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The difficulties in the unique definition of oscillations of a plasma with a non-Abelian interaction
are considered. The recently formulated kinetic theory of the quark-gluon plasma in the semiclassi-
cal limit is presented and discussed with particular attention to the gluon sector of the theory. The
transport equations are linearized around the global equilibrium and the chromoelectric permeabili-
ty tensor is found. The dispersion relations of the plasma oscillations are discussed and the rate of

oscillation damping is estimated.

I. INTRODUCTION

The quark-gluon plasma oscillations have been studied
for a long time in the framework of finite-temperature
(FT) QCD (for a review see Ref. 1 and references therein).
Recently, however, doubts have arisen®> over how to
define the oscillations of the system with a non-Abelian
gauge interaction. To understand the problem let me re-
call the case of the electromagnetic plasma, where the os-
cillations are defined as solutions of the sourceless
Maxwell equations in a plasma medium, which for the
Fourier-transformed fields read

k-D(k)=0, k-B(k)=0,
kXE(k)=wB(k), kXB(k)=—wD(k),

where k =(w,k); E(D) is the electric field (induction) and
B is the magnetic induction. The magnetic field H is not
present in Egs. (1) since, as explained in, e.g., Refs. 4 and
5, the magnetic permeability tensor can be put equal to
unity if one considers plasma oscillations. Introducing
the electric permeability tensor defined as

D k)=e"(k)EB(k) (2)

(1)

(a, B,y =1,2,3 denote space axes), one finds that Egs. (1)
are automatically solved if

€L(k)=0, ep(k)=k*/o?, 3)

where the longitudinal and transversal parts of the per-
meability tensor are defined for an isotropic medium as

€P=ep(6P—k%kP/k?)+ e kkP/K? . 4)

Therefore, to find the plasma oscillations, or more pre-
cisely, the dispersion relations of the oscillations, one has
to find the electric permeability tensor and then solve
Egs. (3).

The tensor can be found by means of the kinetic theory
of the plasma (see, e.g., Refs. 5 and 6) or one can use the
powerful apparatus of FT QED (see, e.g., Ref. 7 for the
nonrelativistic calculations and Ref. 8 for the relativistic
ones). In the latter case the permeability tensor can be
expressed through the photon propagator and the disper-
sion relations occur as the poles of it.

The question arises of how to define the oscillations of
the quark-gluon plasma. In the approach presented in
Ref. 1, which I call standard, the dispersion relations are
determined by the positions of the gluon propagator
singularities.

The starting point of the background-field method? is
the definition of the permeability tensor as a coefficient in
front of the term quadratic in the chromoelectric field in
the so-called effective action. The permeability tensor is
expressed through the gluon propagator and the disper-
sion relations are defined according to Egs. (3). However,
these relations correspond to oscillatory solutions of
linearized field equations similar to those of electro-
dynamics [Egs. (1)].

In the linear-response approach® one finds the permea-
bility tensor which, by definition, describes the reaction
of the system to the external field. The dispersion rela-
tions are given by zeros of the permeability tensor, which
is expressed not only by the gluon propagator (two-point
Green’s function) but by a combination of two-, three-,
and four-point gluon Green’s functions.

Most of the computational results of these methods are
the same: however, there are some differences even at the
qualitative level. In particular, the background-field
method? provides a negative damping of the plasma oscil-
lations (the amplitude of the wave increases in time),
while the linear-response analysis® gives a positive damp-
ing. All the methods are faced with the problem of the
gauge dependence of the results, which is treated in a
different manner in each case. :

The aim of this paper is to consider the quark-gluon
plasma oscillations from a point of view which is different
from that of FT QCD. Namely, the recently formulated
gauge-covariant kinetic theory of the quark-gluon plas-
ma’~ !2 is used here. In fact, the oscillations of the quark
plasma (the system of quarks and antiquarks interacting
via non-Abelian classical potentials) and those of quark-
less plasma have been considered separately in Refs. 13
and 12, respectively. In this paper I join both ap-
proaches, reformulating them to elucidate peculiarities of
the problem. In particular, I have found a new, more
transparent form of the transport equations of gluons.
Instead of the four-index gluon distribution function used
in Refs. 11 and 12, I have introduced a two-index func-

1940 ©1989 The American Physical Society



tion with a simple physical interpretation. Then the
transport equations of quarks and of gluons are formally
identical. The damping mechanisms of oscillations,
which have not been studied in Refs. 12 and 13, are also
discussed here. Finally, I analyze the physical meaning
of the oscillations and I arrive at the conclusion that the
meaning is clear only for the linearized QCD, where, in
particular, the color current is conserved, not only co-
variantly conserved.

In fact, I have added no new results concerning the
quark-gluon plasma behavior to those from Refs. 1-3.
However, I have rederived these results in a completely
different way, shedding new light on them. I have
developed a formalism which can be used to study oscil-
lations around any quasistable state of the plasma, not
only the global thermodynamical equilibrium state.

The paper is organized as follows. In Sec. II, I present
the kinetic theory with particular attention to the gluon
transport equations. The linearized theory is studied in
Sec. III, while Sec. IV is devoted to the discussion of the
linearized QCD in the plasma medium and of the disper-
sion relations. In Sec. V the damping rate is estimated,
and finally, the conclusions are collected in Sec. VI.

II. TRANSPORT THEORY OF THE
QUARK-GLUON PLASMA

A. Quark sector

The quark [antiquark] distribution function f(p,x)
[f(p,x)] is an NXN matrix in color space [for an
SU(N)-color group] which transforms under local gauge
transformations as

Fp,x)=Ux)f(p,x)UT(x), (5)

where the color indices are suppressed. Quantities which
are color (gauge) independent, such as the baryon current
or energy-momentum tensor, are expressed through the
traces of f (p,x) and f(p,x). The quark-color current is

oy — 8 _‘ﬁp_ I —F
=3[ OoppP |/ P =Fex)

——J%Tr[f(p,X)—f(P,x)] , (6)

where g is the coupling constant. The units are used
where ¢ =#i=k =1 and the metric is (1,—1,—1,—1).
One sees that j*(x) transforms under gauge transforma-
tions as its QCD analog, i.e., according to Eq. (5).

f(p,x) and f(p,x) satisfy the kinetic equations® '°

PDf (pyx)—gph=>

ap %{F;w(x):f(P,x)}:C N (73.)

v

p,D*f(p,x)+gp* aa

P

where p=p*=(E,p), x =(t,x) are the four-momentum

and four-position, respectively. D# is the covariant

derivative in the adjoint representation which acts as

o,+igl4,,...1; 4,(x) and F,(x) are the chromo-

dynamic mean-field four-potential and stress tensor, re-
spectively, expressed as the Lie-algebra elements

HF L (x),f(p,x)}=C, (7b)

v
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— — - 2
W=A%% F,=F%7% a=12,...,N*—1,

where 79 are the SU(N) group generators; {...,...}
denotes the anticommutator; C, C represent the collision
terms which for the collisionless plasma equal zero. In
this paper I use the simplest form of C and C, known as
the collision terms in the relaxation-time approximation,
which read

C=vphu, [fUp)—f(p,x)], (8a)
C=wp"u,[Fp)—F(p,x)], (8b)

where v is the equilibration rate parameter discussed in
Sec. V and u* is the hydrodynamic velocity which de-
scribes the motion of the plasma as a whole [in the plas-
ma rest frame u#=(1,0,0,0)]. f®Up) is the equilibrium
distribution function

fSp)=8,;n(p), FiMp)=8,n(p), i,j=1,...,N,

where i,j are the color quark indices and n (p) [#(p)] is
the Fermi-Dirac equilibrium distribution function.

More realistic collision terms for the quark transport
equations have been discussed in Ref. 14.

The above transport equations are written for spinless
quarks of one flavor only. However, if the plasma is in
equilibrium with respect to spin and flavor, both quan-
tum numbers can be treated as indistinguishable internal
degrees of freedom of quarks.

Equations (7) with C =C=0 form the semiclassical
limit of the full kinetic equations, derived in Ref. 10, of
quarks interacting with the non-Abelian classical mean
field. They are formally very similar to those of an
electron-positron plasma.

B. Gluon sector

The transport theory of gluons has been studied in
Refs. 11 and 12, where the gluon distribution function
has been the four-color-index matrix G[(p,x) with
i,j,k,1=1,2,..., N satisfiying a kinetic equation which,
even in the semiclassical limit, has been of rather compli-
cated form. Our first task is to rewrite the equations
from Ref. 12 in another representation in which they are
formally very similar to those of quarks.

I assume, as in Ref. 12, that the system is equilibrated
with respect to the spin of gluons. Then

G*¥(p,x)=p"p G (p,x) . 9)

Further, I introduce the distribution function &,,(p,x),
which is an (N?>—1) X (N?—1) Hermitian matrix, defined
as

Gijut (P, X)= 9 (P, X)7878 .

The diagonal elements of &, should be interpreted as the
distribution functions of gluons of each kind. §,, trans-
forms under a local gauge transformation as

9p,x)—M(x)Sp,x) M (x),
where

M, (x)=Tr[r,U(x)1, ulx)1,

with U(x) being the respective transformation operator
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in the fundamental representation. .

Using the distribution function &,, with the structure
of the Lorentz indices given by Eq. (9), the transport
equation from Ref. 12 can be rewritten as (for details see
Appendix A)

()
p,D*S(p,x)—gp* .

where DH=0o*—ig[AH,...]; A* and F
(N?—1)X(N?—1) Hermitian matrices defined as
b X):ifabcAéu(X)’ L x):ifachc (x)

where f,,. is the SU(N) group structure constant. As
previously, I choose the collision term in the relaxation-
time approximation, i.e.,

HFWX),8(p,x)}=Cy ,  (10)

are the

Cy=veptu, [9*Up)—Y(p,x)], (11)
where
Gad(p)=ng(p)dyy .

It is amusing that Egs. (7) and (10) are formally identical.
To make the set of equations (7) and (10) complete one

has to add an equation describing the self-consistent gen-

eration of the chromodynamic mean field: namely,

D, FM(x)=j"(x)=j7(x)+j3(x) , (12)

where the quark current is given by Eq (6) and the gluon
current under the assumptlon (9) reads'?

jtoo=ig [ = >3EP K1 f e Se (o) - (13)

As needed the current (13) is Hermitian. One can easily
check that the set of transport equations (7) and (10) with
(12) is gauge covariant.

III. LINEARIZED TRANSPORT THEORY

Let us consider a plasma which is close to the global
equilibrium. Then the distribution functions can be ex-
pressed as

fij(p,x)=n(p)d; +8fij<p’x) ’
f‘.}.(p,x)=ﬁ(p)5,-j +8.7ij(p’X)
gab(P’x)zng(p)sab +89ab(P’x) :

The functions describing the deviation from the equilibri-
um are assumed much smaller than the respective equi-
librium functions, and the same is assumed for the
momentum gradients of these functions.

Substituting the above distribution functions in Egs. (6)
and (13) one gets the color current

3
& [_BP_pulsf(px)—

8f(p,x)
29 (27)E S (P,

jHx)=
276,89, (p)] . (14)
I have omitted the term proportional to Tr(§f —8f)

since, as it follows from Eq. (16) (Ter,=0), this term
gives zero contribution to the color current. One sees
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that the current occurs due to deviation of the system
from equilibrium. In equilibrium there is no current and
no mean field. Therefore the field generation equation
(12) can be linearized for the quasiequilibrium plasma
(with respect to the four-potential) to the form

3,F*(x)=j"(x)

with F*¥¥=09"* AV—0adY A*. One sees that in the linearized

" theory the color current is conserved (due to antisym-

metry of F*"), i.e., 3,,j*(x).

Now I substitute the quasiequilibrium distribution
functions to the transport equations (7) and (10) with the
collision terms (8) and (11). Linearizing the equations
with respect to 8f, 61, and 89, one gets

(p, & +vp, ut)df(p,x)—gp*F, A(X)——feqp)—

(pﬂa“ﬁ-T/p#u")Sf(p,x)+gp“FM(x)5;)—feq(p)=0, (15
A

(pua"-i-vgp#u")ﬁg(p,x)—gpﬂgﬂk(x)g;?—geq(p)‘—‘o

A

It should be remembered that 4,(x) is of order of
8f(p,x). Treating the chromodynamic mean field as an
external one, Egs. (15) can be easily solved:

8f(p,x)=g [d*x'A}(x —x’)p"FM(x’)%feq(p)
A

8f(p,x)=—gfd4x’A;’(x —x')p”Fﬂ(x')gg“feq(P) ,
A
) 3 (16)
89(p,x)=g [d*x"A(x —x")pFF,(x") 5, 9P,
/2N

where A;(x) is the Green’s function of the kinetic opera-
tor with the collision term in the relaxation-time approxi-
mation:

Ay(x)=E'O(e "8 (x—vt) ,

where v=p/E and v'=vp*u,/E; in the plasma rest
frame v' =wv.
Substituting (16) in (14) one finds

JHx)= [d*

with the color conductivity tensor

‘oMM (x —x")F 5 (x") 17

2 3
A= & d’p
oMM x)= > f

0
(27)E P

apy

p¥p? |A,(x)

vy 0 o
+AP(X)apA a(p)

+2NA g(x 9 — —n,(p)
A
(18)

where the identity f,;,. f,q =N, has been used.
Performing the Fourier transformation with respect to
the x variable, Eq. (17) and (18) can be rewritten as

JHk)=a"MK)F (k) , (19)
where



39 KINETIC-THEORY APPROACH TO QUARK-GLUON PLASMA ...

d’p PP 1 3
27)’E plk,+ivu,) 9py

2
—:8
gupl(k)__z—z—f( n(p)+

When the plasma equilibrium state is isotropic, which is
obviously the case of global equilibrium, one finds that
the structure of Lorentz indices of the conductivity is

otPM k)= P(k)ut .

Then Eq. (19) gets a more familiar form, which in the
plasma rest frame [##=(1,0,0,0)] reads

j¥uk)=0"B(k)ER(k) ,

where E is the chromoelectric vector.

One should note that the conductivity tensor is a scalar
quantity in color space (no color indices). Equivalently,
one can say that the conductivity is proportional to the
unit matrix in color space.

IV. LINEARIZED QCD IN THE PLASMA MEDIUM

Let us introduce, as in electrodynamics, the polariza-
tion vector P(x) defined as

divP(x)= —p(x), -g—tP(x)=j(x) , (21)

where p and j are the timelike and spacelike components,
respectively, of the color four-current, j*=(p,j). It

1943

1 d 1 0

p°lk,+ivu,) Opy

A(p)+2N |
P POk, +ivgu,) 3 &7

(20)

should be stressed that the definition (21) is self-consistent
if the color four-current is conserved (not only covariant-
ly conserved). This is just the case of the linearized QCD.

Further, I define the chromoelectric induction vector
D(x),

D(x)=E(x)+P(x) , (22)

and the chromelectric permeability tensor, which relates
the Fourier-transformed D and E fields:

D%k)=€"(k)EB(k) . (23)

In this definition the permeability tensor is a color scalar
(no color indices) since the conductivity tensor in (18) and
(20) is a color scalar. Using the definitions (23), (22), and
(21) one easily finds that

€B(k)=8"—ioc™P(k)/w

with 0®%(k) given in Egs. (19) and (20); o is the timelike
component of k, k*=(w,k).

Substituting the explicit form of the equilibrium distri-
bution functions, Fermi-Dirac for (massless) quarks and
Bose-Einstein for gluons, one gets

2 3
e“B(k)ZS“B—za;LTf—(%vavB[Nf(w—kw—iv)_l(e"/T+1)_2+N(w—k-v+ivg)_’(e”/T-—1)_2]e"/T , (24)

where N [ is the number of flavors, p is the length of the
vector momentum, i.e., p=|p| here (I hope that this
change of notation will not lead to confusion) and T is the
temperature. The above formula is valid in the reference
frame where the plasma as a whole is at rest. One should
note that for a baryonless plasma the numbers of quarks
and antiquarks are equal to one another and v=%.

Because the equations of linearized QCD coincide (up
to the trivial matrix structure) with those of electro-
dynamics, the dispersion relations are defined by Egs. (3)
and (4). The relations are, of course, very similar to those
of the electrodynamic plasma; see, e.g., Refs. 5 and 6.
They also agree with the results of FT QCD calcula-
tions! 73 in the one-loop approximation.

For illustration I consider the long-wave limit of the
oscillations. Calculating the integral in Eq. (24) for
©>>|k| and @ >>v(v, ), one finds the following dispersion
relations.

(A) Longitudinal mode

w2=w%—§2+%¢2+%k2, y=1¢. (25a)

(B) Transverse mode
?=wj—E+ 31+ Sk, y=1¢. (25b)
o and y denote the real and imaginary part, respectively,

of the complex frequency, i.e., I performed the substitu-
tion w—w—iY; w, is the plasma frequency and

272
g°T*(N;+2N)
w5=————18————— (26)
¢ and £ parameters are related to v and v, as
N
— f 2N
¢ VN, +2N G N,+2N’ (27a)
N 2N
2—a2 S 2 27
EVN AN TN 42N @70)

The presence of the nonzero imaginary part of the fre-
quency makes the amplitude of the oscillations decreas-
ing in time as e ~"". To find the value of ¥, one has to es-
timate the equilibration rates v and v,. This is done in
the next section.
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V. DAMPING MECHANISMS OF THE
PLASMA OSCILLATIONS

Usually the equilibration rate parameter v, which is
present in the relaxation-time-approximation collision
term, is identified with the inverse particle mean free
flight time 7 estimated from the formula

TAI:U:P ’
where o, is the transport cross section and p is particle
density. Then, v is of order of g*lng ~% (Ref. 15) for the
perturbative QCD plasma.

However, there is also another damping mechanism—
plasmon decay into quark-antiquark or gluon-gluon
pairs. The first process is very similar to the plasmon de-
cay into electron-positron pairs known from the ultra-
relativistic electrodynamic plasma, while the second one,
which occurs due to the three-gluon coupling, is charac-
teristic for non-Abelian interactions. The plasmon decay
is, in another language, a particle-antiparticle pair gen-
eration from a vacuum due to the mean (oscillatory) field.
The plasmon decay width is, in the lowest order, propor-
tional to g2. However, the plasma frequency w,, which is
of order of g, enters the formula, and more detailed con-
siderations are needed to find the order of the width. It is
easy to observe that, even in the limit of massless quarks,
the decay into gluons is much more probable than the de-
cay into quarks. The argument is as follows. If one con-
siders the decay of plasmon of zero momentum into
(massless) quarks or gluons, the phase-space volume of

~ the final state is proportional to the factor

[1Fn(wy/2)]1, (28)

where the upper sign is for fermions, while the lower one
is for bosons; n (E) is the Fermi-Dirac or Bose-Einstein
distribution, respectively. Because the plasma frequency
(26) in perturbative plasma is much smaller than the tem-
perature, the factor (28) can be expanded as

++wy/8T for fermions,

[1Fn(wy/2)P~
4T?/w} for bosons .
Therefore it is seen that the decay into gluons is more
probable than the decay into quarks by a factor of order
of g 72 (Ref. 3).
Using the standard rules of FT field theory, one easily
calculates (see Appendix B) the width of the zero-
momentum plasmon decay into gluons

2
r,==— 1+n(wy/2)] ~ T,
4™ Qi ol F @02 =5y a7

(29)

which is the same for longitudinal and transverse
plasmons.

I'; cannot be identified with the plasmon equilibration
rate T since, in addition to the plasmon decays, there are
also plasmon formation processes. As shown by Wel-
don'® (see also Ref. 3), the formation rate T' ¢ is related to
T, as
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Ir=exp(—ag/T)Tj~(1—wy/T)T, .

Since the equilibration rate of plasmon (as boson)
'=r,;—T/ (Ref. 16), one finds

'~

2
g°N
2 T, (30)

which agrees (up to the additionally introduced
coefficient 1 in Ref. 3) with the result of Ref. 3, where T’
has been expressed through the imaginary part of the po-
larization tensor. The agreement is not surprising since I
have used, as in Ref. 3, the radiation gauge
(A%x)=0, 3'4(x)=0).

Let me note that I'; and 'y are of order of g, while I
is of order of g2. This means that the plasmon decay and
formation processes cancel one another in the lowest or-
der of g. One should also observe that the plasmon decay
width is not a Lorentz-invariant quantity, since there is a
preferred reference frame—the rest frame of the ther-
mostat. Therefore the result (30) is valid for zero-
momentum plasmons, or approximately for long-wave
plasmons only.

There is a delicate question of whether I' can be
identified with v,. Since gluons from plasmon decay are
not of thermal equilibrium distribution, parton collisions
(the cross sections which are of order of g*lng ~?) are
needed to equilibrate the system. However, the gluons
from plasmon decay locally neutralize the plasma and
consequently damp the oscillations. Therefore if one con-
siders the plasma oscillations, which make the plasma lo-
cally colored, v, can be identified with I'. On the other
hand, if one studies, say, the viscosity of the locally neu-
tral plasma, v, obviously differs from I

What is the value of the quark equilibration parameter
v? Since the plasmon decays into quarks, and binary col-
lisions involving quarks are at least of order g4, it seems
reasonable to assume that v, >>v for the perturbative
plasma. Then, substituting v,=T" and v=0 in Egs. (25)
and (27), one finds the decrement of the plasma oscilla-
tion damping

g2 NZ

~E 2 7
12 N,+2N Gb

14

The characteristic feature of Eq. (31) is the fact that the
damping rate depends on the number of quark flavors, al-
though v=0. This result seems in agreement with physi-
cal intuition. When the number of quark flavors is in-
creased the inertia of the system is also increased and
consequently the time needed to damp the oscillation is
longer. However, Eq. (30) disagrees [by a factor
2N/(N;+2N)] with the result from Ref. 3, where y
equals I" given by Eq. (30) (Ref. 17). Therefore the damp-
ing decrement is independent of the number of quark
flavors. The only way to reproduce the result from Ref. 3
in the framework of the approach discussed here is to as-
sume that Ve =v=I". However, it is hard to understand
this assumption on physical grounds. Probably the prob-
lem could not be resolved as long as the collision terms of
the transport equations (7) and (10) are not derived.
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VI. CONCLUSIONS

The analysis of quark-gluon plasma oscillations
presented here looks much more trivial than the one
based on FT QCD (Refs. 1-3). The kinetic approach is
based on the semiclassical equations, and the problem is
simplified to a linear one strongly resembling the electro-
dynamic plasma. It should be stressed that the lineariza-
tion procedure does not lead to the cancellation of all
non-Abelian effects, since gluons contribute to the color
current which generates the chromodynamic mean field.
Therefore the gluon-gluon interactions, which are of
essentially non-Abelian character, are included in a
specific way. This is seen formally by the presence of the
structure constants f,,. in Eq. (14), and also supported by
comparing with FT QCD where the gluonic contribution
to w, arises from the gluon loop involving the three-gluon
vertex.

In the approach discussed, the chromoelectric polar-
ization vector, or equivalently the chromoelectric induc-
tion, is defined as in electrodynamics. Let me recall that
this demands conservation of the color current. Then the
plasma oscillations correspond, as in QED, to the oscilla-
tory solutions of the (linearized) field equations. In the
case of nonlinear approaches the correspondence between
the dispersion relations and solutions of QCD field equa-
tions is not established. Therefore, in my opinion, the
physical meaning of the plasma oscillations is clear at
present only for the linearized QCD.

The dispersion relations (25) agree with those from
Refs. 1-3, where they have been found in the one-loop
approximation. To estimate the damping decrement I
have used arguments beyond the kinetic approach. In
principle, it is possible to study the oscillation damping in
the framework of the transport theory; however, the par-
ticle production processes should be included in the ki-
netic equations. The first steps in this direction have
been recently done.!>!8

It should be also noted that the kinetic-theory ap-
proach can be applied to study the oscillations around
any quasistable state of the plasma, not only around the
global thermodynamical equilibrium. In my very recent
paper,'® the same approach (with simple modifications)
has been used to discuss the instabilities of the system of
two streams of quark-gluon plasma.

Note added in proof. The quark-gluon plasma oscilla-
tions around global equilibrium have been very recently
studied [A. Bialas and W. Czyz, Ann. Phys. (N.Y.) 187,
97 (1988)] using the kinetic-theory method proposed in
Ref. 12.

S 1 i d’p,  d’p,
20y 2n(N*—1) Y (2m)R2E, (2m)2E,

where n; is the number of polarization states, which is 2
for a transverse plasmon and 1 for a longitudinal one; M
is the amplitude of decay of a plasmon (off-shell gluon) of

QT8 Yk —p —p )1 +n (EDI[1+n,(E)] S S M2,
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APPENDIX A

The starting point for the derivation of Eq. (10) is Eq.
(1.9) from Ref. 12, which reads

PaﬁUG[L‘V:%gpoa;{[FTU’GMV]R_*—[GIM,V’FTU]L}

_g{[Fa‘uxGav]R_[Gya’Fav]L] . (A1)

The notation is as in Ref. 12. The above equation has
been derived in the collisionless limit; therefore there is
no collision term. Comparing to the original Eq. (1.9)
from Ref. 12, I have neglected in Eq. (Al) the second-
gradient terms, which are corrections to the classical lim-
it.

I substitute into Eq. (A1) the distribution function in
the form

— Qab b
G =8,m®1° .

Then the equation is multiplied by 7°® 7% and I take the
trace, defined as

Tr(r°7°® 197°) =Tr(r°r*) Tr(r7%) .
Using the identity Tr (T“Tb)=%8“b one finds the equation

3 1
op, 2

pa“@agyv+gpa {770’9;41/} :g(g‘uagav_gpagav) .

(A2)

The notation is explained under Eq. (10) in the main text.
Further, I assume that §,,, can be expressed as

Sulp,x)=p,p,8(p,x) , (A3)

which corresponds to the equilibrium with respect to the
spin degrees of freedom of gluons. The function g,w in
the form (A3) is substituted into Eq. (A2) and the result-
ing equation is multiplied by p#p”. Assuming that pu.p*
is infinitesimally small but finite, one finds Eq. (10) with a
zero collision term.

APPENDIX B

Using the convention from Ref. 20, the plasmon decay
width is expressed as

(B1)

colors 551,85,

a four-momentum k into two real (transverse) gluons of
the four-momenta p, and p,. The amplitude in the
lowest order of the coupling constant reads



1946

M:ga(k,s)[ _gfabc[( _k—Pl )vga,u+(p1 ) )Ugyv

+(p2—k)p,gv0']}
Xeh(pl,sl )eT#(pz,Sz) N

where € and € are the polarization vectors of a plasmon
and a gluon, respectively, the expression in the curly
brackets is the three-gluon vertex function.?! For the
zero-momentum plasmon (p;=—p,=p, E\=E,=wy/
2), one finds

M =—2gf,, @k, s)p,€™(p1,5,)el(psrsy) (B2

where the transversality condition of the real gluons in
the temporal axial gauge [€*=(0,€)] has been used. The
plasmon momentum has been put to zero; however, it
should be treated as an infinitesimally small vector to dis-
tinguish between the transverse and longitudinal
plasmons.

From Eq. (B2) one gets

1—cos?0
S 3 |M|2=2g2N(N2—1)w(2){ ] (B3)

2
colors $,51:8, cos“0
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where the upper expression in the curly brackets relates
to the transverse plasmon, while the lower one relates to
the longitudinal plasmon. The angle 6 is between p and k
vectors. The summation over plasmon polarization has
been performed by means of the formula

; B Saﬁ—k_zkakg

SE,k,s)Efk,s)= k_zkakﬁ
s
As previously, the upper expression relates to the trans-
verse plasmon and the lower one to the longitudinal
plasmon.

Substituting (B3) into (B2) and performing the phase-
space integration, one finds

2
N
I“=2g4?a)0[l+ng(wo/2)]2 .

Keeping in mind that T >>w, and using the explicit ex-
pression (26) of w,, one finally gets Eq. (30).
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