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Within kinetic theory, we look for the local equilibrium configurations of a quark-gluon plasma by maxi-
mizing the local entropy. We use the well-established transport equations in the Vlasov limit, supplemented by
the Waldmann-Snider collision terms. Two different classes of local equilibrium solutions are found. The first
one corresponds to the configurations that comply with the so-called collisional invariants. The second one is
given by the distribution functions that cancel the collision terms, representing the most probable binary
interactions with soft gluon exchange in thehannel. The two sets of solutions agree with each other if we go
beyond these dominant processes and take into account subleading quark-antiquark annihilation or creation and
gluon number nonconserving processes. The local equilibrium state appears to be colorful, as the color charges
are not locally neutralized. The properties of such an equilibrium state are analyzed. In particular, the related
hydrodynamic equations of a colorful fluid are derived. Possible neutralization processes are also briefly
discussed.
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I. INTRODUCTION the system have been studied in detail, see, e.g., the review
[2], not much is known about its local equilibrium. Although
In the course of equilibration a many-body system firstthe problem was formulated long a§j®—6], the key ques-
reaches local equilibrium and then evolves hydrodynamitions remain unanswered. In particular, the scenario of
cally, usually at a much slower rate, towards global equilib-equilibration of color degrees of freedom is far from estab-
rium. The distribution function of local equilibrium is typi- lished. It is unclear whether the regime analogous to magne-
cally of the form of global equilibrium, but its parameters— tohydrodynamics in the electron-ion plasma occurs in the
temperature, hydrodynamic velocity, chemical potentials—quark-gluon plasma. However, Yang-Mills magnetohydrody-
are space-time dependent. However, the local equilibriunmamics has been already considef@db—10.
can also qualitatively differ from the global one. For ex- We intend to address these issues which are now of par-
ample, the electron-ion plasma, which is homogeneouslyicular interest because of the large scale experimental pro-
neutral in global equilibrium, can be locally charged beforegram at the Relativistic Heavy-lon CollidefRHIC) at
the global equilibrium is reached, see, e[@)], Thus param- Brookhaven National Laboratory, where high-energy
eters that are irrelevant for global equilibrium might be nucleus-nucleus interactions are studied, see, Eld), At
needed to describe local equilibrium. While the state of glothe early stage of such a collision, when the energy density is
bal equilibrium is unique, the local equilibrium evolves and sufficiently high, the generation of the quark-gluon plasma is
even its qualitative features can change in time. The proexpected. The most spectacular experimental result obtained
cesses of charge neutralization are, for example, very fast iat RHIC is presumably an observation of a large magnitude
the electron-ion plasma. Therefore the system is locally neuef the so-called elliptic flowy12]. The phenomenon, which is
tral after a short time but the electric currents survive forjust sensitive to the collision early stage, is naturally ex-
much longer. Thus we deal with various local equilibrium plained within hydrodynamics as a result of large density
states, depending on the time scale of interest. The form aradientg13]. Since the hydrodynamic description is appli-
local equilibrium is an important characteristics of a systemcable for a system in local thermodynamic equilibrium, the
Knowing the respective distribution function, one can formu-large elliptic flow suggests a surprisingly short, below
late a hydrodynamic description of the system. Let us agaid fm/c [14], equilibration time. Other characteristics of rela-
refer to the case of the electron-ion plasma. The fact mentvistic heavy-ion collisions are also consistent with a model
tioned above that the plasma is neutralized fast but the cuassuming equilibrium state of strongly interacting matter
rents flow for a longer time justifies the magnetohydrody-produced in the collisions, see, e[d.5]. Thus understanding
namics with no electric fields. of the equilibration mechanism of the quark-gluon plasma is
The aim of this paper is to discuss local equilibrium of thea key problem for RHIC physics.
guark-gluon plasma. While the global equilibrium features of The question of local equilibrium is related to a serious
difficulty of the transport theory of the quark-gluon plasma.
The local equilibrium is defined as a state which maximizes
*Electronic address: cristina.manuelific.uv.es the local entropy. However, the entropy production occurs
"Electronic address: mrow@fuw.edu.pl not due to the Vlasov evolution, which is rather well under-
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stood[2,16], but there is a dissipative phenomenon causedrinally, we consider the applicability of our results and
by the particle collisions. Thus the collision terms of the briefly discuss possible processes responsible for the color
transport equations are needed to discuss the local equilitheutralization in the quark-gluon plasma. Some formulas of
rium. However, a derivation of these terms has been a verihe SUN,) generators are collected in the Appendix.
complex task and only the special case of quasi-equilibrium Throughout the papgexcept Eqs(115—(117) wherec is
plasma has been seriously examif@@—21. Fortunately, restored we use the natural units wit=7% =kg=1 and the
the structure of the collision terms can be guessed referringletric (1-1,-1,—-1).
to the analogies between the spin and color systems, and this
is not only a superficial similarity of degrees of freedom ||. KINETIC THEORY OF THE QUARK-GLUON PLASMA
governed by the S(2) and SU3) groups, respectively. The ) i )

of In this section we discuss the transport theory of quarks

relationship appears to be much deeper. The covariance . .
spin dynamics with respect to the rotation of quantizationand gluong16,27). The SUN.) gauge group is left unspeci-

- : fled but we pay particular attention to the cadgs=2 and
axis strongly resembles the gauge covariance of QCD. Thu "—3 for their possible applications to the different high

gfvrr?s\?\/rgllé?:alr?:-gs??d%rzltggtsahlfnvac/:r?frcoorlr??loensﬁ rg?(;ssaorfe temperature phases of the standard model. Generically
y eaking, we call gluons the particles associated to the vector

. . )
spin systems. More recently, guided by the same analogy, trkéc))sons of SU,), which carry charge in the adjoint repre-

Waldmann-Snider tran_sport equations have been used Ecéntation, and we call quarks or antiquarks the particles with
compute color conductivity of the quark-gluon plasfi8l,  {he charge in the fundamental representation. We will also

as well as other transport coefficiehigst,25]. call any of those particles a parton.
Once the collision terms of transport equations are

known, the problem of finding the state of local equilibrium

is well posed, see, e.d.26]. Namely, one looks for a con-

figuration which maximizes the local entropy. In fact, such a  The distribution function of quark®(p,x) is a Hermitian

configuration can be also found without a detailed knowl-N¢XN¢ matrix in color spacéfor a SUN,) color groug; x

edge on the collision terms. One only needs the so-calleflenotes the space-time quark coordinate prits momen-

collisional invariants—the conditions obeyed by the collisiontum, which is not constrained by the mass-shell condition.

terms, coming from the conservations laws. In such an apIne spin of quarks and gluons is taken into account as an

proach, already followed if4,6], we, however, gain no in- internal degree of freedom. The dlstrlputlon function trans-

formation about the time scale corresponding to the local0'™Ms under a local gauge transformatioras

equilibrium state. We also do not know whether the local

equilibrium configuration dictated by the collisional invari- Q(p.x)—=U(x)Q(p,x)UT(x), 1)

ants is the most general maximum entropy state. To answer

these questions an explicit form of the collision terms isthatis, it transforms covariantly in the fundamental represen-

required. Then, one looks for a configuration that cancels th&tion. Here and in most cases below, the color indices are

collision terms. suppressed. The distribution function of antiquarks, which
In this paper we follow both approaches. After introduc-we denote byQ(p,x), is also a HermitiaiN, X N, matrix in

ing the kinetic theory of the quark-gluon plasma in Sec. Il,color space, which in a natural way should transform cova-

we find in Sec. Il the local equilibrium state provided by the riantly in the conjugate fundamental representation. How-

collisional invariants. Then, we select the most probable bi€ver, we will express the antiquark distribution function in

nary interactions and we derive in Sec. IV the local equilib-the same representation as quarks throughout, and then it

rium functions which cancel the Waldmann-Snider collisiontransforms according to E¢1). The distribution function of

terms corresponding to these dominant processes. The defflard gluons is a Hermitian NZ—1)x(NZ—1) matrix,

vation requires solving a whole set of rather complicatedvhich transforms as

matrix equations. To simplify the analysis, we consider par-

ticles obeying classical statistics, although we believe that G(p,X)—UX)G(p,x)U(x), )

the physical picture emerging from our analysis is not much

changed when quantum statistics is incorporated. The locg|nere

equilibrium states, which come from the approaches of Secs.

[l and IV, are colorful and their color structure is exactly the

A. Distribution functions and transport equations

same. However, the baryon chemical potential of Uap(x)=2 T 72U (x) U T (%)], ()]
(anti-)quarks and the scalar chemical potential of gluons re- )
main unconstrained by the dominant processes. The coivith 7%, a=1,... Nc—1 being the SU{.) group genera-

straints provided by the collisional invariants only appeartors in the fundamental representation with Fr°)
when the subleading quark-antiquark annihilation or creatiorF 3 52°. We note that/"=4/"*={". Therefore not on\G
and gluon number nonconserving processes are included. it alsoG" transforms covariantly, i.e.,

better understand properties of the colorful local equilibrium,

we derive in Sec. V the resulting hydrodynamic equations. GT(p,X)—=UX)GT(p,x)UT(X). (4)
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The color current is expressed in the fundamental represen- g _
tation as P*DLR(PX)+ 5 PHF (%), d5Q(p,X)}=C[Q,Q,G],

. (11
jﬂ(x)=—§fde{Q(pm)—G(p,x)—N—Tr[Q(p,x> I -
’ P“D,.Q(PX)~ 5 P{F,.(x).9Q(P.X)}=C[Q.Q.G],

—Q(px)]+272 T T*G(p,x)] |, (5) (11b
g ” —
where the momentum measure PFDLG(P.X)+ 5 PHF LX), dpG(p.X)}=Cg[Q,Q,C],
(1190
d*p )
dP= (277)32®(p0) o(p?) (6)  whereg is the QCD coupling constarf,. .., ...} denotes

the anticommutator and; the four-momentum derivative;

. . the covariant derivativeB , andD,, act as
takes into account the mass-shell conditign=|p|.

Throughout the paper, we neglect the quark masses, althouglb =0,—ig[ALX), ...], D,=d,—ig[A,(X), ...],
those might be easily taken into account by modifying the
mass-shell constraint in the momentum measure. A sum oVggjth A , and.A,, being four-potentials in the fundamental and
helicities, two per particle, and over quark flavdig is un- adjomt representatlons respectively:
derstood in Eq(5), even though it is not explicitly written
down. The SUN.) generators in the adjoint representation AH(X)=AL(X) 7, AM(X)=T2AX(X).
are expressed through the structure constapts —if apc,
and are normalized as [FTP]=N.6%". The current The stress tensor in the fundamental representatidf, js
can be decomposed ag”(x)=jL(x)7® with j&(x) =d,A,—d,A,—ig[A,,A,], while 7, denotes the field
=2TH mj*(X)]. strength tensor in the adjoint representation. The collision
Gauge invariant quantities are given by the traces of theermsC,C, andC, are discussed in detail in the next sec-
distribution functions. Thus the baryon current and thegjgns.
energy-momentum tensor read Let us finally mention that in the transport theory frame-
L work one can consider two different physical situatiofis:
— the gauge fields entering into the transport equati@thsare
bﬂ(x):§f dPpTIQ(p,X)— Q(p.X)], (@) extegrnalg? not due to thge plasma congtituer?ts; &2 the
gauge fields can be generated self-consistently by the quarks
and gluons. In the latter case, one also has to solve the Yang-

t“”(x)zf dPp*p T Q(p,x) +Q(p,X) +G(p,X)], Mills equation
® D,F¥(x)=]"(x), (12

where we use the same symbol T+ | for the trace in the  \yhere the color current is given by EG).
fundamental and adjoint representations.

The entropy flow is defined 4s!] B. Decomposition of the distribution functions and associated

transport equations

sH(x) = f dPPTIQINQ+(1-Q)IN(1-Q)+QIQ The parton distribution functiol is essentially the sta-
tistical average of the Wigner transform of the product of two
+(1- Q)In(l— Q) +GING—(1+G)In(1+G)]. field operators representing quarks or glupt@). If the par-
ton carries color charge in a representatiyrthen the dis-
9 tribution functionN transforms under gauge transformations

asR®R, whereR is the representation conjugateRo

If the effects of quantum statistics are neglected, 9. In the SU2) group, the products of the fundamenta)

simplifies to and adjoint(3) representations decompose into irreducible
representations as
-~ [ aPpTiQINQ-1) 292=163, (13
+Q(INQ-1)+G(InG-1)]. (10 393=10305. (14

The distribution functions of quarks and gluons satisfy theAs known, the conjugate and direct fundamental representa-
transport equations: tions of SU2) are equivalent to each other. The decomposi-
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tion of the products of the fundamentd) and adjoint(8) Gap(P.X) = 82°G.(P,X) — Gpa( P, X). (21)
representations of the $8) group are
_ Expressing the product 6f2T® as
3®3=1438, (15
= Taszi[Ta TP]+ E{Ta TP} (22)
8% 8=1¢ 8489 104 104 27. 2L 20 0 I
(16)

" o and taking into account that the commutator is proportional
The above decompositions show that the distribution funcsg ¢ instead of Eq(20) we write

tions of quarks and antiquarks are uniquely specified by their

singlet and adjoint components. Thus the functions can be 1 1
written as G(p,X)= 5 9a(P,X) T+ gab(p-X)E{Ta!Tb}- (23
1
QP X) = - Go(PX) +4%(P.X) 7%, (179  where
B - B ga(PX)=1f2Gep(p,x),
QP X)= - Go(P.X¥) + (P, X) 7%, (17b) 1
i Gab(PX) =51 Gar(P.X) + oo PX)].
where (24)
Ao(P.X)=TTQ(P.X)],  Qa(P.¥)=2 T 7Q(P.X)], Equation(23) can be also written as
(18a
. . . o Ga , :_-fabcc , +5ab ce(PiX)—0a ,X).
Go(PX)=THQ(PX],  da(p.X)=2 T #Q(p,X)]. o(PX)= TGP 0TGP GaP),
(18b)

Thus, according to the decomposition in Efj4), the anti-
symmetric components @ correspond to the representation
g, while the six symmetric components correspond toghe
and 1, the last one being the trace. Because of the Casimir

From Eq.(119 it is possible to deduce a set of coupled
equations for the colored and colorless components of th
quark distribution function which read

g 99.(p,X) constraint,T8T2=2, the singlet component can be obtained
p*d,do(P,X) + EDMFZV(X)#=Tr[C], (199  from the symmetric parg,y, i.e.,
9o(P,X) =TI G(P,X)]=2gaa(P.X). (26)
uDag, (px)+ 3t prEd () 9PX) ° .
PR, b (P20 5 Gabcb ap, The transport equations obeyed oy, g,, and g, are
found multiplying Eq.(110 by the unity, T? and{T?,T°}/2,
N gpMFay(X) 990(P,X) —2T{rC], (19p respectively, and taking the trace. Using the relatioh2),
Ne o # ap, we get
whered,,. are the totally symmetric structure constants of A 39a(p,X)
SU(N,) and D2°=4d,8°°+gf,,AL. The projected equa- p“aﬂgo(p,x)Jrgp“FM(x)T:Tr[Cg], (279
tions, which can be also written for antiquarks, show that .
transport phenomena of colorless and colored components 1 990(pX)  3Gap(P,X)
are coupled beyond the lowest order in the gauge coupling)“D"*bgb(p,x)+gpl‘FbV(x)(—5ab ST L L )
constant. : : 2 P, 9P,

From the decompositionél4), (16) it is clear that the
singlet and adjoint components are not enough to fully de-
scribe the gluon distribution function. For gluons one also ac
needs components in higher dimensional representations. Be- P*(D ) ba9cd(P.X)
low, we present a way to uniquely characterize the gluon

=Tr[T2C,], (27b

distribution function in terms of its fully symmetric and an- + gp#( FZV(X)MJF sz(x) M)
tisymmetric components for the $2) gauge theory. 4 P, P,
We first expres&(p,x) as 1 1
= 5 T{T2,T°Cy]— 5 6T Cy], (279
G(P,X)=Gap(P.X) TAT®, (20) 2 { < 2 ’
which uses as a basis fox3 Hermitian matrices the set of Where
nine independent matric8€TP. We note that botlG andg ac ¢ b Aeebdn e bed cac e
are 3x 3 matrices which are related to each other as (D )pg= 3,607+ gfaee AL + g P62 °A), (28)
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is the covariant derivative acting on a tensor of rank 2. Note For the consistency of the theory, it is necessary to prove
that multiplying the last equation by?®, we get, as ex- that the Waldmann-Snider collision terms transform covari-
pected, the equation fayy,. antly under a gauge transformation, in the same way as the
For SUS3), or SU(N,) in general, the decomposition of left-hand sides of the transport equatidd$) do. It is diffi-
the gluon distribution function into irreducible representa-cult to check this gauge covariance in full generality without
tions and the equations obeyed by every component have specifying the scattering process and the corresponding scat-
much more involved structure, and they will not be discussedering amplitudes. For all the cases we are going to consider,
here. the gauge covariance of the Waldmann-Snider collision term
holds as the distribution functions transform covariahsige
Egs.(1) and(2)], and the scattering amplitudes, stripped of
the color generators, are gauge invariant. We will briefly
come back to this point in Sec. IV.

C. Waldmann-Snider collision terms

The transport equations for the quark-gluon plagiB
have been written down without specifying the collision

terms. Unfortunately, a complete derivation@f C, andC
is still lacking, as already mentioned in the Introduction. — aq el known, the collision terms should satisfy certain
However, using the analogy with the SPIN Systems one Capy|qiinns due to the conservation laws. In our case, the laws
justify the use of the Waldmann-Snider collision terms. Theare: the baryon charge conservation
main characteristic of these collision terms is that they de-
pend on the scattering amplitudes rather than on the colli-
sional cross sections, as it happens in the usual Boltzmann
equation. the energy-momentum conservation
Let us discuss the general structure of a collision term for
a system of particles carrying quantum color charges. The
most  probable processes are binary collisions
(p.,r;p1,8)<(p’.t;p1,u) wherep,py,p’,p; denote the mo- and the covariant conservation of the color current
menta and,s,t,u the colors, in the fundamental or adjoint
representation, of interacting partons. We denotéNiby, x) D,i*(x)=0. (34)
the generic distribution function of the partons—quarks or

D. Conservation laws and entropy production

d,0*(x)=0, (32)

3, (x)+2 T j ,(X)F7"(x)]=0, (33

gluons. The Waldmann-Snider collision term, which enterd-t us derive the relations constraining the collision terms

the kinetic equation oN, is of the form[26]

C[N,NI,N’,Ni]:f dP dP;dP,(2m)*8™(p+p,—p’
1 1
_pl) E{liN,I_,,}_E{N,I_} ) (29)

where we have used a rather common notaliegaN(p,Xx),
N;=N(p1,x), N'=N(p’,x), and N;=N(p;,x). The first
term, which represents a gain term, is given by

I =Misey(P.P1;P’ . PYM (P, P1;P’ P}
XN (p’ X)NU(pg, x)[1+N(p1,X)]%,  (30)

while the second one is a loss term defined as

I =M;seu(P,P1;P’,PY)M (P, P1;P’,PNT(Py1,X)
X[1£N(p’ )T [1=N(p] x) ], (31)

which follow from Eqgs.(32), (33), (34). Using the transport
equation, one finds from the definitiqi)

1 _
3,b%(x) = §f dPT{C—C]

-3 dprTitF, a0+ Q)

Now, one performs partial integration of the second term in
the right-hand sidérhs). Assuming that the distribution func-
tions vanish at infinite momentum and observing that
g“’F,,=0, one finds that the term equals zero. Therefore
the baryon current conservatio82) provides

J dPTI{C—-C]=0. (35)

In an analogous way, one finds that the energy-momentum
conservation(33) implies

f dPp“TH{C+C+Cy]=0, (36)

while the covariant conservation of the color current leads to

M, sty represents the scattering amplitude associated with the
collision process under consideration. The double sign

reflects the fermionic character of quarks and the bosonic
character of gluons. We have used here the compact notation
of Ref.[19]. where we have taken into account the relati85).

f dP[C—C+27TI[ T3C4]]=0, (37)
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Let us now discuss the entropy production. We neglec ) =exd — BONU-(X)D” = wn(X) — (X 42
here the effects of quantum statistics, and consequently stakr%eq(p’ ) A= BOOTUO0P™= () = w ()1 (429

ith the definition (10). Followi he derivati f EQs. = ~
(55 (36 g o o ollowing the dervation of £AS: & p.x)=ext~ B(X)[u,(9p"+ )+ E(01] .

0,8(¥) = - f dPTCINQ+CInQ+CyInG] Geq P X) =Xt~ B)[U,(X)P” ~ Fig(x) 1], (429

g , whereB(x), u”(x), andu(x) are, respectively, the inverse
_EJ dPpTI{F,,,Q1dpInQ temperature, hydrodynamic velocity, and baryon chemical
- - potential which are all scalars in color space. The color
—{F,,,Q}dpINQ+{F,,,G}9,InG], (38)  chemical potentialse and uy are Hermitian matricedN,
X N for quarks andI§2— 1) X (N2—1) for gluons. They are

where the partial integration has been once performed and §auge dependent variables, which transform as
has been observed that

1) —=U(x) )V (x), ﬁg<x>au(x>ﬁg<x>w(x>.4

T [A*Q]InQ]=0, (43)

and that the analogous equalities hold ®@randG. Assum-

- : . In general,u can be expressed @as= uq+ u,7. However,
ing thatQ and &;Q commute with each other, i.e., 9 M P o= o Ma

the singlet component, is already singled out as a baryon
[Q,7.Q1=0, (39) chemical potential., . Therefore we write dow= u,72.

Consequently, the color chemical potengiais not only Her-
one shows tha@; In Q:Q‘la;Q_ Using the conditior(39) mitian but also traceless. The covariant conservation of the

and the similar ones fd® andG, one proves that the second C€0IOr current provides the relation

term in the rhs of Eq(38) vanishes after one more partial ~ a -~ a
integration. Then, we get pg=2TATI ] = paT?, (44)

which implies that}lg is also traceless. The baryon and color
chemical potentials occur in E€42) because of the conser-
vation laws of baryon number and color charge, respectively.
According to Eq(40), the entropy of the quark-gluon system The temperature and hydrodynamic velocity are related to
is produced due to the collisions. If the commutation condi-the energy-momentum conservation.

aﬂs"(x)=—fdPTr[CInQ+6In6+Cg ING]. (40)

tion (39) is relaxed, the second term in the rhs of E8g) The local equilibrium state described by Eg2) is not
does not vanish, and we arrive to a paradoxical result that theolor neutral. Substituting the distribution functio@®) into
mean-field dynamics does not conserve the entropy. Eg. (5) one finds the color current as

A local equilibrium configuration is achieved when there
is no entropy production, i.ed,s*(x)=0. This equation is )
of very complicated structure and it has two classes of solu- 1“= -9z u#
tions. The first one cancels the collision terms but to get it

T3

-~ 1 -
Nf( eﬁﬂb( ebr_— —Tr[eﬁ”])
N¢

the collision terms have to be specified. The second class B o B 1 g a a8
appears due to the conservation laws, i.e., because of the — € e N—CTr[e 1) | 2T T e ],
relations(35), (36), and (37). In the remaining part of this 45)

paper, we will study the two sets of solutions.

where T, u¥, uy, ., and w4 are functions ofx. The fact
that the color current is finite does not imply that the system
as a whole carries a finite color charge. We note thatxthe

In this section we discuss, followinlg},6], consequences dependence of the color chemical potentials, which enter the
of the conservation law$32), (33), (34). Specifically, we solution (42), is not specified. Therefore it can be always
obtain the local equilibrium configuration which is found as chosen in such a way that the total color charge defined as
a solution of the equation Jd3xj° vanishes.

The derivation of the local distribution function based on
the collisional invariants tells nothing about the time scales
when the colorful configuratiof4?2) exists. To get such in-
formation the collision terms have to be specified. This is
due to the relation$35), (36), (37). discussed in the next sections.

One easily constructs the local equilibrium distribution  The equilibrium solutiong42) are given in an arbitrary
function out of the collision invariants. Indeed, one showsgauge. It is often useful to work in a gauge where the quark
using Egs(32), (33), (34) that Eq.(41) is solved if and antiquark chemical potentials are diagonal. Then,

1. LOCAL EQUILIBRIUM FROM THE CONSERVATION
LAWS

f dPTCINQ+CInQ+CyInG]=0, (41)
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Using the distribution functions in the fortd7), (48), the

~_ dd _ , d7d
=udr9 =979 46 .
R Ho= H (46) color current(45) can be written as
where ¥ and T¢ are the fundamental and adjoint generators 3

of the Cartan subalgebra of SNY) [d=3 for SU2) andd

=3,8 for SU3)]. In this gauge one has, as will be seen
below, well-defined numbers of quarks and antiquarks of a

T
j#= = 49— UF[N{Ch( Bup)Sh Bul2) + Sh Bus) I 7°.
(49

certain color; and then, the physical meaning of the color

chemical potentials becomes transparent.

A. Diagonal gauge for SU(2)

Using the explicit form ofr°=¢?/2, whereo® is the

Pauli matrix, the singlet and tHeonvanishingadjoint com-

ponentgsee Eqs(17), (18)] of the quark and antiquark dis-

tribution functions of local equilibriunt42) are found as

Jo(P,X)=q;(p,X)+q;(p,X),

9s(P.X)=q;(p,X) —q;(p,X), (479
Go(p,X)=0;(p,x) +q,(p,X),
qa(p,X)=0;(p,X)—q,(p,X), (47b

where the scalar functiorss;| andgq;, are

[ 1
a; (p,x)=exp —B(X)< u“(X)pM—Mb(X)izp«s(X))

(479

_ [ 1
dr (P, X)=exp —E(X)<U“(X)p,ﬁrub(X)izug(X)) -
(479
While the generator? is diagonal, T2 is not. To derive the
expressions for gluons one has to observe tid)4 is the

diagonal matrix with 1,1,0 on the diagonal. Consequently,

(T3"=T2 whenn=1,3,5... and T%"=(T%?2 whenn
=2,4,6 . ... Thus the nonvanishing componer&s) of the
gluon distribution function42¢) are

9o(P,X)=0gy(P,X) +g=(p,X) +gy(p,X), (483
93(P,X)=0gy(P,X) —gy(p,X), (48b)
1
912(P,X) = G2 P,X) = 59=(P,X), (480
1

933(p,X) = E(gﬂ(p,X)+gu(p,X)—g:(p,X)),

(48d)
where the functiong;; andg., are

gnu(p,x)=exp{— B(X)[u*(X)p,+ us(X)]},

g-(p,x)=exd — B(x)u“(x)p,]. (489

B. Diagonal gauge for SU(3)

The local equilibrium solutions for the $B) plasma can
be also written in the diagonal gauge. However, the formulas
are not that simple as for the &) case. We take the gen-
erators in the fundamental representatior@as /2, where
A2 are the Gell-Mann matrices. The matricesand\® are
diagonal with the elements 11, 0 and 143, 14/3,
—2/\/3, respectively, along the diagonal. With a color
chemical potential in the directiorss=3 anda=8 one can
then easily evaluate the singlet afbnvanishing adjoint

components 0Q.qandQ¢y, Which we write in terms of the
distributions functions of red, blue, and green quarks and
antiquarks. Here, we have taken the convention to assign the
first, second, and third rows/columns of the Gell-Mann ma-
trices to the red, blue, and green colors, respectively. A
simple evaluation leads to

Jo(P:X) = Ured P> X) + piud P+ X) + Agreed P> X),

d3(P;X) = Ared P+ X) = Qpiue P+X), (509
1

qs(p,x) = ﬁ(qrecﬁp,X)+qb|ue(p,x)—2qgreer(p,X)),
(50b)

Go(P,X) = Cred P+X) + Qpiue P,X) + Ggreed P,X),

Ga(P,X) = Gred P.X) — Gpiue P, X), (500

_ 1 — _ _

QS(FJ'X)Z ﬁ(qrec{pvx)+qb|ue(pvx)_2qgreer(pix)),
(500

where the distribution functions of quarks and antiquarks of
different colors are of the forrtd7¢) and(47d), respectively,
but with the following color chemical potentials:

1 (X)
pred¥)= 5| ma0+ ),
1 tg(X)
HoudX) == 5| pa(X)— N
Mgreer(x) == #a) (51

7

In the diagonal gauge, a finite value of the color chemicalThe computation of the singlet and adjoint components of
potential simply means that the populations of quarks, antithe local equilibrium distribution function of gluons is much

quarks, and gluons of different colors are not the same.

more involved. The evaluation of the traces requires one to

094010-7



C. MANUEL AND S. MROWCZYNSKI PHYSICAL REVIEW D 68, 094010(2003

expand the exponentials and compute the traces of arbitragther processes, as they are relevant for longer time stales.
powers ofT3, of Tg, and of T;Tg. With the help ofMATH- These less probable processes drive the system either to a
EMATICA, we have found the singlet aridonvanishingad-  different local equilibrium or to the global equilibrium. We

joint components as will also consider the subdominant processes with the soft
quark int or u channel which correspond to the vacuum
9o(P,X) =20s(P,X) + Gt (P, X) + G- (P, X) + Gy (P, X) cross sections diverging as* or u™!, respectively. These
0y (PX)+ Gz (P X) + 0y (PX), (52 are the quark-antiquark annihilation and creation into and

from two gluons int or u channel which, as will be shown,
have a qualitative effect on the local equilibrium state. With

1
03(P,X)=0g,.(p,X) —g,_(p,X) + E(gx+(p,x) the subdominant processes, one should also consider all the
channels and the respective crossing terms of the various
+9x-(P,X) +gy+(P,X) +09y—(P,X)), (53  binary collisions, plus another set of collisions that do not

conserve the particle number. The complete analysis is very

3 complex, and we will not carry it out here.
Os(p,X)= \[E(gx+(p,x) —0y_(p,x) In this section we write down the relevant collision terms,
and then we discuss the equations imposed by the vanishing
—gy+(P,X)+3y—(p,X)), (54) of these terms. Finally, we solve the equations, showing that

the nature of local equilibrium is fixed by the color structure
where the scalar functiongs, gy, 9y~, and g,. are of the scattering amplitudes.
analogous to those from E¢48e but their color chemical

otentials are .
P A. Collision terms

~0 _ +ﬂ3(><) N V3ug(x) The dominant parton-parton scattering amplitudes with
pdX)=0, e (X)=F—— =, one-gluon exchange in theandu channels are of the form
wa(X)  \Bug(x) Mrsrsr(P,P1;P",P1)=M(p,p1:p’.p1)T 1 Toy (56)
Py=(N)=EZ—F o pgs (X) = p3(X).
®9 M srrsr(P,P1;P’,PD)=M(P,P1ip’,PDT 1 Torr s
Exactly as in the S(2) case, we find that a finite value of the (57)
color chemical potential means that quarks, antiquarks, and
gluons of different colors have different densities. where7? and7? are the group generators of W) of the
two partons participating in the collisio®=T? for gluons,
IV. LOCAL EQUILIBRIUM FROM VANISHING T2= 72 for quarks, and7®=—(7®)T, whereT means trans-
COLLISION TERMS position, for antiquarks. With thechannel amplitude56),

As follows from Eq.(40), there is no entropy production the collision term(29) equals

when the collision terms vanish. Thus local equilibrium is
reached when the gain and loss terms compensate each oth
Consequently, we will look for solutions of the equatiGn
=0. However, there are numerous scattering processes oc-

curring in the q_ufark-gluon plasma gnd, in general, thg com- —p'- pi)|M|2(TaNr7—bTr[7jaNi‘7‘—b]
plete set of collision terms entering into the quark, antiquark,

and gluon kinetic equations is rather large, even so we only

consider the binary collisions. The most probable processes, _ E{bez'a N}Tr[?’dN ?b]) (58)
i.e., those with the largest cross section, occur when two 2 ' ! '

partons exchange a soft gluon in the@r u channels. The
later possibility only happens for interaction of identical
partons—quarks of the same flavor or gluons. In vacuum, th
corresponding cross sections diverge asor u~ 2 when the

CEIN NN NI = J dP'dPdPy(2m)* W (p+p,

where we have neglected the effects of quantum statistics,
@nd consequently the termstN have been replaced by
unity. The collision term corresponding to tbhechannel am-

four-momentum transfelror u goes to zero. In the medium, it/ de (57) can be found from Eq(58) by means of the
these divergences are softened, as the gluon propagators 5?changeN<—>N1 andN’ <N in the rhs of Eq.(58)

dressed by the interactions, and the electric and magnetic Using the identity(A1) given in the Appendix, we can

forces are either statically or dynamically screened. In the . ) :
local equilibrium state, which is achieved at the shortest timSNrlte down Eq.(58) for the case of quark-quark scattering as

scale, the collision terms associated with those processes, we

call them “dominant,” have to vanish. Thus we will first . . . , . -
— To estimate a mean free time associated with a given collision

consider the interactionsgqg—qq, qd<dd, d9—dd,  process one has to specify the distribution function. For a discus-
09<94d, qg<qg, and qg«qg, and we will neglect all sion of those mean free times in global equilibrium see Rzg].
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C[Q.Q:1,Q". Q4] C[Q,Q;,G',Gj]
1
=§fdP’dPidPl(Zw)“é(“’(erpl—p’—pi)lMlz =fdP’dPidPl(Zw)“é(‘”(p—i—pl—p’—pi)
X (Tr[Q’]Qi—Tr[Q]Ql)—%(Q’Tr[Qi] XIMIZ(rafrbrbraea%p')csbb(p;)
1 _
1 o , a_b b_a . 64
—QTQI- U Q- | 59 2 1Q(P), 77 Q(py) 7'} (64

At the end of this section we call the attention of the

. . .. reader to the structure of the collision tera9), (60), (61).

The collision term(58) for the quark-antiquark scattering is Because there are only objects lige G, G', which trans-
form covariantly with respect to the gauge transformation

(1), (2), and TfQ], T G], and TfQQ,], which are gauge
invariant, these collision terms transform covariantly, pro-
1 vided | M|? is gauge invariant. The gauge covariance of the
= EJ’ dP’dPidPy(2m)*s™(p+p;—p’ —py)|M|? collision term(64) is evident when instead & the projec-
tions TfC] and Tf 7C] are considered. As will be seen in

C[Q,Q:,Q",Q;]

the following section, these projections have the right gauge

N  — 1 _
X Tr[Q’Qi]—7{Q,Q1})—Q(Q’Tr[Qi] structure.

B. Conditions of local equilibrium
: (60)

_ 1 _ _
—QMQ.D~ N_c({Q Q1) —{Q.Q1}) In this section we present the conditions for the cancella-
tion of the collision terms associated with the processes dis-

cussed above.

where, as discussed previously, we have repleﬁédby Q. 1. qqeqq
For the gluon-gluon scattering we have found a simplifi- o ' _
cation of Eq.(58) only in the case of the S@) gauge group. The collision term(59) corresponding to the quark-quark

Then, the collision term reads scattering vanishes if
! li ! 1 i !
C[G,G;,G',Gy] (TrQ ]Ql_Tr[Q]Ql)_E(Q TQ11—-QTrQ1])
C
= | dP'dPidP;(2m)*6)(p+p,—p’ —py)| M| 1 oia o
f ' ' - {Q".Q-{Q.Qip=0, (65)
Cc
1
X Tr[G'TGﬂ—{G'T,Gg}——{G,GI}) ) :
2 wherep+p;=p’+p;. Because the quark matrix transport
equation can be uniquely characterized by its singlet and
+(Tr[G']G1—G Tr[Gﬂ))_ (61  adjoint component§see Eq.(19)], the condition(65) re-
quires
The scattering amplitudes of the subdominant processes TQQuI=TMQQ4], (663
with the quark exchange in theand u channel have the
following color structure: T QITQ.]1=TrQ"]Tr{ Q4] (66b)
. and
Mijab(P,P1;P",P1) =M(P,p1;P",P1) Th Tk} (62)
T 7{Q,Q}1=Tr 7{Q",Q4}], (660)
CAl AT — ‘Al RV DA
Mijab(p,pl,p apl)_M(paplyp apl)Tikaj- (63) Tr[TaQ]Tr[Ql]:Tr[Q’]Tr[TaQi],
(660
The collision term associated with thighannel annihilation . o) )
processes is T PQIT Q=T 7°Q" T Q4] (660
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The conditions for cancellation of the collision term for where
antiquark-antiquark scattering are totally analogous to those

of the quark-quark case.

2.qqeqq

The collision term(58) for the quark-antiquark scattering

vanishes when
— N — 1 — _
Tr[Q,Ql]_?{Qan} —@(Q'Tr[Qﬂ—QTr[Qﬂ)

1 _ _
—N—c({Q',Qi}—{Q,Ql}FO- (67)

RLQ.G1]= § foad T #PQITA 06, T

—Tr 2H9QITI[ T3G,T)). (700

4.99+<99

The collision term of the gluon-gluon scattering equals
zero when

TG/ TP T TG T°] - l{T"Ta G} TG, T°]=0
1 2 ' 1 .
(71

The conditions of cancellation of the projected matrix equa+or the SUW2) plasma the above condition can be simplified

tion (67) read

TQQ]=TrQ'Q;], (68
T[QITQ:]=TQ'ITHQ;], (680

and
T 74{Q,Q}1=Tr 74{Q",Q;}1=0, (680
T 7QITr[Q1]=Tr[ Q' ITr[Q1]. (680

The requirement that ﬂ'ra{Q,al}]=0 directly follows

from the first term of Eq(67).

3.qg<qg

The collision term for quark-gluon scattering with one-

gluon exchange in thechannel vanishes if

ar’ b ar’ b_l b_a a, by _
Q' T TG T"] 2{7- 2, QT TG, T°]=0.

(69
Requiring that TrC]=0 and Tf 7*C]=0 provides the equa-
tions
N¢
T Q]G] ?Tr[ 2QIT T2G,]
1 ab a, bTc
+ Ed T 2Q]TIT°TG,]
N¢
=Tr[Q']TMG']— ?Tr[TaQ’]Tr[TaGQ]
1 ab arm’ brcr
+ Ed T 2Q T T°T°G,] (709
and
T QAT TG, T3]+ R Q,G,]
=T 7°7°Q' AT T°G;T?], (70b)

[see Eq(61)] and it gives
THG'6;1-{6,Gi}~ 5{G.G)
+(TrG']1G;—GTi[G,])=0. (72
We demand the cancellation of the totally symmetric and

antisymmetric components of E(/2), see Eq(27). Impos-
ing T T,Cyq]=0 and Tf{T,,Tp}Cq]=0, we get

THT{G,Gl}I=TrT,{G",G'}]=0, (733
T T.GIT{G,]=TH G T T,G;], (73b)
and
T{Ta, ToH{G,G1}]
=86"TI{G'G} -2 TH{T,, T, HG',G,"}] (730
T{Ta, TolGITH G, 1=TH G ITH{T4, Tp} G4 1.
(730
Fora#b Eq. (730 requires that
T{Ta, ToHG,GIH=Tr{Ta, ToHG',G1 1 =0,
(739
while for a=b(T?T2=2) Eqgs.(730), (73d imply
T GG[]=TIG'G;"], (73f)
T GITH{G.]=TIG"]TIG]. (739

5. qqgg
With the scattering amplitude given in E(2), the can-

cellation of the collision term corresponding to the quark-
antiquark annihilation in thé channel demands

T 72Q7? Tbal ™]=Ti °7° TET?] G’ CFG ! (115, (74a

1 _ _ -
ETI’[ °(Q,2°Q P =T TeTCTdeTC]G,CCG,gd.
(74b
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The left-hand side of the above equations can be simplified Repeating fully analogous considerations for the collision
using the relationA4) given in the Appendix and the for- term of antiquark-antiquark scattering, we arrive at the anti-
mula quark distribution function

_ 1 _ N-2 _ Q(p,x)=exg — BO)[U,(X)p"+ wp(X)+ m(x)]]. (79)
TaTleTbTa:_ZQl+ ZN THOL]. (75 p A —=BMX)[ P+ up m(x)]]

AN ¢ The conditions of cancellation for the quark-antiquark
] ) collision term provide the relations between the parameters
Furthermore, for the S(2) plasma one finds, using the rela- of quark and antiquark distribution functions. Namely, Egs.

tions (A7), (A8) given in the Appendix, that (68a), (68b), (680) require
TQQu]+4 TQITHQ,] BOOUH(X) = BX)UH(X). (80)
_ 1Ty ret ! ! - J—
=2TG G ] =2 TG G, ]+ 2 TG TGy, Becauseu”(x)u,(x) =u*(x)u,(x)=1, we effectively have
(769 _ _
uk(x) =uk(x), T(X)=T(x). (81)
T 7%{Q,Q,}]+8 T °Q]Tr[ Q.
Q. QuH+8 T Q1T Q4] Furthermore, Eq(68¢) imposes
=2G'°®T{ T°G;]+2 T{T°G'{G'] _
~2TAT®G}G']+2 THT*G' T G4]. w0 == (%), (®2
(76b) but it leaves the baryon chemical potentialg and ;b un-
restricted.
C. Local equilibrium solution for the SU(2) plasma Let us find now the distribution functions that cancel the

) o ) gluon-gluon collision term. Conditior{73f) is solved by
We find here the local equilibrium solutions that cancel allthpse functions obeying

the collision terms discussed in the previous section for the

SU(2) plasma. We start with the quark-quark scattering. G(p,x)G'(p1,X)=G(p’,x)G"(p;,X), (83
Equations(66a), (660 are solved by functions obeying
, which demands that
Q(P.X)Q(P1.X)=Q(p",X)Q(P1.X), (77)
_ v 0 ~
for p+p,=p’+p;. Using standard arguments, see, e.g., Gp.x)=exit = Bg(x)LUg0OP, = pg(x) = rg(X)]] (84)
[26], one finds that Eq.77) is satisfied by exponential func-

tions where bothu#(x) and zz4(x) are Hermitian matrices while

pg(x) is a scalar. Furthermore (x) =[u%(x)]", which im-
plies thatu”(x) is a real symmetric matrix. However, the
conditions (73g and (73b) require that the gluon velocity

whereu#(x) andu(x) are Hermitian and traceless matrices. matrix has to be proportional to the unit matrix, exactly as
Please note that the scalar chemical potentig] which is  that of quarks and antiquarks.

interpreted as the baryon chemical potential, is already The condition(73a or (73e implies that the product
singled out. Because of E439), U“(x) and u(x) should ~GG] must be proportional to the unit matrix. Therefore the
obey the conditiorffu“(x),u(x)]=0. Thus using the gauge gluon color chemical potential must obey(x) = — 4(X).
freedom to rotate these quantities in color space, they can B@onsequently, it contains only antisymmetric components
chosen in diagonal form. and it can be uniquely expressedag(x) = u3(x) T2
Equations(66b), (66d), (668 require that the hydrody-  Next, we analyze the conditions for cancellation of the
namic velocityu”(x) is proportional to the unit matrix. Oth- quark-gluon collision term, i.e., Eq670a), (70b). For SU?2)
erwise different components of“(x) enter differently Egs. danc=0, and then it is easy to check that Ed0g imposes
(66b), (66d), (668 and the constrainp+p,;=p’+p; is in-
sufficient to satisfy these equations. Onegx) is propor-

tional to the unit matrix, the conditiopu”(x), u(x)1=0 IS s the temperature, as well as the hydrodynamic velocity,
trivially satisfied, and there is no reason to requife) to be  are the same for the quark-antiquark and gluon components
diagonal. It is then an arbitrary traceless matrix, even so ipf the plasma.

can be diagonalized because of the gauge freedom. Since the Equation(70b) is a more complicated structure. Since it is
hydrodynamic velocity is no longer a color matrix but a sca-fyffilled if R°=0, let us evaluatd=®. Taking into account

lar, it is from now on denoted as* not asu®. that for SU2)

Q(p.x) =exif = BO)[U,(X)P" = up(X) — 1(x)]], (78)

T(X)=Ty(x), U¥(X)=Uug(x). (85
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) i b 1 observes that the equilibrium with respect to the process
TP Q(p.x)]= 4 £*°%c(p,X) + 7 6™q0(p.X), (86)  ggeggg implies £5=0, and then, Eq(91) provides

=T Mp-
and using the relatiogA9) given in the Appendix, we ex- In summary, the requirement of equilibrium with respect
pressR® as to the dominant binary processes provides the local equilib-

rium state with the color structure as that in E42) which

1 comes from the collisional invariants. Tligcalaj chemical
RCZ—gqa(p,X)Tf[{TaaTc}G(pl,X)] potentials of quarks, antiquarks, and gluons are, however,

independent from each other. To get the relatipﬁgo and

Mp=—up, the multigluon processes and antiquark-quark
annihilation into gluons must be taken into account. This
means that the locathemical equilibrium is reached at
And now we refer to the diagonal gauge where the quarkonger time scale than the color equilibrium.

chemical potential is of the forrﬁ(x)z,us(x) . Requiring

R'=R?=0 impliesg; =g,=0, which, in turn, demands that D. Local equilibrium solution for the SU(N,) plasma

the respective components of the gluon chemical potential
vanish, i.e.,,ué=,ug=0. DemandingR®=0 is only fulfilled
if

1 1
+ ch(p,X)go(pl,X)— Zqo(p,X)gc(pl,X)- (87)

We find here the local equilibrium solutions for the
SU(N,) plasma. The quark-quark and antiquark-quark scat-
tering processes are treated as for thé2dase. The solu-
3 tions of Eqgs.(66), (68) read
pa(X)=pg(%). (89) ) )
o _ _ _ Q(p.x)=exd — BO)[U,(X)p"— up(X) —u(X)1], (92)

Thus, Eq.(70b) is satisfied in arbitrary gauge if the relation
(44) holds. oY - _ vy -

The dominant processes that have been considered up to Qp.x) = exi = BOLULXIP™ pap(X) + (). 93)
now do not introduce any relation between the quark and
antiquark baryon chemical potentials and they do not con- The conditions for cancellation of the collision terms dis-
strain the scalar gluon potenti;alg. It is not surprising as cussed in Sec. IV A, which involve gluons, are much more
these processes do not change the number of quarks, angemplicated than those for $2). Here, we will treat them

quarks, or gluons. To get the relation betwees, ;b and Perturbatively only. The requirement of vanishing of the col-
ision term representing gluon-gluon scattering is expressed

,ug, the subdominant process of quark-antiquark creation OE . o .
annihilation has to be taken into account. Let us analyze thi y Eq.(72). We f_|rst note that a dlstr|k_)ut|or_1 function propor-
process. The color structure of Eq§6a), (76b) is rather tional to che 'd(gm'ty matrix, _Wh'Ch S of the form
complex. However, one checks that these equations a@f —Bg(UgP,—ug)] satisfies this equation. We now look
solved by the local equilibrium functiof#2) in the diagonal ~for more general solutions written as
gauge(47), (48). In particular, one finds that ) 0 ~
G(p,x)=exf — Bg(x)(Ug(X)p,— ug(X)) JF[a(x)],
TIQQ,1+4 THQITH Q) 99
:e*B[U~(P+pl)*Mb+;bl(1o+4 Bruatg e By (89) wherfa we h.ave factored out the(y part of the distrlbution
function; F is an arbitrary function ofa(x) = B4(X) ug(X)

PTG TG/ 1-2 TIG' G/ 1+2 TG TG/ with u4(x) being any Hermitian Nig— 1)< (Ng—1) matrix.
f 1] GGl TG G, From Eq.(71) one deduces thadt should obey the quadratic
:e—B[u-(p'+Pi)—2ug](10+4 ePfrat 4 e Prs), equation
(90 ~b_ Lo ~ ~17b
ToF[a]T°— E{T T3, Flal} | T{F[a]T°T?]=0,
Thus Eq.(768 demands (95)
Mb+;b=2//«g- (91)  which is trivially satisfied by the unit matrix. We now as-

sume thatF allows for an infinitesimal expansion in
While the checking is rather simple for E.6a), it is much  around the identity. Then,
more difficult for Eq.(76b). To reach the goal we have ex-
pressed the(anti-)quark and gluon distribution functions Fla]=1+a+---, (96)
through the projection§l?7) and (23), respectively, and we
have used the formul@4). Then, one finds that E¢76b) is ~ and Eq.(95) imposes
satisfied if the relatior{91) holds. 1
To get the chemical potentials as in the local equilibrium ar~ Taj. —Tc o
function (42) the binary processes are insufficient. One easily Tl T+ 2T T T a]=0. (97)
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If @ is proportional to the unit matrix, the equation is obvi- in the previous sections. As we have shown in Sec. IV C, the

ously satisfied. However, we exclude this possibility since glominant processes, which are responsible for establishing
scalar chemical potential was already included in tHg)U the colorful equilibrium, do not equilibrate the system with
part of Eq.(94). A different solution of the equation is given respect to the scalar chemical potentials. The relatjofs
by a= a,T2. With the last option, we solve E¢Q5) to sec- =0 andu,= — u,, are achieved at longer time scales. Since
ond order ina, and find we are mostly interested here in the role of color charges in
the hydrodynamic evolution, we neglect complications
5 R caused by the lack of chemical equilibrium and we use the
Fla]=1+a+—5+---. (98)  distribution functions(42) where the relationmg=0 and

2 —
Mp= — wp are built in.
In principle, one can solve the equation iteratively order The equations of hydrodynamics are provided by the mac-

by order ina but the procedure becomes more and mord©Scopic conservation laws of the baryon char@®),
difficult with every order. We will not follow it but the above €nergy-momentuni33), and of the color charge34). Sub-
results suggest that the general solution is of the form stituting the local equilibrium distribution functiori42) into
Egs. (7), (8), (5), one gets the baryon current, the energy-
G(p,x)=exq—ﬁg(x)[u;(x)pv—,ug(x)—,ﬂg(x)]], momentum tensor, and the color current which enter the
(99 equations ofideal hydrodynamics where dissipative effects
are neglected. These quantities read
as it should reduce to tHé¢,= 2 solution(84) with the scalar
hydrodynamic velocity. b (x) = b(x)uk(x 103
We now look for the quark-gluon scattering, and solve Eq. (x)=bEOu(x), (1033
(69) perturbatively for small color chemical potentials of , ) )
quarks and gluons. In Oth order, E9) imposes t“7(x)=[e(x) + p(x) Ju“(x)u”(x) — p(x)g**, (103
T(X)=Tg(x), u#(X)=ug(X). (100
I = M
In the first order in the color chemical potentials, we find that IO =p(x)uk(0), (1039

these should obe
Y where b, &, and p are the densities of, respectively, the

a~ b L.~ ba baryon charge, energy, and color, whedenotes the pres-
Pr()T = AT p (0} TTET sure. In contrast tb, e, andp which are color scalars, the
color densityp is aN X N, matrix. All these thermodynami-
+[ 72, rb]Tr[ﬁ g(x)TbTa]:O, (101 cal quantities are given as
which is only satisfied if 2N T3 - -
= Bu Bul_ o= Bu —Bu
3 5 b= 3—2—[9 bTr[ eP*]—e PHoTr e PH]], (104
Tg(X) = 2T Tr i (x) 7], (102 ™
One could go to higher orders in the expansion but the pro- 6T ~
cedure becomes very tedious. e=3p= ?[Nf(eﬁ“bTr[eB“]
In the same way, one can treat the remaining processes
such as the quark-antiquark annihilation. They lead to the +e—ﬁubTr[e—B7L])+Tr[eﬁﬁg]]' (105

same constraints as those for the(2plasma expressed, in

particular, by Eq(91). 3
The perturbative treatment presented here is concluded as ;- —gT—z[Nf( eﬁ,u,b( eBr_ i-l—r[eﬁ,l])

follows. At zeroth order, the various collision processes al- ™ N

low one to fix the variables which are scalar in color space—

the temperature and hydrodynamic velocity. At first order, _eﬁub(eﬁﬁ_ iTr[efﬁﬁ] )JrzTaTr[Taeﬂﬁg] _
every collision term imposes restrictions on the form of the Nc
matrix chemical potentials. Solving the conditions to all or- (106)

ders should simply provide the solutions, which for classical
statistics are exponential functions of color chemical poten-

tials Now, we consider Eq.33) representing the energy-

momentum conservation. It is well knoW@9] that project-
ing the continuity equation of the energy-momentum tensor
V. CHROMOHYDRODYNAMICS on the hydrodynamic velocity, one gets the condition of the
The form of the local equilibrium distribution function €N{ropy conservation during the fluid motion. Let us see how
determines the character of hydrodynamics obeyed by thié Works here. Multiplying Eq(33) by u*, we get
system. Here, we are going to discuss the hydrodynamic
equations corresponding to the local equilibrium state found u,d,t*"=0 (107
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becausal ,u*=1 andu,u,F*"=0. The latter equality holds 9 1
due to the antisymmetry &F#”. Equation(107) gives (e+p)| r +VV |v=—Vp—2Tr pE+ | XB|.
u,d*e+(e+p)d*u,=0, (108) (117)

which can be rewritten as We note that the nonrelativistic limit, which is taken for the

sake of comparison with the analogous equation of the
electron-ion plasmél], is only applied to the hydrodynamic
velocity. The motion of the fluid’s constituents remains rela-
tivistic.
_ ~ Although the quark-gluon plasma is composed of partons

de=Tds+ u,db+Tr[ udp], 110 . !

© ST o Trdp] (119 of several colors, the hydrodynamic equati@t4) describes
a single fluid. This happens because there is a unique hydro-
dynamic velocity in the local equilibrium stafé2). Various
wheres s the (local) entropy density in the fluid rest frame. €lOr components, which enter the energy-momentum tensor,

The second term in Eq109) vanishes due to the conserva- do not neutralize each other but they are “glued” together in

tion of the ideal baryon flow1033 and the third term also the course of evolution. Such a single fluid chromohydrody-
vanishes as namics was briefly considered long af@] within kinetic

theory. An equation very similar to E¢114) has been re-
~ N — T ] — cently derived 10] directly from a postulated Lagrange den-
T udu(pu™)]=Tr 1D (pu™)]=0. (112 sity. The color current, which enters the Euler’'s equation

, . ~ , discussed if10], is of the formQ . 7* whereQ is the color
The first equality holds becaugeandp commute with each charge and7* is the conserved Abelian current. As seen in

other, and consequently [i[A*,p]]=0. The last equality Egs. (103, J* can be identified with the baryon flow*
expresses the covariant conservation of the ideal color cU{yhan we deal with a system of quarks only. In a multicom-
rent (1039. Thus Eq.(109 finally gives the entropy conser- ponent plasma, however, such an identification is not pos-

vationd,(su)=0. o _ sible because vanishing of the baryon current does not imply
The analog of Euler’s equation is obtained from E2p), vanishing of the color current.

projecting it onto a direction perpendicular . Equiva-
lently, we consider the following combination of Eq83),

(107): VI. DISCUSSION AND SUMMARY

Ta,(SU) + upd, (bu*)+ T wd,(pu*)]=0, (109

by means of the thermodynamic relations

e+p=Ts+u,b+Tr mp], (112)

d Y —uku 0,7 =2 Tifj ,F ], (113 Local equilibrium is only a transient state of a nonequi-
librium system in its course towards global equilibrium.
which gives Thus the question arises how fast such a state is achieved,
) and for how long it survives. We denote the two characteris-
(etp)u’d,u*=("—u*u,d")p+2 T j,F*"]. tic times of interest as, and r;. As we have shown in Sec.
IV, the dominant processes, those with the soft gluon ex-
change in the or u channel, are responsible for establishing
the colorful equilibrium. Since the electric forces are
screened at momentum transfers smaller than the Debye
ur=(yc,yv), j“=(cp,j), FU=E, Fii=¢;B mass (np) the largest contribution to these processes comes
(115 from the small angle scatterings due to the magnetic forces
which are effectively screened at momentum transfers below
with y=(1—v?/c?)~Y? and E, B being the chromoelectric mp. We identify 7, with the relaxation time related to such
and chromomagnetic field, respectively. We have restorethteractions. Then, according to the estimgt8] found for
here the velocity of light to facilitate taking the nonrelativ- the quark-gluon plasma in globdtolorles$ equilibrium
istic limit of the derived hydrodynamic equation. Subtractingwheremp~gT, we have
Eq. (114 for =0 multiplied by v'/c from Eg. (114 for
m=1i, one gets

To get a better insight of the physical meaning of Eg.
(114) we write it down in the three-vector notation where

1
—~g%TIn(1/g). 118
o (7, 9T In(1/g) (118
1-vZc?\ A
1 9 1 1 We note, however, that the relaxation time in the colorful
=— V+—2v—)p—2 Tl’[p - —V(j-E)+ =jXB]|, plasma can significantly differ from Eq118 due to the
¢t gt c c interaction with the background chromodynamic field gener-
(116)  ated by the color currer(é5).
For how long does the colorful equilibrium exist? The
which in the nonrelativistic domairvf<c?) reads answer crucially depends on the process which is responsible

094010-14
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for the plasma neutralization. We have explicitly shown that . -
the dominant processes comply with the finite color chemical 75 Th =500 = 58155, (A1)
potentials. We have also checked that equilibration with re- ¢

spect to the processq—gg leaves the system colorful. We we have the relations of the traces in the fundamental repre-
expect that the collisions, even those beyond binary approxisentation

mation, do not demand vanishing of the color chemical po-

tentials. The point is that in every collision process, which 1 1

changes the particle momenta but not their “macroscopic” T °A7°B]=— —TF[AB]+ 5 TMAITHB],  (A2)

positions, the color current is conserved. Therefore the colli-

sions do not alter the local color charge. 1
The plasma is presumably neutralized due to the collec- T 2A]TI[ TaB]_

tive phenomena: dissipative color currents and damp plasma

waves both caused by uncompensated color charges. Then, (A3)

the characteristic time of the system neutralization is con-

trolled by the color conductivity which is again related to the

estimate(118) [19]. Thus the two times of interest, and 7;

Furthermore, from Eq(Al) one can deduce

2_
are of the same order, and a much more careful analysis is AR Ne 1’ rAbas 1 ) (A4)
needed to establish the domain of applicability of the local 2N, 2N,

equilibrium solution found here. Such an analysis should

take into account not only the interaction with the back- Taking into account

ground fields present in the colorful equilibrium but the ini-

tial nonequilibrium configuration should be also specified. o
At the end let us summarize the most important results of a’b 9N,

this study. The local equilibrium state dictated by the colli-

sional invariants, which follow from the energy-momentum,one evaluates traces of products of generators in the funda-

baryon number, and color charge conservation, is colorfulmental representation. In particular, one finds

i.e., there is a nonvanishing color current in the system. The

baryon chemical potentials of quarks and of antiquarks and

the scalar(colorles$ chemical potential of gluons are con-

strained as in a global equilibriunu,= —u, and ,ug=

The local equilibrium configuration resulting from the can- 1

cellation of collision terms, which represent the most prob- T 27777 = m(fsabyd— 5269+ 5295°¢)

able binary parton interactions, is also colorful with the same ¢

color structure. The colorless chemical potentials, however, abracdr  aacrabdr . sadraber

are unconstrained. The global equilibrium relations among + g (AP = AP+ dTHA)

them emerge when the subdominant processes are taken into

account. It is conjectured that not only binary but even mul-

tiparton collisions comply with the finite color chemical po-

tentials, thus suggesting that the color neutralization of the

plasma occurs not due to the collisions but due to dissipative (A7)

collective phenomena. Proper identification of these pro-

cesses and their quantitative description will be very |mporF orN¢=2 one also has

tant for understanding of the whole equilibration scenario of

1 i
Oapt EdabcTc+ EfabcTc (A5)

1
T r707°] = 7 (d*Pe+if20), (A6)

+ ig(dabrfcdr_ dacrfbdr+ dadrfbcr).

the quark gluon plasma TH 7_::17_b7_c7_d7_e]_ _(5aefbcd+ Scdfabey sbdfaecy 5bCfade)
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APPENDIX: EVALUATION OF TRACES TTATB]=TAJTrB] =T AB'], (A10)

We collect here some useful formulas of the traces com- T TRAITI[ T2B]=TI AB]—Tr[ABT]. (A11)
puted both in the fundamental and adjoint representation.
Due to the identity Using the identity(A9) one also finds
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T TATPTC =if 20, (A12a)

T TATPToTY] = 620 5%+ 5295, (A12b)
Tr[TaTbTCTdTE]: 5adfecb_ 5cdfeab_ 5abfecd.

(A120)

In the adjoint representation of $8), we have the
identity

PHYSICAL REVIEW D 68, 094010(2003

2
belde=— §(5bd506— 6°26°%) — (dprdeer— dperdear).,
(A13)

which, in particular, allows one to compute the totally sym-

metric trace of four generators as
1
2 THTa Tol{Te. Tal ]

1 3
= 5(25ab5cd+ 8% Spgt 6295y) + Zdabsdcds- (A14)
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