
Local equilibrium of the quark-gluon plasma

Cristina Manuel*
Instituto de Fı´sica Corpuscular, Universitat de Vale`ncia-C.S.I.C., Edificio de Institutos de Paterna, Apt. 2085, 46071 Vale`ncia, Spain

Stanisław Mro´wczyński†
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Within kinetic theory, we look for the local equilibrium configurations of a quark-gluon plasma by maxi-
mizing the local entropy. We use the well-established transport equations in the Vlasov limit, supplemented by
the Waldmann-Snider collision terms. Two different classes of local equilibrium solutions are found. The first
one corresponds to the configurations that comply with the so-called collisional invariants. The second one is
given by the distribution functions that cancel the collision terms, representing the most probable binary
interactions with soft gluon exchange in thet channel. The two sets of solutions agree with each other if we go
beyond these dominant processes and take into account subleading quark-antiquark annihilation or creation and
gluon number nonconserving processes. The local equilibrium state appears to be colorful, as the color charges
are not locally neutralized. The properties of such an equilibrium state are analyzed. In particular, the related
hydrodynamic equations of a colorful fluid are derived. Possible neutralization processes are also briefly
discussed.
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I. INTRODUCTION

In the course of equilibration a many-body system first
reaches local equilibrium and then evolves hydrodynami-
cally, usually at a much slower rate, towards global equilib-
rium. The distribution function of local equilibrium is typi-
cally of the form of global equilibrium, but its parameters—
temperature, hydrodynamic velocity, chemical potentials—
are space-time dependent. However, the local equilibrium
can also qualitatively differ from the global one. For ex-
ample, the electron-ion plasma, which is homogeneously
neutral in global equilibrium, can be locally charged before
the global equilibrium is reached, see, e.g.,�1�. Thus param-
eters that are irrelevant for global equilibrium might be
needed to describe local equilibrium. While the state of glo-
bal equilibrium is unique, the local equilibrium evolves and
even its qualitative features can change in time. The pro-
cesses of charge neutralization are, for example, very fast in
the electron-ion plasma. Therefore the system is locally neu-
tral after a short time but the electric currents survive for
much longer. Thus we deal with various local equilibrium
states, depending on the time scale of interest. The form of
local equilibrium is an important characteristics of a system.
Knowing the respective distribution function, one can formu-
late a hydrodynamic description of the system. Let us again
refer to the case of the electron-ion plasma. The fact men-
tioned above that the plasma is neutralized fast but the cur-
rents flow for a longer time justifies the magnetohydrody-
namics with no electric fields.

The aim of this paper is to discuss local equilibrium of the
quark-gluon plasma. While the global equilibrium features of

the system have been studied in detail, see, e.g., the review
�2�, not much is known about its local equilibrium. Although
the problem was formulated long ago�3–6�, the key ques-
tions remain unanswered. In particular, the scenario of
equilibration of color degrees of freedom is far from estab-
lished. It is unclear whether the regime analogous to magne-
tohydrodynamics in the electron-ion plasma occurs in the
quark-gluon plasma. However, Yang-Mills magnetohydrody-
namics has been already considered�3,5–10�.

We intend to address these issues which are now of par-
ticular interest because of the large scale experimental pro-
gram at the Relativistic Heavy-Ion Collider�RHIC� at
Brookhaven National Laboratory, where high-energy
nucleus-nucleus interactions are studied, see, e.g.,�11�. At
the early stage of such a collision, when the energy density is
sufficiently high, the generation of the quark-gluon plasma is
expected. The most spectacular experimental result obtained
at RHIC is presumably an observation of a large magnitude
of the so-called elliptic flow�12�. The phenomenon, which is
just sensitive to the collision early stage, is naturally ex-
plained within hydrodynamics as a result of large density
gradients�13�. Since the hydrodynamic description is appli-
cable for a system in local thermodynamic equilibrium, the
large elliptic flow suggests a surprisingly short, below
1 fm/c �14�, equilibration time. Other characteristics of rela-
tivistic heavy-ion collisions are also consistent with a model
assuming equilibrium state of strongly interacting matter
produced in the collisions, see, e.g.,�15�. Thus understanding
of the equilibration mechanism of the quark-gluon plasma is
a key problem for RHIC physics.

The question of local equilibrium is related to a serious
difficulty of the transport theory of the quark-gluon plasma.
The local equilibrium is defined as a state which maximizes
the local entropy. However, the entropy production occurs
not due to the Vlasov evolution, which is rather well under-
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stood �2,16�, but there is a dissipative phenomenon caused
by the particle collisions. Thus the collision terms of the
transport equations are needed to discuss the local equilib-
rium. However, a derivation of these terms has been a very
complex task and only the special case of quasi-equilibrium
plasma has been seriously examined�17–21�. Fortunately,
the structure of the collision terms can be guessed referring
to the analogies between the spin and color systems, and this
is not only a superficial similarity of degrees of freedom
governed by the SU�2� and SU�3� groups, respectively. The
relationship appears to be much deeper. The covariance of
spin dynamics with respect to the rotation of quantization
axis strongly resembles the gauge covariance of QCD. Thus
it was argued long ago�22� that the QCD collision terms are
of the Waldmann-Snider type�23� known from the studies of
spin systems. More recently, guided by the same analogy, the
Waldmann-Snider transport equations have been used to
compute color conductivity of the quark-gluon plasma�19�,
as well as other transport coefficients�24,25�.

Once the collision terms of transport equations are
known, the problem of finding the state of local equilibrium
is well posed, see, e.g.,�26�. Namely, one looks for a con-
figuration which maximizes the local entropy. In fact, such a
configuration can be also found without a detailed knowl-
edge on the collision terms. One only needs the so-called
collisional invariants—the conditions obeyed by the collision
terms, coming from the conservations laws. In such an ap-
proach, already followed in�4,6�, we, however, gain no in-
formation about the time scale corresponding to the local
equilibrium state. We also do not know whether the local
equilibrium configuration dictated by the collisional invari-
ants is the most general maximum entropy state. To answer
these questions an explicit form of the collision terms is
required. Then, one looks for a configuration that cancels the
collision terms.

In this paper we follow both approaches. After introduc-
ing the kinetic theory of the quark-gluon plasma in Sec. II,
we find in Sec. III the local equilibrium state provided by the
collisional invariants. Then, we select the most probable bi-
nary interactions and we derive in Sec. IV the local equilib-
rium functions which cancel the Waldmann-Snider collision
terms corresponding to these dominant processes. The deri-
vation requires solving a whole set of rather complicated
matrix equations. To simplify the analysis, we consider par-
ticles obeying classical statistics, although we believe that
the physical picture emerging from our analysis is not much
changed when quantum statistics is incorporated. The local
equilibrium states, which come from the approaches of Secs.
III and IV, are colorful and their color structure is exactly the
same. However, the baryon chemical potential of
�anti-�quarks and the scalar chemical potential of gluons re-
main unconstrained by the dominant processes. The con-
straints provided by the collisional invariants only appear
when the subleading quark-antiquark annihilation or creation
and gluon number nonconserving processes are included. To
better understand properties of the colorful local equilibrium,
we derive in Sec. V the resulting hydrodynamic equations.

Finally, we consider the applicability of our results and
briefly discuss possible processes responsible for the color
neutralization in the quark-gluon plasma. Some formulas of
the SU(Nc) generators are collected in the Appendix.

Throughout the paper�except Eqs.�115�–�117� wherec is
restored� we use the natural units withc���kB�1 and the
metric (1,�1,�1,�1).

II. KINETIC THEORY OF THE QUARK-GLUON PLASMA

In this section we discuss the transport theory of quarks
and gluons�16,27�. The SU(Nc) gauge group is left unspeci-
fied but we pay particular attention to the casesNc�2 and
Nc�3 for their possible applications to the different high
temperature phases of the standard model. Generically
speaking, we call gluons the particles associated to the vector
bosons of SU(Nc), which carry charge in the adjoint repre-
sentation, and we call quarks or antiquarks the particles with
the charge in the fundamental representation. We will also
call any of those particles a parton.

A. Distribution functions and transport equations

The distribution function of quarksQ(p,x) is a Hermitian
Nc�Nc matrix in color space�for a SU(Nc) color group�; x
denotes the space-time quark coordinate andp its momen-
tum, which is not constrained by the mass-shell condition.
The spin of quarks and gluons is taken into account as an
internal degree of freedom. The distribution function trans-
forms under a local gauge transformationU as

Q�p,x�→U�x�Q�p,x�U†�x�, �1�

that is, it transforms covariantly in the fundamental represen-
tation. Here and in most cases below, the color indices are
suppressed. The distribution function of antiquarks, which
we denote byQ̄(p,x), is also a HermitianNc�Nc matrix in
color space, which in a natural way should transform cova-
riantly in the conjugate fundamental representation. How-
ever, we will express the antiquark distribution function in
the same representation as quarks throughout, and then it
transforms according to Eq.�1�. The distribution function of
�hard� gluons is a Hermitian (Nc

2�1)�(Nc
2�1) matrix,

which transforms as

G�p,x�→U�x�G�p,x�U †�x�, �2�

where

Uab�x��2 Tr��aU�x��bU†�x��, �3�

with �a, a�1, . . . ,Nc
2�1 being the SU(Nc) group genera-

tors in the fundamental representation with Tr(�a�b)
� 1

2 �ab. We note thatU T�U �1�U †. Therefore not onlyG
but alsoGT transforms covariantly, i.e.,

GT�p,x�→U�x�GT�p,x�U †�x�. �4�
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The color current is expressed in the fundamental represen-
tation as

j ��x���
g

2� dPp��Q�p,x��Q̄�p,x��
1

Nc
Tr�Q�p,x�

�Q̄�p,x���2�a Tr�TaG�p,x��� , �5�

where the momentum measure

dP	
d4p

�2
�3
2��p0���p2� �6�

takes into account the mass-shell conditionp0��p�.
Throughout the paper, we neglect the quark masses, although
those might be easily taken into account by modifying the
mass-shell constraint in the momentum measure. A sum over
helicities, two per particle, and over quark flavorsNf is un-
derstood in Eq.�5�, even though it is not explicitly written
down. The SU(Nc) generators in the adjoint representation
are expressed through the structure constantsTbc

a �� i f abc ,
and are normalized as Tr�TaTb��Nc�

ab. The current
can be decomposed asj �(x)� j a

�(x)�a with j a
�(x)

�2 Tr��aj �(x)�.
Gauge invariant quantities are given by the traces of the

distribution functions. Thus the baryon current and the
energy-momentum tensor read

b��x��
1

3� dPp�Tr�Q�p,x��Q̄�p,x��, �7�

t���x��� dPp�p�Tr�Q�p,x��Q̄�p,x��G�p,x��,

�8�

where we use the same symbol Tr�•••� for the trace in the
fundamental and adjoint representations.

The entropy flow is defined as�4�

s��x���� dPp�Tr�Q ln Q��1�Q�ln�1�Q��Q̄ ln Q̄

��1�Q̄�ln�1�Q̄��G ln G��1�G�ln�1�G��.

�9�

If the effects of quantum statistics are neglected, Eq.�9�
simplifies to

s��x���� dPp�Tr�Q� ln Q�1�

�Q̄� ln Q̄�1��G� ln G�1��. �10�

The distribution functions of quarks and gluons satisfy the
transport equations:

p�D�Q�p,x��
g

2
p�
F���x�,�p

�Q�p,x���C�Q,Q̄,G�,

�11a�

p�D�Q̄�p,x��
g

2
p�
F���x�,�p

�Q̄�p,x���C̄�Q,Q̄,G�,

�11b�

p�D�G�p,x��
g

2
p�
F���x�,�p

�G�p,x���Cg�Q,Q̄,G�,

�11c�

whereg is the QCD coupling constant,
 . . . , . . .� denotes
the anticommutator and�p

� the four-momentum derivative;
the covariant derivativesD� andD� act as

D����� ig�A��x�, . . . �, D����� ig�A��x�, . . . �,

with A� andA� being four-potentials in the fundamental and
adjoint representations, respectively:

A��x��Aa
��x��a, A ��x��TaAa

��x�.

The stress tensor in the fundamental representation isF��

���A����A�� ig�A� ,A��, while F�� denotes the field
strength tensor in the adjoint representation. The collision
termsC,C̄, andCg are discussed in detail in the next sec-
tions.

Let us finally mention that in the transport theory frame-
work one can consider two different physical situations:�1�
the gauge fields entering into the transport equations�11� are
external, not due to the plasma constituents; and�2� the
gauge fields can be generated self-consistently by the quarks
and gluons. In the latter case, one also has to solve the Yang-
Mills equation

D�F���x�� j ��x�, �12�

where the color current is given by Eq.�5�.

B. Decomposition of the distribution functions and associated
transport equations

The parton distribution functionN is essentially the sta-
tistical average of the Wigner transform of the product of two
field operators representing quarks or gluons�16�. If the par-
ton carries color charge in a representationR, then the dis-
tribution functionN transforms under gauge transformations
as R̄� R, whereR̄ is the representation conjugate toR.

In the SU�2� group, the products of the fundamental�2�
and adjoint�3� representations decompose into irreducible
representations as

2� 2�1� 3, �13�

3� 3�1� 3� 5. �14�

As known, the conjugate and direct fundamental representa-
tions of SU�2� are equivalent to each other. The decomposi-
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tion of the products of the fundamental�3� and adjoint�8�
representations of the SU�3� group are

3� 3̄�1� 8, �15�

8� 8�1� 8� 8� 10� 10� 27.
�16�

The above decompositions show that the distribution func-
tions of quarks and antiquarks are uniquely specified by their
singlet and adjoint components. Thus the functions can be
written as

Q�p,x��
1

Nc
q0�p,x��qa�p,x��a, �17a�

Q̄�p,x��
1

Nc
q̄0�p,x��q̄a�p,x��a, �17b�

where

q0�p,x��Tr�Q�p,x��, qa�p,x��2 Tr��aQ�p,x��,

�18a�

q̄0�p,x��Tr�Q̄�p,x��, q̄a�p,x��2 Tr��aQ̄�p,x��.

�18b�

From Eq.�11a� it is possible to deduce a set of coupled
equations for the colored and colorless components of the
quark distribution function which read

p���q0�p,x��
g

2
p�F��

a �x�
�qa�p,x�

�p�
�Tr�C�, �19a�

p�D�
abqb�p,x��

g

2
dabcp

�F��
b �x�

�qc�p,x�

�p�

�
g

Nc
p�F��

a �x�
�q0�p,x�

�p�
�2 Tr��aC�, �19b�

wheredabc are the totally symmetric structure constants of
SU(Nc) and D�

ac����ac�g fabcA�
b . The projected equa-

tions, which can be also written for antiquarks, show that
transport phenomena of colorless and colored components
are coupled beyond the lowest order in the gauge coupling
constant.

From the decompositions�14�, �16� it is clear that the
singlet and adjoint components are not enough to fully de-
scribe the gluon distribution function. For gluons one also
needs components in higher dimensional representations. Be-
low, we present a way to uniquely characterize the gluon
distribution function in terms of its fully symmetric and an-
tisymmetric components for the SU�2� gauge theory.

We first expressG(p,x) as

G�p,x��Gab�p,x�TaTb, �20�

which uses as a basis for 3�3 Hermitian matrices the set of
nine independent matricesTaTb. We note that bothG andG
are 3�3 matrices which are related to each other as

Gab�p,x���abGcc�p,x��Gba�p,x�. �21�

Expressing the product ofTaTb as

TaTb�
1

2
�Ta,Tb��

1

2

Ta,Tb�, �22�

and taking into account that the commutator is proportional
to Tc, instead of Eq.�20� we write

G�p,x��
1

2
ga�p,x�Ta�gab�p,x�

1

2

Ta,Tb�, �23�

where

ga�p,x�� i f abcGcb�p,x�,

gab�p,x��
1

2
�Gab�p,x��Gba�p,x��.

�24�

Equation�23� can be also written as

Gab�p,x��� i f abcgc�p,x���abgcc�p,x��gab�p,x�.
�25�

Thus, according to the decomposition in Eq.�14�, the anti-
symmetric components ofG correspond to the representation
3, while the six symmetric components correspond to the5
and 1, the last one being the trace. Because of the Casimir
constraint,TaTa�2, the singlet component can be obtained
from the symmetric partgab , i.e.,

g0�p,x�	Tr�G�p,x���2gaa�p,x�. �26�

The transport equations obeyed byg0 , ga , and gab are
found multiplying Eq.�11c� by the unity,Ta and
Ta,Tb�/2,
respectively, and taking the trace. Using the relations�A12�,
we get

p���g0�p,x��gp�F��
a �x�

�ga�p,x�

�p�
�Tr�Cg�, �27a�

p�D�
abgb�p,x��gp�F��

b �x�� 1

2
�ab

�g0�p,x�

�p�
�

�gab�p,x�

�p�
�

�Tr�TaCg�, �27b�

p��D��bd
acgcd�p,x�

�
g

4
p�� F��

a �x�
�gb�p,x�

�p�
�F��

b �x�
�ga�p,x�

�p�
�

�
1

2
Tr�
Ta,Tb�Cg��

1

2
�abTr�Cg�, �27c�

where

�D��bd
ac����ac�bd�g faec�bdA�

e �g fbed�acA�
e �28�
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is the covariant derivative acting on a tensor of rank 2. Note
that multiplying the last equation by�ab, we get, as ex-
pected, the equation forg0.

For SU�3�, or SU(Nc) in general, the decomposition of
the gluon distribution function into irreducible representa-
tions and the equations obeyed by every component have a
much more involved structure, and they will not be discussed
here.

C. Waldmann-Snider collision terms

The transport equations for the quark-gluon plasma�11�
have been written down without specifying the collision
terms. Unfortunately, a complete derivation ofC, C̄, andC̄g
is still lacking, as already mentioned in the Introduction.
However, using the analogy with the spin systems one can
justify the use of the Waldmann-Snider collision terms. The
main characteristic of these collision terms is that they de-
pend on the scattering amplitudes rather than on the colli-
sional cross sections, as it happens in the usual Boltzmann
equation.

Let us discuss the general structure of a collision term for
a system of particles carrying quantum color charges. The
most probable processes are binary collisions
(p,r ;p1 ,s)↔(p�,t;p1� ,u) wherep,p1 ,p�,p1� denote the mo-
menta andr ,s,t,u the colors, in the fundamental or adjoint
representation, of interacting partons. We denote byN(p,x)
the generic distribution function of the partons—quarks or
gluons. The Waldmann-Snider collision term, which enters
the kinetic equation ofN, is of the form�26�

C�N,N1 ,N�,N1���� dP�dP1�dP1�2
�4� (4)�p�p1�p�

�p1���1

2

1�N,I���

1

2

N,I��� , �29�

where we have used a rather common notationN	N(p,x),
N1	N(p1 ,x), N�	N(p�,x), and N1�	N(p1� ,x). The first
term, which represents a gain term, is given by

I �
r r̄ �Mrstu�p,p1 ;p�,p1��Mr̄s̄t̄ ū

* �p,p1 ;p�,p1��

�Nt t̄�p�,x�Nuū�p1� ,x��1�N�p1 ,x�� s̄s, �30�

while the second one is a loss term defined as

I �
r r̄ �Mrstu�p,p1 ;p�,p1��Mr̄s̄t̄ ū

* �p,p1 ;p�,p1��Ns̄s�p1 ,x�

��1�N�p�,x�� t t̄�1�N�p1� ,x��uū. �31�

Mrstu represents the scattering amplitude associated with the
collision process under consideration. The double sign�
reflects the fermionic character of quarks and the bosonic
character of gluons. We have used here the compact notation
of Ref. �19�.

For the consistency of the theory, it is necessary to prove
that the Waldmann-Snider collision terms transform covari-
antly under a gauge transformation, in the same way as the
left-hand sides of the transport equations�11� do. It is diffi-
cult to check this gauge covariance in full generality without
specifying the scattering process and the corresponding scat-
tering amplitudes. For all the cases we are going to consider,
the gauge covariance of the Waldmann-Snider collision term
holds as the distribution functions transform covariantly�see
Eqs. �1� and �2��, and the scattering amplitudes, stripped of
the color generators, are gauge invariant. We will briefly
come back to this point in Sec. IV.

D. Conservation laws and entropy production

As well known, the collision terms should satisfy certain
relations due to the conservation laws. In our case, the laws
are: the baryon charge conservation

��b��x��0, �32�

the energy-momentum conservation

��t���x��2 Tr� j ��x�F���x���0, �33�

and the covariant conservation of the color current

D� j ��x��0. �34�

Let us derive the relations constraining the collision terms
which follow from Eqs.�32�, �33�, �34�. Using the transport
equation, one finds from the definition�7�

��b��x��
1

3� dP Tr�C�C̄�

�
g

3� dPp�Tr�F���p
��Q�Q̄��.

Now, one performs partial integration of the second term in
the right-hand side�rhs�. Assuming that the distribution func-
tions vanish at infinite momentum and observing that
g��F���0, one finds that the term equals zero. Therefore
the baryon current conservation�32� provides

� dP Tr�C�C̄��0. �35�

In an analogous way, one finds that the energy-momentum
conservation�33� implies

� dPp�Tr�C�C̄�Cg��0, �36�

while the covariant conservation of the color current leads to

� dP�C�C̄�2�a Tr�TaCg���0, �37�

where we have taken into account the relation�35�.
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Let us now discuss the entropy production. We neglect
here the effects of quantum statistics, and consequently start
with the definition �10�. Following the derivation of Eqs.
�35�, �36�, �37�, one finds

��s��x���� dP Tr�C ln Q�C̄ ln Q̄�Cg ln G�

�
g

2� dPp�Tr�
F�� ,Q��p
� ln Q

�
F�� ,Q̄��p
� ln Q̄�
F�� ,G��p

� ln G�, �38�

where the partial integration has been once performed and it
has been observed that

Tr��A�,Q� ln Q��0,

and that the analogous equalities hold forQ̄ andG. Assum-
ing thatQ and�p

�Q commute with each other, i.e.,

�Q,�p
�Q��0, �39�

one shows that�p
� ln Q�Q�1�p

�Q. Using the condition�39�

and the similar ones forQ̄ andG, one proves that the second
term in the rhs of Eq.�38� vanishes after one more partial
integration. Then, we get

��s��x���� dP Tr�C ln Q�C̄ ln Q̄�Cg ln G�. �40�

According to Eq.�40�, the entropy of the quark-gluon system
is produced due to the collisions. If the commutation condi-
tion �39� is relaxed, the second term in the rhs of Eq.�38�
does not vanish, and we arrive to a paradoxical result that the
mean-field dynamics does not conserve the entropy.

A local equilibrium configuration is achieved when there
is no entropy production, i.e.,��s�(x)�0. This equation is
of very complicated structure and it has two classes of solu-
tions. The first one cancels the collision terms but to get it
the collision terms have to be specified. The second class
appears due to the conservation laws, i.e., because of the
relations�35�, �36�, and �37�. In the remaining part of this
paper, we will study the two sets of solutions.

III. LOCAL EQUILIBRIUM FROM THE CONSERVATION
LAWS

In this section we discuss, following�4,6�, consequences
of the conservation laws�32�, �33�, �34�. Specifically, we
obtain the local equilibrium configuration which is found as
a solution of the equation

� dP Tr�C ln Q�C̄ ln Q̄�Cg ln G��0, �41�

due to the relations�35�, �36�, �37�.
One easily constructs the local equilibrium distribution

function out of the collision invariants. Indeed, one shows
using Eqs.�32�, �33�, �34� that Eq.�41� is solved if

Qeq�p,x��exp†���x��u��x�p���b�x���̃�x��‡, �42a�

Q̄eq�p,x��exp†���x��u��x�p���b�x���̃�x��‡,
�42b�

Geq�p,x��exp†���x��u��x�p���̃g�x��‡, �42c�

where�(x), u�(x), and�b(x) are, respectively, the inverse
temperature, hydrodynamic velocity, and baryon chemical
potential which are all scalars in color space. The color
chemical potentials�̃ and �̃g are Hermitian matricesNc

�Nc for quarks and (Nc
2�1)�(Nc

2�1) for gluons. They are
gauge dependent variables, which transform as

�̃�x�→U�x��̃�x�U†�x�, �̃g�x�→U�x��̃g�x�U †�x�.
�43�

In general,�̃ can be expressed as�̃��0��a�a. However,
the singlet component�0 is already singled out as a baryon
chemical potential�b . Therefore we write down�̃��a�a.
Consequently, the color chemical potential�̃ is not only Her-
mitian but also traceless. The covariant conservation of the
color current provides the relation

�̃g�2Ta Tr��a�̃���aTa, �44�

which implies that�̃g is also traceless. The baryon and color
chemical potentials occur in Eq.�42� because of the conser-
vation laws of baryon number and color charge, respectively.
The temperature and hydrodynamic velocity are related to
the energy-momentum conservation.

The local equilibrium state described by Eq.�42� is not
color neutral. Substituting the distribution functions�42� into
Eq. �5� one finds the color current as

j ���g
T3


2 u��Nf � e��b� e��̃�
1

Nc
Tr�e��̃� �

�e���b� e���̃�
1

Nc
Tr�e���̃� � ��2�aTr�Tae��̃g�� ,

�45�

where T, u�, �b , �̃, and �̃g are functions ofx. The fact
that the color current is finite does not imply that the system
as a whole carries a finite color charge. We note that thex
dependence of the color chemical potentials, which enter the
solution �42�, is not specified. Therefore it can be always
chosen in such a way that the total color charge defined as
�d3x j0 vanishes.

The derivation of the local distribution function based on
the collisional invariants tells nothing about the time scales
when the colorful configuration�42� exists. To get such in-
formation the collision terms have to be specified. This is
discussed in the next sections.

The equilibrium solutions�42� are given in an arbitrary
gauge. It is often useful to work in a gauge where the quark
and antiquark chemical potentials are diagonal. Then,
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�̃��d�d, �̃g��dTd, �46�

where�d andTd are the fundamental and adjoint generators
of the Cartan subalgebra of SU(Nc) �d�3 for SU�2� andd
�3,8 for SU�3��. In this gauge one has, as will be seen
below, well-defined numbers of quarks and antiquarks of a
certain color; and then, the physical meaning of the color
chemical potentials becomes transparent.

A. Diagonal gauge for SU„2…
Using the explicit form of�3��3/2, where�3 is the

Pauli matrix, the singlet and the�nonvanishing� adjoint com-
ponents�see Eqs.�17�, �18�� of the quark and antiquark dis-
tribution functions of local equilibrium�42� are found as

q0�p,x��q↑�p,x��q↓�p,x�,

q3�p,x��q↑�p,x��q↓�p,x�, �47a�

q̄0�p,x��q̄↑�p,x��q̄↓�p,x�,

q̄3�p,x��q̄↑�p,x��q̄↓�p,x�, �47b�

where the scalar functionsq↑↓ and q̄↑↓ are

q↑↓�p,x�	exp����x�� u��x�p���b�x��
1

2
�3�x� � � ,

�47c�

q̄↑↓�p,x�	exp����x�� u��x�p���b�x��
1

2
�3�x� � � .

�47d�

While the generator�3 is diagonal,T3 is not. To derive the
expressions for gluons one has to observe that (T3)2 is the
diagonal matrix with 1,1,0 on the diagonal. Consequently,
(T3)n�T3 when n�1,3,5, . . . and (T3)n�(T3)2 when n
�2,4,6, . . . . Thus the nonvanishing components�23� of the
gluon distribution function�42c� are

g0�p,x��g⇑�p,x��g⇒�p,x��g⇓�p,x�, �48a�

g3�p,x��g⇑�p,x��g⇓�p,x�, �48b�

g11�p,x��g22�p,x��
1

2
g⇒�p,x�, �48c�

g33�p,x��
1

2
�g⇑�p,x��g⇓�p,x��g⇒�p,x��,

�48d�

where the functionsg⇑⇓ andg⇒ are

g⇑⇓�p,x�	exp
���x��u��x�p���3�x���,

g⇒�p,x�	exp����x�u��x�p��. �48e�

In the diagonal gauge, a finite value of the color chemical
potential simply means that the populations of quarks, anti-
quarks, and gluons of different colors are not the same.

Using the distribution functions in the form�47�, �48�, the
color current�45� can be written as

j ���4g
T3


2 u��Nfch���b�sh���3/2��sh���3���3.

�49�

B. Diagonal gauge for SU„3…
The local equilibrium solutions for the SU�3� plasma can

be also written in the diagonal gauge. However, the formulas
are not that simple as for the SU�2� case. We take the gen-
erators in the fundamental representation as�a��a/2, where
�a are the Gell-Mann matrices. The matrices�3 and�8 are
diagonal with the elements 1,�1, 0 and 1/�3, 1/�3,
�2/�3, respectively, along the diagonal. With a color
chemical potential in the directionsa�3 anda�8 one can
then easily evaluate the singlet and�nonvanishing� adjoint
components ofQeq andQ̄eq, which we write in terms of the
distributions functions of red, blue, and green quarks and
antiquarks. Here, we have taken the convention to assign the
first, second, and third rows/columns of the Gell-Mann ma-
trices to the red, blue, and green colors, respectively. A
simple evaluation leads to

q0�p,x��qred�p,x��qblue�p,x��qgreen�p,x�,

q3�p,x��qred�p,x��qblue�p,x�, �50a�

q8�p,x��
1

�3
�qred�p,x��qblue�p,x��2qgreen�p,x��,

�50b�

q̄0�p,x��q̄red�p,x��q̄blue�p,x��q̄green�p,x�,

q̄3�p,x��q̄red�p,x��q̄blue�p,x�, �50c�

q̄8�p,x��
1

�3
� q̄red�p,x��q̄blue�p,x��2q̄green�p,x��,

�50d�

where the distribution functions of quarks and antiquarks of
different colors are of the form�47c� and�47d�, respectively,
but with the following color chemical potentials:

� red�x��
1

2 � �3�x��
�8�x�

�3
� ,

�blue�x���
1

2 � �3�x��
�8�x�

�3
� ,

�green�x���
�8�x�

�3
. �51�

The computation of the singlet and adjoint components of
the local equilibrium distribution function of gluons is much
more involved. The evaluation of the traces requires one to
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expand the exponentials and compute the traces of arbitrary
powers ofT3, of T8, and ofT3T8. With the help ofMATH-

EMATICA, we have found the singlet and�nonvanishing� ad-
joint components as

g0�p,x��2gs�p,x��gx��p,x��gx��p,x��gy��p,x�

�gy��p,x��gz��p,x��gz��p,x�, �52�

g3�p,x��gz��p,x��gz��p,x��
1

2
�gx��p,x�

�gx��p,x��gy��p,x��gy��p,x��, �53�

g8�p,x���3

2
�gx��p,x��gx��p,x�

�gy��p,x��gy��p,x��, �54�

where the scalar functionsgs, gx� , gy� , and gz� are
analogous to those from Eq.�48e� but their color chemical
potentials are

�s�x��0, �x� �x���
�3�x�

2
�

�3�8�x�

2
,

�y��x���
�3�x�

2
�

�3�8�x�

2
, �z� �x����3�x�.

�55�

Exactly as in the SU�2� case, we find that a finite value of the
color chemical potential means that quarks, antiquarks, and
gluons of different colors have different densities.

IV. LOCAL EQUILIBRIUM FROM VANISHING
COLLISION TERMS

As follows from Eq.�40�, there is no entropy production
when the collision terms vanish. Thus local equilibrium is
reached when the gain and loss terms compensate each other.
Consequently, we will look for solutions of the equationC
�0. However, there are numerous scattering processes oc-
curring in the quark-gluon plasma and, in general, the com-
plete set of collision terms entering into the quark, antiquark,
and gluon kinetic equations is rather large, even so we only
consider the binary collisions. The most probable processes,
i.e., those with the largest cross section, occur when two
partons exchange a soft gluon in thet or u channels. The
later possibility only happens for interaction of identical
partons—quarks of the same flavor or gluons. In vacuum, the
corresponding cross sections diverge ast�2 or u�2 when the
four-momentum transfert or u goes to zero. In the medium,
these divergences are softened, as the gluon propagators are
dressed by the interactions, and the electric and magnetic
forces are either statically or dynamically screened. In the
local equilibrium state, which is achieved at the shortest time
scale, the collision terms associated with those processes, we
call them ‘‘dominant,’’ have to vanish. Thus we will first
consider the interactions:qq↔qq, q̄q̄↔q̄q̄, qq̄↔qq̄,
gg↔gg, qg↔qg, and q̄g↔q̄g, and we will neglect all

other processes, as they are relevant for longer time scales.1

These less probable processes drive the system either to a
different local equilibrium or to the global equilibrium. We
will also consider the subdominant processes with the soft
quark in t or u channel which correspond to the vacuum
cross sections diverging ast�1 or u�1, respectively. These
are the quark-antiquark annihilation and creation into and
from two gluons int or u channel which, as will be shown,
have a qualitative effect on the local equilibrium state. With
the subdominant processes, one should also consider all the
channels and the respective crossing terms of the various
binary collisions, plus another set of collisions that do not
conserve the particle number. The complete analysis is very
complex, and we will not carry it out here.

In this section we write down the relevant collision terms,
and then we discuss the equations imposed by the vanishing
of these terms. Finally, we solve the equations, showing that
the nature of local equilibrium is fixed by the color structure
of the scattering amplitudes.

A. Collision terms

The dominant parton-parton scattering amplitudes with
one-gluon exchange in thet andu channels are of the form

Mrsr�s��p,p1 ;p�,p1���M�p,p1 ;p�,p1��T rr �
a T̃ ss�

a �56�

Mrsr�s��p,p1 ;p�,p1���M�p,p1 ;p�,p1��T rs�
a T̃ sr�

a ,
�57�

whereT a and T̃ a are the group generators of SU(Nc) of the
two partons participating in the collision:T a�Ta for gluons,
T a��a for quarks, andT a��(�a)T, whereT means trans-
position, for antiquarks. With thet-channel amplitude�56�,
the collision term�29� equals

C�N,N1 ,N�,N1���� dP�dP1�dP1�2
�4� (4)�p�p1

�p��p1���M�2� T aN�T bTr� T̃ aN1�T̃ b�

�
1

2

T bT a,N�Tr� T̃ aN1T̃ b� � , �58�

where we have neglected the effects of quantum statistics,
and consequently the terms 1�N have been replaced by
unity. The collision term corresponding to theu-channel am-
plitude �57� can be found from Eq.�58� by means of the
exchangeN↔N1 andN�↔N1� in the rhs of Eq.�58�.

Using the identity�A1� given in the Appendix, we can
write down Eq.�58� for the case of quark-quark scattering as

1To estimate a mean free time associated with a given collision
process one has to specify the distribution function. For a discus-
sion of those mean free times in global equilibrium see Ref.�28�.
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C�Q,Q1 ,Q�,Q1��

�
1

2� dP�dP1�dP1�2
�4� (4)�p�p1�p��p1���M�2

�� �Tr�Q��Q1��Tr�Q�Q1��
1

Nc
2 �Q�Tr�Q1��

�Q Tr�Q1� ��
1

Nc
�
Q�,Q1���
Q,Q1��� . �59�

The collision term�58� for the quark-antiquark scattering is

C�Q,Q̄1 ,Q�,Q̄1��

�
1

2� dP�dP1�dP1�2
�4� (4)�p�p1�p��p1���M�2

�� � Tr�Q�Q̄1���
Nc

2

Q,Q̄1� ��

1

Nc
2 �Q�Tr�Q̄1��

�Q Tr�Q̄1� ��
1

Nc
�
Q�,Q̄1���
Q,Q̄1��� , �60�

where, as discussed previously, we have replacedQ̄T by Q̄.
For the gluon-gluon scattering we have found a simplifi-

cation of Eq.�58� only in the case of the SU�2� gauge group.
Then, the collision term reads

C�G,G1 ,G�,G1��

�� dP�dP1�dP1�2
�4� (4)�p�p1�p��p1���M�2

�� � Tr�G�TG1���
G�T,G1���
1

2

G,G1

T� �
��Tr�G��G1��G Tr�G1� � � . �61�

The scattering amplitudes of the subdominant processes
with the quark exchange in thet and u channel have the
following color structure:

Mi jab�p,p1 ;p�,p1���M�p,p1 ;p�,p1��� ik
a �k j

b , �62�

Mi jab�p,p1 ;p�,p1���M�p,p1 ;p�,p1��� ik
b �k j

a . �63�

The collision term associated with thist-channel annihilation
processes is

C�Q,Q̄1 ,G�,G1��

�� dP�dP1�dP1�2
�4� (4)�p�p1�p��p1��

��M�2� �a�b� b̄� āGaā�p��Gbb̄�p1��

�
1

2

Q�p�,�a�bQ̄�p1��b�a� � . �64�

At the end of this section we call the attention of the
reader to the structure of the collision terms�59�, �60�, �61�.
Because there are only objects likeQ, G, GT, which trans-
form covariantly with respect to the gauge transformation
�1�, �2�, and Tr�Q�, Tr�G�, and Tr�QQ̄1�, which are gauge
invariant, these collision terms transform covariantly, pro-
vided �M�2 is gauge invariant. The gauge covariance of the
collision term�64� is evident when instead ofC the projec-
tions Tr�C� and Tr��aC� are considered. As will be seen in
the following section, these projections have the right gauge
structure.

B. Conditions of local equilibrium

In this section we present the conditions for the cancella-
tion of the collision terms associated with the processes dis-
cussed above.

1. qq^qq

The collision term�59� corresponding to the quark-quark
scattering vanishes if

�Tr�Q��Q1��Tr�Q�Q1��
1

Nc
2 �Q�Tr�Q1���Q Tr�Q1� �

�
1

Nc
�
Q�,Q1���
Q,Q1���0, �65�

wherep�p1�p��p1� . Because the quark matrix transport
equation can be uniquely characterized by its singlet and
adjoint components�see Eq.�19��, the condition�65� re-
quires

Tr�QQ1��Tr�Q�Q1��, �66a�

Tr�Q�Tr�Q1��Tr�Q��Tr�Q1��, �66b�

and

Tr��a
Q,Q1���Tr��a
Q�,Q1���, �66c�

Tr��aQ�Tr�Q1��Tr�Q��Tr��aQ1��,
�66d�

Tr��aQ�Tr�Q1��Tr��aQ��Tr�Q1��. �66e�
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The conditions for cancellation of the collision term for
antiquark-antiquark scattering are totally analogous to those
of the quark-quark case.

2. qq̄^qq̄

The collision term�58� for the quark-antiquark scattering
vanishes when

� Tr�Q�Q̄1���
Nc

2

Q,Q̄1� ��

1

Nc
2 �Q�Tr�Q̄1���Q Tr�Q̄1� �

�
1

Nc
�
Q�,Q̄1���
Q,Q̄1���0. �67�

The conditions of cancellation of the projected matrix equa-
tion �67� read

Tr�QQ̄1��Tr�Q�Q̄1��, �68a�

Tr�Q�Tr�Q̄1��Tr�Q��Tr�Q̄1��, �68b�

and

Tr��a
Q,Q̄1���Tr��a
Q�,Q̄1����0, �68c�

Tr��aQ�Tr�Q̄1��Tr��aQ��Tr�Q̄1��. �68d�

The requirement that Tr��a
Q,Q̄1���0 directly follows
from the first term of Eq.�67�.

3. qg^qg

The collision term for quark-gluon scattering with one-
gluon exchange in thet channel vanishes if

�aQ��bTr�TaG1�T
b��

1

2

�b�a,Q�Tr�TaG1Tb��0.

�69�

Requiring that Tr�C��0 and Tr��aC��0 provides the equa-
tions

Tr�Q�Tr�G1��
Nc

2
Tr��aQ�Tr�TaG1�

�
1

2
dabcTr��aQ�Tr�TbTcG1�

�Tr�Q��Tr�G���
Nc

2
Tr��aQ��Tr�TaG1��

�
1

2
dabcTr��aQ��Tr�TbTcG1�� �70a�

and

Tr��c�bQ�a�Tr�TbG1Ta��Rc�Q,G1�

�Tr��c�bQ��a�Tr�TbG1�T
a�, �70b�

where

Rc�Q,G1�	
i

2
f cad�Tr��d�bQ�Tr�TbG1Ta�

�Tr��b�dQ�Tr�TaG1Tb� �. �70c�

4. gg^gg

The collision term of the gluon-gluon scattering equals
zero when

TaG�TbTr�TaG1�T
b��

1

2

TbTa,G�Tr�TaG1Tb��0.

�71�

For the SU�2� plasma the above condition can be simplified
�see Eq.�61�� and it gives

� Tr�G�TG1���
G�T,G1���
1

2

G,G1

T� �
��Tr�G��G1��GTr�G1� ��0. �72�

We demand the cancellation of the totally symmetric and
antisymmetric components of Eq.�72�, see Eq.�27�. Impos-
ing Tr�TaCg��0 and Tr�
Ta ,Tb�Cg��0, we get

Tr�Ta
G,G1
T���Tr�Ta
G�,G1�

T���0, �73a�

Tr�TaG�Tr�G1��Tr�G��Tr�TaG1��, �73b�

and

Tr�
Ta ,Tb�
G,G1
T��

�8�abTr�G�G1�
T��2 Tr�
Ta ,Tb�
G�,G1�

T�� �73c�

Tr�
Ta ,Tb�G�Tr�G1��Tr�G��Tr�
Ta ,Tb�G1��.
�73d�

For a�b Eq. �73c� requires that

Tr�
Ta ,Tb�
G,G1
T���Tr�
Ta ,Tb�
G�,G1�

T���0,
�73e�

while for a�b(TaTa�2) Eqs.�73c�, �73d� imply

Tr�GG1
T��Tr�G�G1�

T�, �73f�

Tr�G�Tr�G1��Tr�G��Tr�G1��. �73g�

5. qq̄^gg

With the scattering amplitude given in Eq.�62�, the can-
cellation of the collision term corresponding to the quark-
antiquark annihilation in thet channel demands

Tr��aQ�a�bQ̄1�b��Tr��c�d� d̄� c̄�G�cc̄G�1
dd̄, �74a�

1

2
Tr��e
Q,�a�bQ̄1�b�a���Tr��e�c�d� d̄� c̄�G�cc̄G�1

dd̄.

�74b�
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The left-hand side of the above equations can be simplified
using the relation�A4� given in the Appendix and the for-
mula

�a�bQ̄1�b�a�
1

4Nc
2
Q̄1�

Nc
2�2

4Nc
Tr�Q̄1�. �75�

Furthermore, for the SU�2� plasma one finds, using the rela-
tions �A7�, �A8� given in the Appendix, that

Tr�QQ̄1��4 Tr�Q�Tr�Q̄1�

�2 Tr�G�TG1���2 Tr�G�G1���2 Tr�G��Tr�G1��,

�76a�

Tr��e
Q,Q̄1���8 Tr��eQ�Tr�Q̄1�

�2G�ceTr�TcG1���2 Tr�TeG�1
TG��

�2 Tr�TeG1�G���2 Tr�TeG��Tr�G1��.

�76b�

C. Local equilibrium solution for the SU„2… plasma

We find here the local equilibrium solutions that cancel all
the collision terms discussed in the previous section for the
SU�2� plasma. We start with the quark-quark scattering.
Equations�66a�, �66c� are solved by functions obeying

Q�p,x�Q�p1 ,x��Q�p�,x�Q�p1� ,x�, �77�

for p�p1�p��p1� . Using standard arguments, see, e.g.,
�26�, one finds that Eq.�77� is satisfied by exponential func-
tions

Q�p,x��exp����x�� ũ��x�p���b�x���̃�x���, �78�

whereũ�(x) and�̃(x) are Hermitian and traceless matrices.
Please note that the scalar chemical potential�b , which is
interpreted as the baryon chemical potential, is already
singled out. Because of Eq.�39�, ũ�(x) and �̃(x) should
obey the condition� ũ�(x),�̃(x)��0. Thus using the gauge
freedom to rotate these quantities in color space, they can be
chosen in diagonal form.

Equations�66b�, �66d�, �66e� require that the hydrody-
namic velocityũ�(x) is proportional to the unit matrix. Oth-
erwise different components ofũ�(x) enter differently Eqs.
�66b�, �66d�, �66e� and the constraintp�p1�p��p1� is in-

sufficient to satisfy these equations. Onceũ�(x) is propor-
tional to the unit matrix, the condition� ũ�(x),�̃(x)��0 is
trivially satisfied, and there is no reason to require�̃(x) to be
diagonal. It is then an arbitrary traceless matrix, even so it
can be diagonalized because of the gauge freedom. Since the
hydrodynamic velocity is no longer a color matrix but a sca-
lar, it is from now on denoted asu� not asũ�.

Repeating fully analogous considerations for the collision
term of antiquark-antiquark scattering, we arrive at the anti-
quark distribution function

Q̄�p,x��exp���̄�x�� ū��x�p���̄b�x�� �̃̄�x���. �79�

The conditions of cancellation for the quark-antiquark
collision term provide the relations between the parameters
of quark and antiquark distribution functions. Namely, Eqs.
�68a�, �68b�, �68d� require

��x�u��x���̄�x�ū��x�. �80�

Becauseu�(x)u�(x)�ū�(x)ū�(x)�1, we effectively have

u��x��ū��x�, T�x��T̄�x�. �81�

Furthermore, Eq.�68c� imposes

�̃�x��� �̃̄�x�, �82�

but it leaves the baryon chemical potentials�b and �̄b un-
restricted.

Let us find now the distribution functions that cancel the
gluon-gluon collision term. Condition�73f� is solved by
those functions obeying

G�p,x�GT�p1 ,x��G�p�,x�GT�p1� ,x�, �83�

which demands that

G�p,x��exp���g�x�� ũg
��x�p���g

0�x���̃g�x���
�84�

where bothũg
�(x) and �̃g(x) are Hermitian matrices while

�g
0(x) is a scalar. Furthermore,ũg

�(x)�� ũg
�(x)�T, which im-

plies that ũg
�(x) is a real symmetric matrix. However, the

conditions �73g� and �73b� require that the gluon velocity
matrix has to be proportional to the unit matrix, exactly as
that of quarks and antiquarks.

The condition �73a� or �73e� implies that the product
GG1

T must be proportional to the unit matrix. Therefore the

gluon color chemical potential must obey�̃g
T(x)���̃g(x).

Consequently, it contains only antisymmetric components
and it can be uniquely expressed as�̃g(x)��g

a(x)Ta.
Next, we analyze the conditions for cancellation of the

quark-gluon collision term, i.e., Eqs.�70a�, �70b�. For SU�2�
dabc�0, and then it is easy to check that Eq.�70a� imposes

T�x��Tg�x�, u��x��ug
��x�. �85�

Thus, the temperature, as well as the hydrodynamic velocity,
are the same for the quark-antiquark and gluon components
of the plasma.

Equation�70b� is a more complicated structure. Since it is
fulfilled if Rc�0, let us evaluateRc. Taking into account
that for SU�2�
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Tr��a�bQ�p,x���
i

4
f abcqc�p,x��

1

4
�abq0�p,x�, �86�

and using the relation�A9� given in the Appendix, we ex-
pressRc as

Rc��
1

8
qa�p,x�Tr�
Ta,Tc�G�p1 ,x��

�
1

2
qc�p,x�g0�p1 ,x��

1

4
q0�p,x�gc�p1 ,x�. �87�

And now we refer to the diagonal gauge where the quark
chemical potential is of the form�̃(x)��3(x)�3. Requiring
R1�R2�0 impliesg1�g2�0, which, in turn, demands that
the respective components of the gluon chemical potential
vanish, i.e.,�g

1��g
2�0. DemandingR3�0 is only fulfilled

if

�3�x���g
3�x�. �88�

Thus, Eq.�70b� is satisfied in arbitrary gauge if the relation
�44� holds.

The dominant processes that have been considered up to
now do not introduce any relation between the quark and
antiquark baryon chemical potentials and they do not con-
strain the scalar gluon potential�g

0 . It is not surprising as
these processes do not change the number of quarks, anti-
quarks, or gluons. To get the relation between�b , �̄b , and
�g

0 , the subdominant process of quark-antiquark creation or
annihilation has to be taken into account. Let us analyze this
process. The color structure of Eqs.�76a�, �76b� is rather
complex. However, one checks that these equations are
solved by the local equilibrium function�42� in the diagonal
gauge�47�, �48�. In particular, one finds that

Tr�QQ̄1��4 Tr�Q�Tr�Q̄1�

�e��[u•(p�p1)��b��̄b]�10�4 e��3�4 e���3�, �89�

2 Tr�G�TG1���2 Tr�G�G1���2 Tr�G��Tr�G1��

�e��[u•(p��p1�)�2�g
0]�10�4 e��3�4 e���3�.

�90�

Thus Eq.�76a� demands

�b��̄b�2�g
0 . �91�

While the checking is rather simple for Eq.�76a�, it is much
more difficult for Eq.�76b�. To reach the goal we have ex-
pressed the�anti-�quark and gluon distribution functions
through the projections�17� and �23�, respectively, and we
have used the formula�24�. Then, one finds that Eq.�76b� is
satisfied if the relation�91� holds.

To get the chemical potentials as in the local equilibrium
function�42� the binary processes are insufficient. One easily

observes that the equilibrium with respect to the process
gg↔ggg implies �g

0�0, and then, Eq.�91� provides�b

���̄b .
In summary, the requirement of equilibrium with respect

to the dominant binary processes provides the local equilib-
rium state with the color structure as that in Eq.�42� which
comes from the collisional invariants. The�scalar� chemical
potentials of quarks, antiquarks, and gluons are, however,
independent from each other. To get the relations�g

0�0 and

�b���̄b , the multigluon processes and antiquark-quark
annihilation into gluons must be taken into account. This
means that the localchemical equilibrium is reached at
longer time scale than the color equilibrium.

D. Local equilibrium solution for the SU„Nc… plasma

We find here the local equilibrium solutions for the
SU(Nc) plasma. The quark-quark and antiquark-quark scat-
tering processes are treated as for the SU�2� case. The solu-
tions of Eqs.�66�, �68� read

Q�p,x��exp����x�� ũ��x�p���b�x���̃�x���, �92�

Q̄�p,x��exp����x��u��x�p���̄b�x���̃�x���.
�93�

The conditions for cancellation of the collision terms dis-
cussed in Sec. IV A, which involve gluons, are much more
complicated than those for SU�2�. Here, we will treat them
perturbatively only. The requirement of vanishing of the col-
lision term representing gluon-gluon scattering is expressed
by Eq.�71�. We first note that a distribution function propor-
tional to the identity matrix, which is of the form
exp���g(ug

�p���g
0)� satisfies this equation. We now look

for more general solutions written as

G�p,x��exp���g�x��ug
��x�p���g

0�x���F��̃�x��,
�94�

where we have factored out the U�1� part of the distribution
function; F is an arbitrary function of�̃(x)��g(x)�̃g(x)
with �̃g(x) being any Hermitian (Nc

2�1)�(Nc
2�1) matrix.

From Eq.�71� one deduces thatF should obey the quadratic
equation

� TaF��̃�Tb�
1

2

TbTa,F��̃�� �Tr�F��̃�TbTa��0,

�95�

which is trivially satisfied by the unit matrix. We now as-
sume thatF allows for an infinitesimal expansion in�̃
around the identity. Then,

F��̃��1��̃�•••, �96�

and Eq.�95� imposes

Ta��̃,Ta��
1

2
Tc Tr�Tc�̃��0. �97�
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If �̃ is proportional to the unit matrix, the equation is obvi-
ously satisfied. However, we exclude this possibility since a
scalar chemical potential was already included in the U�1�
part of Eq.�94�. A different solution of the equation is given
by �̃��aTa. With the last option, we solve Eq.�95� to sec-
ond order in�̃, and find

F��̃��1��̃�
�̃2

2
�•••. �98�

In principle, one can solve the equation iteratively order
by order in �̃ but the procedure becomes more and more
difficult with every order. We will not follow it but the above
results suggest that the general solution is of the form

G�p,x��exp���g�x��ug
��x�p���g

0�x���̃g�x���,
�99�

as it should reduce to theNc�2 solution�84� with the scalar
hydrodynamic velocity.

We now look for the quark-gluon scattering, and solve Eq.
�69� perturbatively for small color chemical potentials of
quarks and gluons. In 0th order, Eq.�69� imposes

T�x��Tg�x�, u��x��ug
��x�. �100�

In the first order in the color chemical potentials, we find that
these should obey

� �a�̃�x��b�
1

2

�b�a,�̃�x�� �Tr�TbTa�

���a,�b�Tr��̃g�x�TbTa��0, �101�

which is only satisfied if

�̃g�x��2Ta Tr��̃�x��a�. �102�

One could go to higher orders in the expansion but the pro-
cedure becomes very tedious.

In the same way, one can treat the remaining processes
such as the quark-antiquark annihilation. They lead to the
same constraints as those for the SU�2� plasma expressed, in
particular, by Eq.�91�.

The perturbative treatment presented here is concluded as
follows. At zeroth order, the various collision processes al-
low one to fix the variables which are scalar in color space—
the temperature and hydrodynamic velocity. At first order,
every collision term imposes restrictions on the form of the
matrix chemical potentials. Solving the conditions to all or-
ders should simply provide the solutions, which for classical
statistics are exponential functions of color chemical poten-
tials.

V. CHROMOHYDRODYNAMICS

The form of the local equilibrium distribution function
determines the character of hydrodynamics obeyed by the
system. Here, we are going to discuss the hydrodynamic
equations corresponding to the local equilibrium state found

in the previous sections. As we have shown in Sec. IV C, the
dominant processes, which are responsible for establishing
the colorful equilibrium, do not equilibrate the system with
respect to the scalar chemical potentials. The relations�g

0

�0 and�b���̄b are achieved at longer time scales. Since
we are mostly interested here in the role of color charges in
the hydrodynamic evolution, we neglect complications
caused by the lack of chemical equilibrium and we use the
distribution functions�42� where the relations�g

0�0 and

�b���̄b are built in.
The equations of hydrodynamics are provided by the mac-

roscopic conservation laws of the baryon charge�32�,
energy-momentum�33�, and of the color charge�34�. Sub-
stituting the local equilibrium distribution functions�42� into
Eqs. �7�, �8�, �5�, one gets the baryon current, the energy-
momentum tensor, and the color current which enter the
equations ofideal hydrodynamics where dissipative effects
are neglected. These quantities read

b��x��b�x�u��x�, �103a�

t���x�����x��p�x��u��x�u��x��p�x�g��,
�103b�

j ��x����x�u��x�, �103c�

where b, �, and � are the densities of, respectively, the
baryon charge, energy, and color, whilep denotes the pres-
sure. In contrast tob, �, andp which are color scalars, the
color density� is aNc�Nc matrix. All these thermodynami-
cal quantities are given as

b�
2NfT

3

3
2 �e��bTr�e��̃��e���bTr�e���̃��, �104�

��3p�
6T4


2 �Nf�e��bTr�e��̃�

�e���bTr�e���̃� ��Tr�e��̃g��, �105�

���g
T3


2 �Nf � e��b� e��̃�
1

Nc
Tr�e��̃� �

�e���b� e���̃�
1

Nc
Tr�e���̃� � ��2�aTr�Tae��̃g�� .

�106�

Now, we consider Eq.�33� representing the energy-
momentum conservation. It is well known�29� that project-
ing the continuity equation of the energy-momentum tensor
on the hydrodynamic velocity, one gets the condition of the
entropy conservation during the fluid motion. Let us see how
it works here. Multiplying Eq.�33� by u�, we get

u���t���0 �107�
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becauseu�u��1 andu�u�F���0. The latter equality holds
due to the antisymmetry ofF��. Equation�107� gives

u��������p���u��0, �108�

which can be rewritten as

T���su����b���bu���Tr��̃����u����0, �109�

by means of the thermodynamic relations

d��Tds��bdb�Tr��̃d��, �110�

��p�Ts��bb�Tr��̃��, �111�

wheres is the�local� entropy density in the fluid rest frame.
The second term in Eq.�109� vanishes due to the conserva-
tion of the ideal baryon flow�103a� and the third term also
vanishes as

Tr��̃����u����Tr��̃D���u����0. �112�

The first equality holds because�̃ and� commute with each
other, and consequently Tr��̃�A�,����0. The last equality
expresses the covariant conservation of the ideal color cur-
rent �103c�. Thus Eq.�109� finally gives the entropy conser-
vation ��(su�)�0.

The analog of Euler’s equation is obtained from Eq.�33�,
projecting it onto a direction perpendicular tou�. Equiva-
lently, we consider the following combination of Eqs.�33�,
�107�:

��t���u�u���t���2 Tr� j �F���, �113�

which gives

���p�u���u������u�u����p�2 Tr� j �F���.
�114�

To get a better insight of the physical meaning of Eq.
�114� we write it down in the three-vector notation where

u�	��c,�v�, j �	�c�,j�, F0i�Ei , Fi j �� i jkBk,
�115�

with �	(1�v2/c2)�1/2 and E, B being the chromoelectric
and chromomagnetic field, respectively. We have restored
here the velocity of lightc to facilitate taking the nonrelativ-
istic limit of the derived hydrodynamic equation. Subtracting
Eq. �114� for ��0 multiplied by v i /c from Eq. �114� for
�� i , one gets

��p

1�v2/c2 � �

�t
�v� � v

��� ��
1

c2 v
�

�t � p�2 Tr��E�
1

c2 v�j•E��
1

c
j�B� ,

�116�

which in the nonrelativistic domain (v2�c2) reads

���p�� �

�t
�v� � v���p�2 Tr��E�

1

c
j�B� .

�117�

We note that the nonrelativistic limit, which is taken for the
sake of comparison with the analogous equation of the
electron-ion plasma�1�, is only applied to the hydrodynamic
velocity. The motion of the fluid’s constituents remains rela-
tivistic.

Although the quark-gluon plasma is composed of partons
of several colors, the hydrodynamic equation�114� describes
a single fluid. This happens because there is a unique hydro-
dynamic velocity in the local equilibrium state�42�. Various
color components, which enter the energy-momentum tensor,
do not neutralize each other but they are ‘‘glued’’ together in
the course of evolution. Such a single fluid chromohydrody-
namics was briefly considered long ago�6� within kinetic
theory. An equation very similar to Eq.�114� has been re-
cently derived�10� directly from a postulated Lagrange den-
sity. The color current, which enters the Euler’s equation
discussed in�10�, is of the formQJ � whereQ is the color
charge andJ � is the conserved Abelian current. As seen in
Eqs. �103�, J � can be identified with the baryon flowb�

when we deal with a system of quarks only. In a multicom-
ponent plasma, however, such an identification is not pos-
sible because vanishing of the baryon current does not imply
vanishing of the color current.

VI. DISCUSSION AND SUMMARY

Local equilibrium is only a transient state of a nonequi-
librium system in its course towards global equilibrium.
Thus the question arises how fast such a state is achieved,
and for how long it survives. We denote the two characteris-
tic times of interest as�0 and�1. As we have shown in Sec.
IV, the dominant processes, those with the soft gluon ex-
change in thet or u channel, are responsible for establishing
the colorful equilibrium. Since the electric forces are
screened at momentum transfers smaller than the Debye
mass (mD) the largest contribution to these processes comes
from the small angle scatterings due to the magnetic forces
which are effectively screened at momentum transfers below
mD . We identify �0 with the relaxation time related to such
interactions. Then, according to the estimate�19� found for
the quark-gluon plasma in global�colorless� equilibrium
wheremD�gT, we have

1

�0
�g2T ln�1/g�. �118�

We note, however, that the relaxation time in the colorful
plasma can significantly differ from Eq.�118� due to the
interaction with the background chromodynamic field gener-
ated by the color current�45�.

For how long does the colorful equilibrium exist? The
answer crucially depends on the process which is responsible
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for the plasma neutralization. We have explicitly shown that
the dominant processes comply with the finite color chemical
potentials. We have also checked that equilibration with re-
spect to the processqq̄↔gg leaves the system colorful. We
expect that the collisions, even those beyond binary approxi-
mation, do not demand vanishing of the color chemical po-
tentials. The point is that in every collision process, which
changes the particle momenta but not their ‘‘macroscopic’’
positions, the color current is conserved. Therefore the colli-
sions do not alter the local color charge.

The plasma is presumably neutralized due to the collec-
tive phenomena: dissipative color currents and damp plasma
waves both caused by uncompensated color charges. Then,
the characteristic time of the system neutralization is con-
trolled by the color conductivity which is again related to the
estimate�118� �19�. Thus the two times of interest�0 and�1
are of the same order, and a much more careful analysis is
needed to establish the domain of applicability of the local
equilibrium solution found here. Such an analysis should
take into account not only the interaction with the back-
ground fields present in the colorful equilibrium but the ini-
tial nonequilibrium configuration should be also specified.

At the end let us summarize the most important results of
this study. The local equilibrium state dictated by the colli-
sional invariants, which follow from the energy-momentum,
baryon number, and color charge conservation, is colorful,
i.e., there is a nonvanishing color current in the system. The
baryon chemical potentials of quarks and of antiquarks and
the scalar�colorless� chemical potential of gluons are con-
strained as in a global equilibrium:�̄b���b and �g

0�0.
The local equilibrium configuration resulting from the can-
cellation of collision terms, which represent the most prob-
able binary parton interactions, is also colorful with the same
color structure. The colorless chemical potentials, however,
are unconstrained. The global equilibrium relations among
them emerge when the subdominant processes are taken into
account. It is conjectured that not only binary but even mul-
tiparton collisions comply with the finite color chemical po-
tentials, thus suggesting that the color neutralization of the
plasma occurs not due to the collisions but due to dissipative
collective phenomena. Proper identification of these pro-
cesses and their quantitative description will be very impor-
tant for understanding of the whole equilibration scenario of
the quark-gluon plasma.
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APPENDIX: EVALUATION OF TRACES

We collect here some useful formulas of the traces com-
puted both in the fundamental and adjoint representation.

Due to the identity

� i j
a �kl

a �
1

2
� i l � jk�

1

2Nc
� i j �kl, �A1�

we have the relations of the traces in the fundamental repre-
sentation

Tr��aA�aB���
1

2Nc
Tr�AB��

1

2
Tr�A�Tr�B�, �A2�

Tr��aA�Tr��aB��
1

2
Tr�AB��

1

2Nc
Tr�A�Tr�B�.

�A3�

Furthermore, from Eq.�A1� one can deduce

�a�a�
Nc

2�1

2Nc
, �a�b�a��

1

2Nc
�b. �A4�

Taking into account

�a�b�
1

2Nc
�ab�

1

2
dabc�c�

i

2
f abc�c �A5�

one evaluates traces of products of generators in the funda-
mental representation. In particular, one finds

Tr��a�b�c��
1

4
�dabc� i f abc�, �A6�

Tr��a�b�c�d��
1

4Nc
��ab�cd��ac�bd��ad�bc�

�
1

8
�dabrdcdr�dacrdbdr�dadrdbcr�

�
i

8
�dabrf cdr�dacrf bdr�dadrf bcr�.

�A7�

For Nc�2 one also has

Tr��a�b�c�d�e��
i

16
��aef bcd��cdf abe��bdf aec��bcf ade�.

�A8�

The identity analogous to Eq.�A1� for the adjoint repre-
sentation of the SU�2� group is

Tbc
a Tde

a ��be�cd��bd�ce, �A9�

and we have the following relations:

Tr�TaATaB��Tr�A�Tr�B��Tr�ABT�, �A10�

Tr�TaA�Tr�TaB��Tr�AB��Tr�ABT�. �A11�

Using the identity�A9� one also finds
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Tr�TaTbTc�� i f abc, �A12a�

Tr�TaTbTcTd���ab�cd��ad�bc, �A12b�

Tr�TaTbTcTdTe���adf ecb��cdf eab��abf ecd.
�A12c�

In the adjoint representation of SU�3�, we have the
identity

Tbc
a Tde

a ��
2

3
��bd�ce��be�cd���dbd fdce f�dbe fdcd f�,

�A13�

which, in particular, allows one to compute the totally sym-
metric trace of four generators as

1

4
Tr�
Ta ,Tb�
Tc ,Td��

�
1

2
�2�ab�cd��ac�bd��ad�bc��

3

4
dabsdcds. �A14�
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