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We study an ultrarelativistic QED plasma in thermal equilibrium. Plasmons—photon collective
excitations—are postulated to correspond not to poles of the retarded photon propagator but to poles
of the propagator multiplied by the fine-structure constant. This product is an invariant of the
renormalization group that is independent of an arbitrarily chosen renormalization scale. In addition,
our proposal is physically motivated since one needs to scatter a charged particle off a plasma system to
probe its spectrum of collective excitations. We present a detailed calculation of the QED running coupling
constant at finite temperature using the Keldysh-Schwinger representation of the real-time formalism. We
discuss the issue of how to choose the renormalization scale and show that the temperature is a natural
choice which prevents the breakdown of perturbation theory through the generation of potentially large
logarithmic terms. Our method could be applied to anisotropic systems where the choice of the
renormalization scale is less clear, and could have important consequences for the study of collective
modes.
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I. INTRODUCTION

The spectrum of collective excitations is a fundamental
characteristic of any plasma system as it controls thermo-
dynamic and transport properties of the system. In weakly
coupled QED or QCD plasmas, nontrivial plasmon
dispersion relations can be obtained perturbatively at the
one-loop level. Quantities like the plasma frequency and
the screening mass depend linearly on α ¼ e2=4π for QED
or α ¼ g2=4π for QCD. However, in both QED and QCD
the coupling constant depends on a characteristic energy or
momentum scale which emerges from the renormalization
procedure—one says that the coupling “runs.” We need to
know the relevant energy scale at which to define the
coupling constant when studying collective excitations.
If the system is in equilibrium, there are two possible scales
to choose from: the momentum of the mode under con-
sideration, or the temperature of the plasma. The situation is
even less clear when we deal with nonequilibrium plasmas,
where spectra of collective modes are often very rich;

see e.g., Ref. [1]. It is therefore of interest to develop a
method to study this issue for nonthermalized systems.
This subject is extremely important in the context of

quark-gluon plasmas which are studied experimentally
using relativistic heavy-ion collisions. The dynamics of
the plasma is governed by QCD which is asymptotically
free. This means that the plasma becomes weakly interact-
ing at sufficiently high momentum scales, and perturbative
methods are applicable.
We are particularly interested in nonequilibrium aniso-

tropic QCD plasmas, which exist during some early phase of
the evolution of the system that is produced in a heavy-ion
collision. Anisotropic plasmas produce unstable modes, as
discussed at length in the review [2]. These unstable modes
are damped through interparton collisions, but the damping
effect is higher order in the coupling constant. In the
perturbative regime, the damping effect is small and unstable
modes can play an important role. In a strongly coupled
plasma, unstable modes would not have a significant effect
on the dynamics of the system. The physics of the early-stage
plasma therefore crucially depends on whether or not the
regime of asymptotic freedom is reached.
We intend to study this problem systematically in the

context of quark-gluon plasma, both in and out of equilib-
rium. In this paper we will start with the simpler case of a
thermalQEDplasma using the real-timeKeldysh-Schwinger
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formalism [3,4], which is applicable to both equilibrium and
nonequilibrium systems. Since quark masses are usually
neglected in QCD plasma, we consider here an ultrarelativ-
isticQEDplasmawhere electrons andpositrons are treated as
massless. We focus on photon collective modes, which are
called plasmons. To obtain their dispersion relations, we
study the resumed retarded propagator at the one-loop level.
In equilibrium systems, collective modes are usually

studied at the leading order of the hard-thermal-loop (HTL)
approximation [5], which assumes that the system’s tem-
perature is much bigger than the frequency and wave vector
of the collective mode. In these calculations, it is conven-
tional to not consider the effect of the polarization of the
vacuum, since this contribution is subleading within the
HTL approximation. The effective coupling emerges beyond
leading order, as a result of vacuum polarization effects.
In this paper, we will study this issue in a more general
context, with particular emphasis on the question of how the
renormalization scale should be chosen in an anisotropic
system.
To explain the problem, let us discuss briefly the

example of the thermodynamic pressure. A perturbative
calculation produces a series of terms that depend on the
renormalized coupling eðμÞ and logarithms of the form
lnðμ=TÞ, where μ is the renormalization scale and T is the
temperature. If we choose μ ¼ T, we obtain a simpler
expression for the pressure with the logarithms set to zero
and the surviving factors of eðμÞ replaced by eðTÞ. It is
commonly said that we resum to all orders the logarithm
terms into a running coupling constant which is defined at
the appropriate scale. This has been verified to order e5ðμÞ
by explicit calculation [6–8]. We also note that if the
renormalization scale μ were chosen to be some number
much bigger or smaller than the temperature, the perturba-
tive expansion would break down, due to the appearance of
large log terms. For this reason one says that the choice
μ ¼ T prevents the appearance of large logs. The method to
absorb the logarithm terms into the running coupling
constant is discussed in the context of vacuum field theory
in Chapter 18 of Ref. [9]. We emphasize that in the
calculation of a thermodynamic quantity, the only scale in
the problem is the temperature and therefore it is natural to set
the renormalization scale equal to the temperature, as
discussed above. The study of plasmons ismore complicated
because more than one momentum scale comes into play.
Physically meaningful quantities should be scale inde-

pendent, but the renormalized photon propagator is not
renormalization group invariant. However, the product of
e2ðμÞ and the propagator is. We therefore postulate that
plasmons correspond not to poles of the retarded photon
propagator but to poles of this product. We stress that this
proposal is also motivated physically, since one needs to
scatter a charged particle off the plasma system to probe its
spectrum of collective photon excitations. The product of
the squared coupling and the propagator has the same

structure as the pressure in terms of its dependence on the
renormalization scale: it is given perturbatively by a series
of terms depending on eðμÞ and lnðμ=TÞ that can be
rewritten by absorbing all log terms into a coupling eðTÞ.
Throughout the paper we use natural units where

ℏ ¼ c ¼ kB ¼ 1. The indices i, j, k ¼ 1, 2, 3 and μ, ν ¼ 0,
1, 2, 3 label, respectively, the Cartesian spatial coordinates
and those of Minkowski space. The signature of the metric
tensor is ðþ;−;−;−Þ.

II. RESUMMED PHOTON PROPAGATOR

A. Vacuum propagator

The resumed time-ordered propagator is defined through
the Dyson-Schwinger equation as

ðD−1ÞμνðkÞ ¼ ðD−1
0 ÞμνðkÞ − ΠμνðkÞ; ð1Þ

whereΠμνðkÞ is the time-ordered self-energy or polarization
tensor and Dμν

0 ðkÞ is the free propagator. We consider two
gauges: the general covariant gauge (GCG) and temporal
axial gauge (TAG). In these two gauges the noninteracting
propagators are

GCG∶ Dμν
0 ðkÞ ¼ 1

k2 þ i0þ

�
gμν − ð1 − ξÞ k

μkν

k2

�
; ð2Þ

TAG∶ Dμν
0 ðkÞ ¼ 1

k2 þ i0þ

�
gμν þ ð1þ ξÞ kμkν

ðk · nÞ2

−
kμnν þ nμkν

ðk · nÞ
�
; ð3Þ

where ξ is an arbitrary gauge parameter that physical results
should be independent of and the four-vector nμ ¼
ð1; 0; 0; 0Þ defines the reference frame where the gauge
condition is imposed.
In vacuum, gauge and Lorentz invariance dictate that

the self-energy depends only on k2 (not k) and that it can be
written as the product of a four-dimensionally transverse
tensor and a scalar function Pðk2Þ in the form

Πμν
vacðkÞ ¼ ðgμνk2 − kμkνÞPðk2Þ: ð4Þ

In GCG inverting the Dyson-Schwinger equation (1) gives

DμνðkÞ ¼ 1

k2ð1 − Pðk2ÞÞ
�
gμν −

kμkν

k2

�
þ ξ

kμkν

k2
; ð5Þ

and in strict (ξ ¼ 0) TAG we obtain

−DijðkÞ ¼ 1

k2ð1 − Pðk2ÞÞT
ijðkÞ þ 1

k20ð1 − Pðk2ÞÞL
ijðkÞ;

ð6Þ
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where we have defined

LijðkÞ≡ kikj

k2
; TijðkÞ≡ δij −

kikj

k2
: ð7Þ

From now on when we refer to TAG we always mean with
the choice of the gauge parameter ξ ¼ 0. One advantage of
working in TAG is that the components of the propagator
that have time-like indices are identically zero, and the
components with only spatial indices are decomposed in
terms of two projection operators: one three-dimensionally
transverse, TðkÞ, and the other three-dimensionally longi-
tudinal, LðkÞ.
The one-loop vacuum contribution to the self-energy can

be calculated in Euclidean space using dimensional regu-
larization. The procedure is standard and the result can be
found in many textbooks; see e.g., Chapter 11.2 of
Ref. [10]. Rotating back to Minkowski space gives

Pðk2Þ ¼ −
e2

2π2

�
1

6

�
1

δ
− γ

�
þ
Z

1

0

dxxð1 − xÞ

× ln

�
4πM2

m2
e − xð1 − xÞk2

��
; ð8Þ

whereM is amass parameter introduced by the regularization
procedure. The parameter δ is related to the dimension d
of themomentum space throughd ¼ 4 − 2δ, and γ ≈ 0.5772
is the Euler-Mascheroni constant. In the formula (8) we keep
a finite electron massme, as is usually done in vacuumQED.
We note that when k2 < 0 the argument of the logarithm is
positive definite andPðk2Þ is real and analytic.When k2 > 0
the logarithm has a branch cut when its argument becomes
negative. The maximum value of the factor xð1 − xÞ for x ∈
½0; 1� is 1=4 and therefore the branch cut begins at k2 ¼ 4m2

e,
which is the threshold for particle-antiparticle production.
The sign of the imaginary part is determined by including the
appropriate infinitesimal imaginary regulator.

B. Medium propagator

Thermal field theory can be formulated in a Lorentz
covariantway [11]; nevertheless there is a preferred reference
frame in the problem which is the rest frame of the heat
bath, which we define with the four-vector nν ¼ ð1; 0; 0; 0Þ,
as in Eq. (3). The reason TAG is particularly useful at finite
temperature is that the gauge condition is imposed in the rest
frame of the heat bath.
An arbitrary symmetric tensor can no longer be decom-

posed in terms of the coefficients of two tensors, and we
must extend the basis to include four independent tensors.
Using the notation of Ref. [5] (see Sec. 5.2.2), we introduce
the four-vector

nμT ≡
�
gμν −

kμkν

k2

�
nν; ð9Þ

which is the component of nν transverse to kμ, and define

AμνðkÞ≡ gμν −
kμkν

k2
−
nμTn

ν
T

n2T
; BμνðkÞ≡ nμTn

ν
T

n2T
;

CμνðkÞ≡ kμnνT þ nμTk
ν; EμνðkÞ≡ kμkν

k2
: ð10Þ

The sum of A and B is the four-dimensionally transverse
tensor

AμνðkÞ þ BμνðkÞ ¼ gμν −
kμkν

k2
: ð11Þ

The tensors A and B are individually four-dimensionally
transverse, and A is three-dimensionally transverse. We
note for future reference the relations

TijðkÞ ¼ −AijðkÞ;

LijðkÞ ¼ −
k2

k20
BijðkÞ ¼ −

k2

2k0k2
CijðkÞ ¼ k2

k2
EijðkÞ: ð12Þ

The full multiplication table for the tensors (10) is shown in
Table I.
The polarization tensor is four-dimensionally transverse

(due to the Ward identity) and therefore ΠμνðkÞ can be
decomposed using only the tensors A and B as

ΠμνðkÞ ¼ ΠTðkÞAμνðkÞ þ ΠLðkÞBμνðkÞ; ð13Þ

where the indices T and L indicate the scalar coefficients of
the tensors that are three-dimensionally transverse and
longitudinal, respectively.
Wewill calculate the retarded polarization tensor.We note

that the Dyson-Schwinger equation (1) gives the resummed
retarded propagator in terms of the noninteracting retarded
propagator and retarded polarization tensor, without cou-
pling to other causal structures (which is not true if oneworks
with the time-ordered propagator). Decomposing the free
propagator in terms of the tensors (10) and inverting the
Dyson-Schwinger equation (1) gives the propagator in GCG

DμνðkÞ ¼ DTðkÞAμνðkÞ þDLðkÞBμνðkÞ

þ ξ

k2 þ ik00þ
EμνðkÞ; ð14Þ

TABLE I. Multiplication table for the tensors defined in
Eq. (10).

A E B C

A A 0 0 0
E 0 E 0 C
B 0 0 B C
C 0 C C −k2ðBþ EÞ
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and in TAG

−DijðkÞ ¼ DTðkÞTijðkÞ þ k2

k20
DLðkÞLijðkÞ; ð15Þ

where

DT;LðkÞ≡ 1

k2 − ΠT;LðkÞ : ð16Þ

The positions of poles of the photon propagator should be
independent of the chosen gauge and the formulas (14), (15),
and (16) are clearly consistent with gauge independence. In
either gauge, a transverse plasmon is found as a solution of
the dispersion equation k2 − ΠTðkÞ ¼ 0 and a longitudinal
plasmon is the solution of k2 − ΠLðkÞ ¼ 0.
In the next section we will show that the retarded

polarization tensor can be divided into a vacuum piece,
and a medium contribution that vanishes in the limit that the
distribution function goes to zero. We write

ΠT;LðkÞ ¼ ΠT;L
vac ðkÞ þ ΠT;L

medðkÞ; ð17Þ

with

ΠT
vacðkÞ ¼ ΠL

vacðkÞ ¼ k2Pðk2Þ: ð18Þ

We comment briefly on the fact that we have discussed the
time-ordered vacuum polarization tensor in Sec. II A, while
in this section we work with the retarded polarization tensor
which is directly relevant to the study of collective modes.
The time-ordered vacuum polarization tensor can be Wick
rotated to Euclidean space where we can perform the
dimensional regularization. On the other hand, the Dyson-
Schwinger equation defined on the Keldysh-Schwinger
contour can be most easily solved for the retarded polariza-
tion tensor, as explained above Eq. (14). In Sec. IV we will
need to combine thevacuumandmediumcontributions to the
self-energy, but this is straightforward because the real parts
of the time-ordered and retarded self-energies are equal to
each other [5], and the imaginary parts are finite and play
no role in our calculation. In Eqs. (17) and (18), and all
following equations, it should be understood that ΠT;L

vac ðkÞ
will be assigned retarded boundary conditions.
Using Eqs. (17) and (18), we can rewrite the transverse

and longitudinal contributions to the propagator (16) as

DT;LðkÞ≡ 1

k2ð1 − Pðk2ÞÞ − ΠT;L
medðkÞ

: ð19Þ

In the vacuum limit ΠT;L
medðkÞ → 0 and using Eqs. (11) and

(13) we recover the usual form for the vacuum polarization
tensor (4). We see also that Eqs. (14) and (15) reduce to
Eqs. (5) and (6). In addition, we have fromEqs. (15) and (19)
that in vacuum the coefficient of the three-dimensionally

transverse tensor has a pole when k2 ¼ 0, but the coefficient
of the three-dimensionally longitudinal tensor has a pole at
k20 ¼ 0. Physically this tells us that in vacuum there is no
propagating three-dimensionally longitudinal mode, and
the appearance of these modes is a medium effect.

III. RETARDED POLARIZATION TENSOR

Weldon computed [11] the real part of the time-ordered
polarization tensor of an ultrarelativistic QED plasma, which
equals the real part of the corresponding retardedpolarization
tensor. He obtained the leading HTL contribution and the
next-to-leading-order contribution from the one-loop dia-
gram. We have calculated the real part of the one-loop
retarded polarization tensor, to next-to-leading order. We
apply theKeldysh representation of the real-time formulation
of statistical field theory. Our method does not explicitly
require the use of thermal distribution functions, and we
expect it to be generalizable to anisotropic systems that can
be described by a distribution function which has the same
asymptotic form as a thermal distribution. We have shown
that in equilibrium our method reproduces the result of
Ref. [11]. Our calculation is described in Appendix A, and
further details can be found in Refs. [4,12]. A related
calculation was done recently using an on-shell effective
field theory approach [13,14].
The retarded polarization tensor is

ΠμνðkÞ ¼ 2e2
X
n¼�1

Z
d3p
ð2πÞ3

1 − 2nfðjpjÞ
jpj

×
2pμpν þ pμkν þ kμpν − gμνp · k

ðpþ kÞ2 þ iðp0 þ k0Þ0þ
����
p0¼njpj

; ð20Þ

where nfðjpjÞ≡ ðejpj=T þ 1Þ−1 is the distribution function
of massless fermions.
The vacuum and medium contributions can be easily

separated in the expression (20) as required by Eq. (17). The
real part of thevacuumpiece is ultraviolet divergent andmust
be renormalized. In Sec. II Awe have renormalized the time-
ordered vacuum self-energy, by performing a Wick rotation
to Euclidean space and using dimensional regularization.
(As alreadymentioned, the real parts of the retardedand time-
ordered self-energies are equal.) The medium part is ultra-
violet finite due to the distribution function which goes
exponentially to zero as jpj approaches infinity.
The polarization tensor (20) is symmetric [ΠμνðkÞ ¼

ΠνμðkÞ] and four-dimensionally transverse [kμΠμνðkÞ ¼ 0].
According to Eq. (13), such a tensor depends on only two
independent scalar functions, which we have called ΠTðkÞ
and ΠLðkÞ and defined in Eq. (13). The easiest way to
obtain ΠTðkÞ and ΠLðkÞ is to calculate the zero-zero
component and the trace of the polarization tensor, and
to use the relations
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ΠTðkÞ ¼ 1

2

�
Πμ

μðkÞ þ k2

k2
Π00ðkÞ

�
;

ΠLðkÞ ¼ −
k2

k2
Π00ðkÞ: ð21Þ

We have calculated the medium part of the one-loop
retarded polarization tensor to next-to-leading order in the
expansion in ðk0=T; jkj=TÞ. We give some details of our
method in Appendix B. To leading order one obtains the
familiar HTL results

½Π00
medðkÞ�LO ¼ e2T2

3

�
1 −

k0
2jkj ln

���� jkj þ k0
jkj − k0

���� − iπΘð−k2Þ
�
;

½Πμ
medμðkÞ�LO ¼ e2T2

3
: ð22Þ

The next-to-leading-order (NLO) contributions are

½Π00
medðkÞ�NLO ¼ e2k2

12π2
ln

� ffiffiffi
8

p
k2

T2

�
;

½Πμ
medμðkÞ�NLO ¼ −

e2k2

4π2
ln

�
4k2

T2

�
: ð23Þ

We note that Eqs. (22) and (23) show that there is a nonzero
imaginary part when k2 < 0. This is exactly the opposite
behavior from what was found in vacuum [see Eq. (8)]
where we saw that the imaginary part is nonzero only for
time-like momenta, in which case the virtual photon can
decay into physical final states. For the medium contribu-
tion, the nonzero imaginary part of the self-energy appears
for space-like momenta and corresponds physically to the
scattering of electrons and positrons with momenta of order
T on the low-momentum photon. In plasma physics, this
phenomenon is known as Landau damping. We also note
that the results (22) and (23) agree to next-to-leading order
with those given in Ref. [11].

IV. RENORMALIZATION

Renormalization is usually done by including counter-
terms in the Lagrangian and reexpressing bare quantities in
terms renormalized ones. The divergent part of the counter-
terms are chosen to cancel the divergences in the n-point
functions, and the finite parts are determined by enforcing a
chosen renormalization condition. We write the renormal-
ized propagator

D̂T;Lðk;μÞ≡ 1

Z3ðμÞ
DT;LðkÞ ¼ 1

k2ð1− P̂ðk2;μÞÞ−ΠT;L
medðkÞ

;

ð24Þ

where the first part of the equation defines the renormal-
ization constant Z3, and μ is a new scale that enters through
the renormalization condition. We distinguish renormalized
quantities from their nonrenormalized counterparts by

adding hats to the former ones and explicitly showing their
dependence on μ. Our renormalization condition is that in
the vacuum limit, where the medium part of the polarization
tensor vanishes, the renormalized propagator with k2 → −μ2
coincides with the free propagator. This condition can be
enforced by shifting

Pðk2Þ → P̂ðk2; μÞ ¼ Pðk2Þ − Pð−μ2Þ; ð25Þ
which gives Π̂μν

vacðkÞjk2¼−μ2 ¼ 0 and provides the renormal-
ization constant as

Z3ðμÞ ¼ 1þ Pð−μ2Þ: ð26Þ
We note that to obtain the results in Sec. III for the

medium contribution to the self-energy we set the electron
mass to zero, because we are interested in an ultrarelativ-
istic plasma where the electron mass is assumed negligible
compared to the temperature. In the vacuum calculation
that we are discussing here, we must therefore also set
me ¼ 0 for consistency. The me → 0 limit is conventional
in the vacuum calculation anyway, because the integrals
that are calculated are dominated by their ultraviolet
contributions. With me ¼ 0 Eqs. (8) and (25) give

P̂ðk2; μÞ ¼ e2

12π2
ln

�
−k2

μ2

�
: ð27Þ

We mention again that the argument of the logarithm in
Eq. (27) indicates that the self-energy has an imaginary part
for k2 > 0, which means physically that a virtual time-like
photon can decay into physical final states. Using retarded
boundary conditions we take k2 → k2 þ ik00þ and rewrite
the formula (27) as

P̂ðk2; μÞ ¼ e2

12π2

�
ln

�jk2j
μ2

�
− iπΘðk2Þsgnðk0Þ

�
: ð28Þ

Substituting the expression (28) into Eq. (24) provides

D̂T;Lðk; μÞ

¼ 1

k2½1 − ê2ðμÞ
12π2

ðlnðjk2j
μ2
Þ − iπΘðk2Þsgnðk0ÞÞ� − ΠT;L

medðkÞ
;

ð29Þ
where the medium contributions are given in Eqs. (22) and
(23). The coupling constants in Eq. (28) are renormalized
coupling constants (which are defined in the next section)
and should be properly written as a function of the scale μ.
This is made explicit in Eq. (29), and the coupling constants
in the medium contribution in this equation should also be
taken to be renormalized coupling constants. Using Eqs. (22)
and (23) and replacing ê2ðμÞ by 4πα̂ðμÞ we obtain

D̂T;Lðk; μÞ ¼ 1

k2½1 − α̂ðμÞ
3π lnðT2

μ2
Þ� − α̂ðμÞπT;LðkÞ

; ð30Þ
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where πT;LðkÞ indicates contributions without potentially
large logarithmic factors, which are therefore of no interest to
us. We stress that πT;LðkÞ are defined so that they do not
include the overall factor α̂ðμÞ, and should not be confused
with ΠT;LðkÞ.

V. RENORMALIZATION GROUP INVARIANT
AND COLLECTIVE MODES

We postulate that collective modes correspond not to
poles of the photon propagator but to poles of the photon
propagator multiplied by the fine-structure constant α.
One motivation is that physical quantities should be inde-
pendent of the renormalization scale μ, and the product
α̂ðμÞD̂L;Tðk; μÞ is a renormalization group invariant, as
discussed at length in Chapter 9 of the classical text [15].
Our idea is also motivated physically: to probe a photon
collective mode one needs to scatter a charged particle off
the plasma system. The charge should therefore be consid-
ered together with the propagator from which the collective
mode will be determined.
In vacuum it is natural to choose the renormalization

scale to be equal to the momentum scale
ffiffiffiffiffiffiffi
jk2j

p
, which is

the only physical scale available. We will show below that
at finite temperature one should choose μ ¼ T.
We start by deriving the equation for the running coupling

constant, which describes how the coupling constant evolves
with the scale at which it is defined. To satisfy the Ward
identity the charge must be renormalized using the previ-
ously introduced renormalization constant Z3ðμÞ given by
Eq. (26)

α̂ðμÞ ¼ Z3ðμÞα: ð31Þ
Since the bare coupling constant on the right side of Eq. (31)
is independent of μ, the evolution of α̂ðμÞ is determined by
the equation

μ
dα̂ðμÞ
dμ

¼ βðμÞ; ð32Þ
where the beta function is defined as

βðμÞ≡ μ
dZ3ðμÞ
dμ

α̂ðμÞ
Z3ðμÞ

: ð33Þ

UsingEq. (26) together with the formula (8), thewell-known
beta function at the one-loop level is found as

βðμÞ ¼ 2

3π
α̂2ðμÞ; ð34Þ

and the solution of the evolution equation (32) equals

α̂ðμÞ ¼ α̂ðμ0Þ
1 − αðμ0Þ

3π lnðμ2
μ2
0

Þ
; ð35Þ

with the famous Landau pole structure.
Equations (24) and (31) clearly show that the product

αðμÞDT;Lðk; μÞ is a renormalization group invariant. We see
this explicitly by writing

α̂ðμÞD̂T;Lðk; μÞ ¼ α̂ðμÞ
1 − α̂ðμÞ

3π lnðT2

μ2
Þ

1

k2 − α̂ðμÞπT;LðkÞ

¼ α̂ðTÞ 1

k2 − α̂ðμÞπT;LðkÞ ; ð36Þ

where the first line is obtained using Eq. (30) and the
equality holds up to Oðα̂2Þ. The factor α̂ðTÞ in the second
line comes from Eq. (35), which also makes it clear that
the remaining factor α̂ðμÞ can be written as α̂ðTÞ since the
difference between these two quantities is of order α̂2, and
we have already dropped terms of this order. Equation (36)
therefore becomes

α̂ðμÞD̂T;Lðk; μÞ ¼ α̂ðTÞ
k2 − α̂ðTÞπT;LðkÞ ¼ α̂ðTÞD̂T;Lðk; TÞ;

ð37Þ
which shows that the natural renormalization scale of
collective modes in the thermal plasma is the temperature.

VI. CONCLUSIONS AND OUTLOOK

We claim that dispersion relations of plasmons should
not be calculated by finding the poles of the retarded
photon propagator, but rather by finding poles of the
propagator multiplied by the fine-structure constant. This
product is a renormalization group invariant, as the ampli-
tude of a physical process should be. We have given a
physical argument to use this product to define plasmons.
We have also shown that the statement that α̂ðμÞD̂T;Lðk; μÞ
is a renormalization group invariant is equivalent to the
statement that the polarization tensor is given perturbatively
by a series of terms depending on α̂ðμÞ and lnðμTÞ that can be
rewritten by absorbing all log terms into a running coupling
α̂ðTÞ using Eq. (35).
We are going to extend the analysis presented in this

paper to the case of fermionic collective modes in QED
plasma, which are conventionally determined by the poles
of the retarded electron propagator. In this case however,
the propagator multiplied by the coupling constant is not a
renormalization group invariant, but instead, the quantity
that is independent of the renormalization scale is the
product of the electron propagator and the vertex function.
Our ultimate goal is to study collective modes of QCD

plasma, with a particular emphasis on anisotropic systems.
The structure of anisotropic plasmas is much more com-
plicated and the choice of the renormalization scale is not
clear, but our method is rather general and hopefully can be
applied to such a system.
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APPENDIX A: RETARDED
POLARIZATION TENSOR

In this Appendix we give some details of our calculation
of the one-loop retarded polarization tensor (20). We work
in the real-time formulation of finite-temperature field
theory, using the Keldysh representation. The one-loop
contribution to the retarded polarization tensor can be
found rather easily starting with what is often called the
1-2 basis; see e.g., Sec. IVA of Ref. [16], but we sketch
here a more general method reviewed in Ref. [4] which is
applicable to multiloop diagrams.
The electron propagator is a 2 × 2 matrix of the form

G ¼
�
Grr Gra

Gar Gaa

�
¼

�
Gsym Gret

Gadv 0

�
; ðA1Þ

where the retarded, advanced and symmetric propagators
are given by

GretðpÞ ¼ ðpþmeÞrðpÞ;
GadvðpÞ ¼ ðpþmeÞaðpÞ;
GsymðpÞ ¼ ðpþmeÞfðpÞ; ðA2Þ

with

rðpÞ≡ 1

p2 −m2
e þ i0þsgnðp0Þ

;

aðpÞ≡ 1

p2 −m2
e − i0þsgnðp0Þ

;

fðpÞ≡ −2πi½ð1 − 2nfðpÞÞΘðp0Þ
þ ð1 − 2n̄fð−pÞÞΘð−p0Þ�δðp2 −m2

eÞ; ðA3Þ

where nfðpÞ and n̄fðpÞ are the fermion and antifermion
distribution functions. The self-energy has the form

Π ¼
�Πrr Πra

Πar Πaa

�
¼

�
0 Πadv

Πret Πsym

�
ðA4Þ

and the vertex function is a 2 × 2 × 2 tensor which can be
written as

Γμ ¼ −ieγμ
� fΓrrr;Γrrag fΓrar;Γraag
fΓarr;Γarag fΓaar;Γaaag

�

¼ −ieγμ
� f0; 1g f1; 0g
f1; 0g f0; 1g

�
: ðA5Þ

The contribution to the retarded self-energy from the
one-loop diagram is

iΠμν
retðkÞ ¼ iΠμν

arðkÞ ¼ ð−ieÞ2
2

X
ii0jj0

Z
d4p
ð2πÞ4 γ

μΓaij

× Gii0 ðpþ kÞGjj0 ðpÞγνΓri0j0 : ðA6Þ

The sum over Keldysh indices fi; i0; j; j0g ∈ fr; ag is easily
done because Gaa ¼ 0 and a vertex function with an odd
number of a indices vanishes. The result is

Πμν
retðkÞ ¼ i

e2

2

Z
d4p
ð2πÞ4 Tr½γ

μð=pþmeÞγνð=kþ =pþmeÞ�

× ½fðpÞrðpþ kÞ þ aðpÞfðpþ kÞ�: ðA7Þ

From this point on we assume that the system is in thermal
equilibrium, we set the electron mass to zero, and we take
nfðpÞ ¼ n̄fð−pÞ ¼ ðejpj=T þ 1Þ−1. Performing the trace
over gamma matrices, and changing variables to combine
the two terms in the square brackets in Eq. (A7), one
obtains

Πμν
retðkÞ ¼ 4ie2

Z
d4p
ð2πÞ4 ½2p

μpν þ pμkν þ kμpν

− gμνp · ðpþ kÞ�fðpÞrðpþ kÞ: ðA8Þ

It is straightforward to perform the integral over p0 using
the delta function in the symmetric propagator [see
Eq. (A3)]. The resulting expression for the photon self-
energy is given in Eq. (20).

APPENDIX B: MEDIUM CONTRIBUTION

We present here some details of our calculation of the
medium contribution to the retarded polarization tensor in
Eq. (20). The integrals of interest are

Π00
medðkÞ ¼ −

2e2

π2

Z
∞

0

djpjjpjnfðjpjÞ
X
n¼�1

1

2

Z
1

−1
dxI00;

ðB1Þ

Πμ
medμðkÞ ¼ −

2e2

π2

Z
∞

0

djpjjpjnfðjpjÞ
X
n¼�1

1

2

Z
1

−1
dxIμμ;

ðB2Þ

with

I00 ≡ njpjk0 þ 2p2 þ p · k
2ðnjpjk0 − p · kÞ þ k2 þ in0þ

;

Iμμ ≡ −
2ðnjpjk0 − p · kÞ

2ðnjpjk0 − p · kÞ þ k2 þ in0þ
;
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where x≡ p·k
jpjjkj. To calculate Π00

medðkÞ and Πμ
medμðkÞ to

leading order we expand I00 and Iμμ in ðk0=jpj; jkj=jpjÞ
which gives

I00LO ¼ −
2p2k2

ð2njpjk0 − 2p · kþ in0þÞ2

þ 2p2 þ njpjk0 þ p · k
2njpjk0 − 2p · kþ in0þ

;

IμμLO ¼ 2jkjx − 2nk0
2nk0 − 2jkjxþ in0þ

:

Performing the x integral gives the familiar HTL results (22).
As a check of our notation we observe that Eq. (21)

shows that

lim
k0→0

1

k2 − ΠL
medðkÞ

¼ lim
k0→0

k2

k2ðk2 þ Π00
medðkÞÞ

ðB3Þ

and from Eq. (22) we find the pole at imaginary jkj ¼ imD

that corresponds to the screening mass m2
D ¼ e2T2=3.

We find the NLO contribution from

ΠNLOðkÞ ¼ −
2e2

π2

Z
∞

0

djpjjpjnfðjpjÞ

×

�X
n¼�1

1

2

Z
1

−1
dxðI − ILOÞ

�
: ðB4Þ

The square brackets in Eq. (B4) will be denoted χ00 or
trχ. There are two kinds of terms in the integrand: those
of the form ðA − Bxþ i0þÞ−1, and those with the form
ðA − Bxþ i0þÞ−2. We separate the contributions from
these two types of terms by writing χ00 ¼ χ001 þ χ002 and
trχ ¼ trχ1 þ trχ2. It is straightforward to show that χ002 ¼ 1

and trχ2 ¼ 0. Performing the x integral for the type 1 terms,
we obtain

χ001 ¼ 1

2jpjðω− − ωþÞ
½ðjpj − ω−Þðjpj − ωþÞ

× ðlnðjpj − ω− þ i0þÞ − lnðjpj − ωþ þ i0þÞÞ
− ðjpj þ ω−Þðjpj þ ωþÞðlnðjpj þ ω− þ i0þÞ
− lnðjpj þ ωþ þ i0þÞÞ�; ðB5Þ

trχ1 ¼
ω−ωþ

jpjðω− − ωþÞ
½lnðjpj − ω− þ i0þÞ

− lnðjpj þ ω− þ i0þÞ − lnðjpj − ωþ þ i0þÞ
þ lnðjpj þ ωþ þ i0þÞ�; ðB6Þ

where we have defined ω� ≡ ðk0 � jkjÞ=2. We rewrite the
arguments of the logs using the relations

jpj − ω� þ i0þ ¼ jpj − ω∓ þ i0þ ∓ jkj;
jpj þ ω� þ i0þ ¼ jpj þ ω∓ þ i0þ � jkj;

and expanding the logarithms in jkj=ðjpj � ω� þ i0þÞ,
Eqs. (B5) and (B6) become

χ001 ¼ −1−
ω−ðωþ −ω−Þ

4ðp2 −ω2
− þ i0þÞ þ

ωþðωþ −ω−Þ
4ðp2 −ω2þ þ i0þÞ

−
ðω− −ωþÞð2ω− þωþÞ
12ðp2 − 2ω2

− þ i0þÞ þ ðω− −ωþÞðω− þ 2ωþÞ
12ðp2 − 2ωþ

þi0þÞ
;

ðB7Þ

trχ1 ¼ −
ω−ωþ

p2 − ω2
− þ i0þ

−
ω−ωþ

p2 − ω2þ þ i0þ
: ðB8Þ

The term −1 on the right side of the first line in Eq. (B7)
cancels the contribution from χ002 . The remaining terms in
Eqs. (B7) and (B8) are substituted into Eq. (B4).
The last step is to perform the remaining integral over

jpj. We use the identity nfðjpjÞ ¼ nbðjpjÞ − 2nbð2jpjÞ,
where nfðjpjÞ and nbðjpjÞ are fermionic and bosonic
equilibrium distribution functions, and rescale variables
so that all terms have a factor nbðjpjÞ. Finally we take the
real part of each self-energy component and use

Z
∞

0

djpjjpjnBðjpjÞP
1

p2 −M2
¼ −

1

4
ln
�
T2

M2

�
þ � � � ðB9Þ

whereM is assumed positive and real, and the dots indicate
terms higher order in M=T. The final next-to-leading-order
result is given in Eq. (23).
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