<, Dc as

Dþðx; yÞ ¼ Θðx0 − y0ÞðD>ðx; yÞ −D<ðx; yÞÞ
¼ Dcðx; yÞ −D<ðx; yÞ; (A4)

D−ðx; yÞ ¼Θðy0 − x0ÞðD<ðx; yÞ −D>ðx; yÞÞ
¼Dcðx; yÞ −D>ðx; yÞ; (A5)

Dsymðx; yÞ ¼ D>ðx; yÞ þD<ðx; yÞ: (A6)

Using the relations (A4), (A5), and (A6) together with the
functionsD>,D<,Dc derived in Sec. IV, one easily obtains
the retarded, advanced, and symmetric Green’s functions of
free fields as

ðDab
μνÞ�ðpÞ ¼ −

gμνδab

p2 � isgnðp0Þ0þ
; (A7)

ðDab
μνÞsymðpÞ ¼ gμνδab

iπ
Ep

½δðEp − p0Þð2ngðpÞ þ 1Þ

þ δðEp þ p0Þð2ngð−pÞ þ 1Þ�: (A8)
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APPENDIX B: GREEN’S FUNCTIONS OF A
FERMION FIELD

The Green’s functions of a fermion field are defined
analogously to those of vector one, see, e.g., [12], and a
technique to derive the free functions is also similar.
Therefore, we only list here some formulas we need
for the calculations presented in Sec. VII. The Green’s
functions of the free massless quark field are

S�ijðpÞ ¼
δijp

p2 � isgnðp0Þ0þ
; (B1)

S>ijðpÞ ¼ δij
iπ
Ep

pðδðEp − p0Þ½nqðpÞ − 1�

þ δðEp þ p0Þn̄qð−pÞÞ; (B2)

S<ijðpÞ ¼ δij
iπ
Ep

pðδðEp − p0ÞnqðpÞ

þ δðEp þ p0Þ½n̄qð−pÞ − 1�Þ; (B3)

Ssymij ðpÞ ¼ δij
iπ
Ep

pðδðEp − p0Þ½2nqðpÞ − 1�

þ δðEp þ p0Þ½2n̄qð−pÞ − 1�Þ; (B4)

where i; j ¼ 1; 2;…Nc are color indices of the fundamental
representation, nqðpÞ and n̄qðpÞ are the distribution func-
tions of quarks and antiquarks, respectively, which are
assumed to be unpolarized with respect to spin and color
degrees of freedom. The distribution function is normalized
in such a way that the quark density of a given flavor equals

ρq ¼ 2Nc

Z
d3p
ð2πÞ3 nqðpÞ; (B5)

where the factor of 2 takes into account two spin states of
each quark. One checks that the functions (B1), (B2), and
(B3) obey the identity S>ðpÞ − S<ðpÞ ¼ SþðpÞ − S−ðpÞ.
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