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A system of gluon fields generated at the earliest phase of relativistic heavy-ion collisions can be
described in terms of classical fields. Numerical simulations show that the system is unstable but a character
of the instability is not well understood. With the intention to systematically study the problem, we analyze
a stability of classical chromomagnetic and chromoelectric fields which are constant and uniform. We
consider the Abelian configurations discussed in the past where the fields are due to the single-color
potentials linearly depending on coordinates. However, we mostly focus on the non-Abelian configurations
where the fields are generated by the multicolor noncommuting constant uniform potentials. We derive a
complete spectrum of small fluctuations around the background fields which obey the linearized Yang-
Mills equations. The spectra of Abelian and non-Abelian configurations are similar but different and they
both include unstable modes. We briefly discuss the relevance of our results for fields which are uniform
only in a limited spatial domain.
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I. INTRODUCTION

Soon after the discovery of asymptotic freedom [1,2],
when quantum chromodynamics was recognized as an
underlying theory of strong interactions, the stability of
various configurations of classical chromodynamic fields
was investigated [3–8]. These studies, which revealed that
numerous configurations are actually unstable, were not
performed with a specific application in mind, rather it was
about better understanding the newborn theory.
Today, classical chromodynamics is often used as an

approximation of quantum theory. We are interested in the
early phase of relativistic heavy-ion collisions experimen-
tally studied at RHIC and the LHC. Within the Color Glass
Condensate (CGC) approach, see, e.g., the review articles
[9,10], color charges of valence quarks of the colliding
nuclei act as sources of long wavelength chromodynamic
fields which can be treated as classical because of their large
occupation numbers. The system of nonequilibrium gluon
fields created in the nuclear collision is called glasma. At the
earliest moment of the collision, the glasma is dominated by
the chromoelectric and chromomagnetic fields parallel to the
beam axis and later on transverse fields show up.

It has been found numerically [11,12], see also [13], that
there is an unstable exponentially growing mode in the
course of glasma’s evolution. The mode was identified as
the Weibel instability [14] which is well known in physics
of electromagnetic plasma. A presence of the chromody-
namic Weibel instability in relativistic heavy-ion collisions
was first argued in [15] and further on studied in detail, see
the review [16].
The Weibel instability occurs when charged particles

with anisotropic momentum distribution interact with the
magnetic field generated by the particles. As explained in
detail in [16], there is an energy transfer from the particles
to the field which causes its exponential growth. In glasma
there are no particles but high-frequency modes of classical
fields are often treated as particles [11,12].
The problem of unstable glasma was studied in the series

of papers [17–20] where a particular attention was paid to
strong longitudinal chormoelectric and chromomagnetic
fields generated at the earliest phase of nuclear collisions. It
was suggested [17–20] that the unstable mode found in the
numerical simulation [11,12] is not the Weibel but rather
Nielsen-Olesen instability [21] which occurs when spin 1
charged particles circulate in a uniform magnetic field.
There was considered [19] a possible role of the vacuum
instability due to strong electric field which according to
the Schwinger mechanism [22] causes a spontaneous
generation of particle-antiparticle pairs from vacuum. A
stability of oscillatory chromomagnetic fields was also
studied [23] in the context of glasma and a coexistence of
the Nielsen-Olesen instability with the phenomenon of
parametric resonance was found.
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We intend to clarify what are the unstable modes of
evolving glasma. Since the simulation [11,12] was pre-
formed in terms of classical fields we study a stability of
classical field configurations. We start with the simplest
case of constant and uniform chromomagnetic and chromo-
electric fields. The fields which are truly constant and
uniform are obviously an idealization but our results are
relevant for fields which are approximately constant and
uniform in a limited space-time domain.
Here we focus on a specific aspect of non-Abelian theory

which has not been explored yet. The constant and
homogeneous chromoelectric and chromomagnetic fields
can occur due to the potentials which are of single color and
as in electrodynamics linearly depend on coordinates.
We call such configurations Abelian. However, the fields
can be also generated by the multicolor noncommuting
potentials and then we have genuinely non-Abelian con-
figurations. We note that the Abelian and non-Abelian
configurations are physically inequivalent as they cannot be
related to each other by a gauge transformation. It was also
proved [24] that there are only these two gauge-inequiva-
lent configurations which produce the space-time uniform
chromodynamic fields.
Stability of the Abelian configurations of constant and

uniform chromoelectric and chromomagnetic fields was
studied in [5,6] and later on repeatedly analyzed, see, e.g.,
[18–20,23]. However, the non-Abelian configurations seem
to be more relevant for glasma. The point is that the
chromoelectric and chromomagnetic fields Ea, Ba from the
earliest phase of the collisions are generated along the beam
axis z in a non-Abelian manner [25,26]. Specifically, the
Ea, Ba fields occur due to the transverse pure gauge
potentials of initial nuclei Ai

1a; A
i
2a as Ea ¼ −gfabcAi

1bA
i
2c

and Ba ¼ −gfabcϵzijAi
1bA

j
2c, where fabc are the structure

constants of the SUðNcÞ group and ϵzij is the totally
asymmetric tensor. We are aware of only one paper [7]
where the stability of non-Abelian uniform configuration of
chromomagnetic field was briefly discussed. A presence
of an unstable mode was indicated but a complete spectrum
of modes was not derived.
We perform a comparative study of linear stability of

Abelian and non-Abelian configurations of constant and
homogeneous chromomagnetic and chromoelectric fields.
We are mostly interested in the non-Abelian configurations
but for a completeness of our study we repeat with minor
refinements the stability analyses of Abelian configurations
presented in [5,6]. Throughout our whole study we use the
background gauge while the axial gauges (different for the
chromomagnetic and chromoelectric configurations) were
applied in [5,6]. Using one gauge facilitates comparisons of
various cases.
We note that comparative analyses of the Abelian and

non-Abelian configurations of uniform chromoelectric and
chromomagnetic fields can be found in [24] and [27].
A motion of a classical particle was shown to be

significantly different in the two cases [24]. Quantum
matter fields of spin 0 and 1=2 also behave differently
in the background of Abelian and non-Abelian chromo-
dynamic fields [24,27]. However, the self-interaction of
non-Abelian fields, which is of our main interest, was not
studied in [24] and [27].
Our paper is organized as follows. In Sec. IIwe present the

linearized Yang-Mills equations in the background gauge
which are subsequently used in stability analyses. In Secs. III
and IV we discuss, respectively, Abelian and non-Abelian
configurations of the constant homogeneous chromomag-
netic field. Sections Vand VI are devoted analogously to the
constant homogeneous chromoelectric field. Our study is
closed in Sec. VII. After summarizing our considerations,
we briefly discuss the relevance of our results for fields
which are uniform only in a limited spatial domain. Finally,
we outline a perspective for further research.
Throughout the paper the indices i; j ¼ x, y, z and μ,

ν ¼ 0, 1, 2, 3 label, respectively, the Cartesian spatial
coordinates and those of Minkowski space. The signature
of the metric tensor is ðþ;−;−;−Þ. The indices a; b ¼
1; 2;…N2

c − 1 numerate color components in the adjoint
representation of SU(Nc) gauge group. We neglect hence-
forth the prefix “chromo” when referring to chromoelectric
or chromomagnetic fields. Since we study chromodynam-
ics only, this should not be confusing.

II. LINEARIZED CLASSICAL
CHROMODYNAMICS

The Yang-Mills equations written in the adjoint repre-
sentation of the SUðNcÞ gauge group are

Dab
μ Fμν

b ¼ jνa; ð1Þ

where Dab
μ ≡ ∂μδ

ab − gfabcAc
μ, jνa is the color current and

the strength tensor is

Fμν
a ¼ ∂μAν

a − ∂νAμ
a þ gfabcA

μ
bA

ν
c: ð2Þ

The electric and magnetic fields are given as

Ei
a ¼ Fi0; Bi

a ¼
1

2
ϵijkFkj

a ; ð3Þ

where ϵijk is the Levi-Civita fully antisymmetric tensor.
We assume that the potential Āμ

a solves the Yang-Mills
equation (1) and we consider small fluctuations aμa around
Āμ
a. So, we define the potential

Aμ
aðt; rÞ≡ Āμ

aðt; rÞ þ aμaðt; rÞ; ð4Þ

such that jĀðt; rÞj ≫ jaðt; rÞj.
Assuming that the background potential Āμ

a satisfies the
Lorentz gauge condition ∂μĀ

μ
a ¼ 0 while the fluctuation

potential aμa that of the background gauge
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D̄ab
μ aμb ¼ 0; ð5Þ

where D̄ab
μ ≡ ∂μδ

ab − gfabcĀc
μ, the Yang-Mills equation

linearized in aμa can be written as

½gμνðD̄ρD̄ρÞac þ 2gfabcF̄μν
b �acν ¼ 0: ð6Þ

The background gauge appears particularly convenient
for our purposes because different color and space-time
components of aaμ are mixed only through the tensor F̄μν

b
which enters Eq. (6). In case of other gauges, e.g., the
Lorentz gauge ∂μa

μ
a ¼ 0, the mixing is more severe.

Throughout our analysis, which includes Abelian and
non-Abelian configurations of magnetic and electric fields,
we use the background gauge which facilitates compar-
isons of various cases. However, our further considerations
are limited to the SU(2) gauge group when fabc ¼ ϵabc

with a, b ¼ 1, 2, 3.

III. ABELIAN CONFIGURATION OF
MAGNETIC FIELD

The constant homogeneous magnetic field along the axis
x occurs for a potential Āi

a which is known from the
Abelian theory. Specifically, Āaðt; rÞ ¼ δa1ð0; 0; yBÞ,
where B is a constant and r ¼ ðx; y; zÞ. Then, using
Eqs. (3), one finds Eaðt; rÞ ¼ 0 and Baðt; rÞ ¼
δa1ðB; 0; 0Þ. We also note that the only nonvanishing
components of the strength tensor are F̄zy

1 ¼ −F̄yz
1 ¼ B.

The Abelian configuration solves the Yang-Mills equa-
tions (1) with vanishing current jμa. The non-Abelian terms
disappear because there is only one color component. We
also note that the chosen potential satisfies the Lorentz
gauge condition.
When Āμ

aðt; rÞ ¼ δa1ð0; 0; 0; yBÞ, the Eq. (6) of aμa
becomes

□aμa − 2gByϵab1∂za
μ
b − 2gBϵab1ðδμyazb − δμzaybÞ

− g2B2y2ϵac1ϵcb1aμb ¼ 0: ð7Þ

One sees that the color component aμ1 decouples from the
remaining two color components and it satisfies the free
equation of motion. So, the functions aμ1 represent free
waves which we do not consider anymore.
Defining the functions

T� ¼ a02 � ia03; X� ¼ ax2 � iax3;

Y� ¼ ay2 � iay3; Z� ¼ az2 � iaz3; ð8Þ

the Eq. (7) provides

ð□� 2igBy∂z þ g2B2y2ÞT� ¼ 0; ð9Þ

ð□� 2igBy∂z þ g2B2y2ÞX� ¼ 0; ð10Þ

ð□� 2igBy∂z þ g2B2y2ÞY� � 2igBZ� ¼ 0; ð11Þ

ð□� 2igBy∂z þ g2B2y2ÞZ� ∓ 2igBY� ¼ 0: ð12Þ

The equations of T� and X� have the diagonal form. To
diagonalize the equations of Y� and Z� one defines the
functions

U� ≡ Yþ � iZþ; W� ≡ Y− � iZ−; ð13Þ

which allow one to change the Eqs. (11)–(12) into

ð□þ 2igBy∂z � 2gBþ g2B2y2ÞU� ¼ 0; ð14Þ

ð□ − 2igBy∂z ∓ 2gBþ g2B2y2ÞW� ¼ 0: ð15Þ

We assume that the functions aμa depend on t, x, z as
e−iðωt−kxx−kzzÞ. Since the functions should be real, only their
real parts are of physical meaning. Now, the equations (9),
(10) and (14), (15) read�

−ω2 þ k2x þ ðkz ∓ gByÞ2 − d2

dy2

�
T�ðyÞ ¼ 0; ð16Þ

�
−ω2 þ k2x þ ðkz ∓ gyBÞ2 − d2

dy2

�
X�ðyÞ ¼ 0; ð17Þ

�
−ω2�2gBþk2xþðkz−gyBÞ2− d2

dy2

�
U�ðyÞ¼0; ð18Þ

�
−ω2∓2gBþk2xþðkzþgyBÞ2− d2

dy2

�
W�ðyÞ¼0: ð19Þ

We note that one obtains exactly the same Eqs. (17)–(19)
using the temporal axial gauge a0a ¼ 0 which was applied
in Refs. [5,6].
Since the eigenenergy Schrödinger equation of harmonic

oscillator can be written as�
−2mE þm2ω̄2ðy − y0Þ2 −

d2

dy2

�
φðyÞ ¼ 0; ð20Þ

where m is the oscillator mass, E its energy and ω̄ is the
frequency of the corresponding classical oscillator, one
observes that Eqs. (16)–(19) coincide with Eq. (20) under
the following replacements

ω2þd−k2x→2mE; gB→mω̄; � kz
gB

→y0; ð21Þ

where d ¼ 0 for Eqs. (16), (17) and d ¼∓ 2gB for
Eqs. (18), (19).
Since E ¼ ω̄ðnþ 1=2Þ with n ¼ 0; 1; 2;…, the fre-

quency squared ω2 is
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ω2
0 ¼ 2gB

�
nþ 1

2

�
þ k2x; n ¼ 0; 1; 2;… ð22Þ

for Eqs. (16), (17) and

ω2
�¼2gB

�
nþ1

2

�
�2gBþk2x; n¼0;1;2;… ð23Þ

for Eqs. (18), (19). It should be stressed that although we
refer to the Schrödinger equation to find the frequencies
(22), (23) the solutions are purely classical—the Planck
constant ℏ does not show up in the final formulas. The
frequencies squared (22), (23) are “quantized” because the
fluctuation field aμa is assumed to be limited everywhere.
This is analogous to the requirement that a wave function,
which solves the Schrödinger equation, is normalizable.
One sees that ω2

0 ≥ 0 and ω2þ ≥ 0 for any n but
ω2
− ¼ −gBþ k2x for n ¼ 0 and consequently, it is negative

for k2x < gB. Then, there are unstable modes of U− andWþ

which grow as eγt with γ ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gB − k2x

p
. This is the well-

known Nielsen-Olesen instability [21]. The unstable modes
are paired with the overdamped modes which decrease in
time as e−γt.
Let us now discuss a character of the solutions of

Eqs. (16)–(19). The potentials aμa are assumed to depend
on time as eiωt but to see how a given combination of aμa
evolves in time, one should consider only the real parts
of aμa.
Modes T� and X�
The modes T� and X� are stable. Assuming that Tþ ≠ 0

while T− ¼ X� ¼ U� ¼ W� ¼ 0, one finds that Tþ rep-
resents the wave which rotates in the two-dimensional color
space spanned by the colors 2 and 3. The mode T− is
similar but it rotates in the opposite direction than Tþ. The
modes X� behave as T�.
Modes U� and W�
The modes Uþ andW− are always stable. When Uþ ≠ 0

and U− ¼ X� ¼ W� ¼ 0, one finds that Uþ represents the
wave which rotates in both two-dimensional 2-3 color and
y − z coordinate spaces. There is analogous situation with
the stable modesW−. The modes U− andWþ can be stable
or unstable. If the modes are stable, they are similar to Uþ
and W−. In case of unstable and overdamped modes
U− and Wþ, which depend on time as eγt and e−γt, the
small field wave does not rotate neither in color nor in
coordinate space.

IV. NON-ABELIAN CONFIGURATION OF
MAGNETIC FIELD

A non-Abelian configuration of Āi
a which produces a

constant homogeneous magnetic field Ba ¼ δa1ðB; 0; 0Þ
can be chosen as

Āμ
a ¼

2
664
0 0 0 0

0 0 0
ffiffiffiffiffiffiffiffi
B=g

p
0 0

ffiffiffiffiffiffiffiffi
B=g

p
0

3
775; ð24Þ

where the Lorentz index μ numerates the columns and the
color index a numerates the rows. The potential (24), which
obviously satisfies the Lorentz gauge condition, does not
solve the Yang-Mills equation (1) with jμa ¼ 0. Instead one
gets 2

664
0 0 0 0

0 0 0 g1=2B3=2

0 0 g1=2B3=2 0

3
775 ¼ jμa: ð25Þ

Following [7], we assume that the current, which enters
the Yang-Mills equation, equals the left-hand side of
Eq. (25). Then, the potential (24) solves the Yang-Mills
equations (1).
The equation of motion of the small field aμa (6) is found

to be

□aμa þ 2gAðϵa3b∂y þ ϵa2b∂zÞaμb − g2A2ðϵa2eϵe2b
þ ϵa3eϵe3bÞaμb þ 2g2A2ϵa1bðδμyazb − δμzaybÞ ¼ 0; ð26Þ

where A≡ ffiffiffiffiffiffiffiffi
B=g

p
.

Assuming that aμaðt; x; y; zÞ ¼ e−iðωt−k·rÞaμa, where k ¼
ðkx; ky; kzÞ and r ¼ ðx; y; zÞ, Eqs. (26) are changed into the
following set of algebraic equations

M̂t
Ba

t!¼ 0; ð27Þ

M̂x
Ba

x!¼ 0; ð28Þ

M̂yz
B ayz
�! ¼ 0; ð29Þ

where

M̂t
B ¼ M̂x

B ¼

2
6664
−ω2 þ k2 þ 2g2A2 −2igAky 2igAkz

2igAky −ω2 þ k2 þ g2A2 0

−2igAkz 0 −ω2 þ k2 þ g2A2

3
7775; ð30Þ
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M̂yz
B ¼

2
6666666664

−ω2þk2þ2g2A2 −2igAky 2igAkz 0 0 0

2igAky −ω2þk2þg2A2 0 0 0 −2g2A2

−2igAkz 0 −ω2þk2þg2A2 0 2g2A2 0

0 0 0 −ω2þk2þ2g2A2 −2igAky 2igAkz

0 0 2g2A2 2igAky −ω2þk2þg2A2 0

0 −2g2A2 0 −2igAkz 0 −ω2þk2þg2A2

3
7777777775
;

ð31Þ

and

at
!¼

2
664
at1
at2
at3

3
775; ax

!¼

2
664
ax1
ax2
ax3

3
775; ayz

�! ¼

2
6666666664

ay1
ay2
ay3
az1
az2
az3

3
7777777775
: ð32Þ

Since the Eqs. (27)–(29) are all homogeneous, they have
solutions if

det M̂t
B ¼ 0; det M̂x

B ¼ 0; det M̂yz
B ¼ 0; ð33Þ

which are the dispersion equations.

A. Equations det M̂t
B = 0 and det M̂x

B = 0

Computing the determinant of the matrix M̂t
B, the

dispersion equation det M̂t
B ¼ 0 becomes

ð−ω2 þ k2 þ gBÞðω4 − ω2ð2k2 þ 3gBÞ þ k4

þ gBð3k2 − 4k2TÞ þ 2g2B2Þ ¼ 0; ð34Þ

where k≡ jkj and kT ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2y þ k2z

q
. The solutions are

ω2
�ðkÞ ¼

1

2
ð2k2 þ 3gB�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2B2 þ 16gBk2T

q
Þ;

ω2
0ðkÞ ¼ gBþ k2: ð35Þ

One observes that ω2
�ðkÞ and ω2

0ðkÞ are always positive.
Consequently themodes�ωþðkÞ,�ω−ðkÞ and�ω0ðkÞ are
real and stable. The solutions of the equation det M̂x

B ¼ 0

are obviously the same as those of det M̂t
B ¼ 0.

The waves represented by the solutions of the equations
det M̂x

B ¼ 0 and det M̂t
B ¼ 0 rotate not in the two-dimen-

sional color subspace, as the analogous solutions of the
Abelian configuration, but in the three-dimensional space.

B. Equation det M̂yz
B = 0

Computing the determinant of the matrix M̂yz
B as

det M̂yz
B ¼ ½−6g6A6 þ ðk2 − ω2Þ3 þ g4A4ðk2 − 4k2T − ω2Þ

þ 4g2A2ðk2 − ω2Þðk2 − k2T − ω2Þ�2; ð36Þ

one finds that the dispersion equation det M̂yz
B ¼ 0 is cubic

in x≡ ω2 and it reads

x3 þ a2x2 þ a1xþ a0 ¼ 0; ð37Þ

with

a2 ≡ −4g2A2 − 3k2; ð38Þ

a1 ≡ g4A4 þ 8g2A2k2 − 4g2A2k2T þ 3k4; ð39Þ

a0 ≡ 6g6A6 − g4A4k2 þ 4g4A4k2T − 4g2A2k2ðk2 − k2TÞ − k6:

ð40Þ

We note that because of the square in the determinant (36)
each solution of the cubic equation is doubled.
As well known, see, e.g., [28], all three roots of a cubic

equation can be found algebraically. Since the coefficients
a0, a1, a2 are real, the character of the roots depends on a
value of the discriminant

Δ ¼ 18a0a1a2 − 4a32a0 þ a21a
2
2 − 4a31 − 27a20: ð41Þ

One distinguishes three cases:
(i) if Δ > 0, the roots are real and distinct;
(ii) if Δ ¼ 0, the roots are real and at least two of them

coincide;
(iii) if Δ < 0, one root is real and the remaining two are

complex.
The discriminant (41) with the coefficients (38), (39),

(40) is computed as

Δ
16g3B3

¼ 9g3B3 þ 68g2B2k2T þ 49gBk4T þ 16k6T: ð42Þ
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As seen, Δ > 0 and there are three distinct real solutions of
the equation det M̂yz

B ¼ 0.
The real solutions of the cubic equation (37) can be

written down in the Viète’s trigonometric form [28]

xn ¼ 2

ffiffiffiffiffiffiffi
−p
3

r
cos

�
1

3
arccos

�
3q
2p

ffiffiffiffiffiffi
−3
p

s �
−
2πðn − 1Þ

3

�
−
a2
3
;

ð43Þ

where n ¼ 1, 2, 3 and

p≡ 3a1 − a22
3

; q≡ 2a32 − 9a2a1 þ 27a0
27

: ð44Þ

These formulas assume that p < 0 and that the argument of
the arccosine belongs to ½−1; 1�. These conditions are
guaranteed as long as Δ > 0 which is the case under
consideration.
We show ω2

nðkÞ with n ¼ 1, 2, 3 as a function of k2 for
Θ ¼ π=2 in Fig. 1 andω2

nðkÞ as a function ofΘ for k2 ¼ gB
in Fig. 2. The angle Θ defines the orientation of the wave
vector k with respect to the magnetic field along the axis x.
Therefore, kT ¼ k sinΘ. One observes that ω2

1ðkÞ and
ω2
2ðkÞ are everywhere positive and the corresponding

modes �ω1ðkÞ and �ω2ðkÞ are stable. There is a domain
shown in the left panel of Fig. 3 where ω2

3ðkÞ is negative.
For comparison we show in the right panel of Fig. 3 the
domain of instability of the Abelian configuration dis-
cussed in Sec. III. The Abelian mode depends only on
kx ¼ k cosΘ. One observes that the domain of instability of
the Abelian configuration extends to infinity for a wave
vector which is perpendicular to the magnetic field. In case
of non-Abelian configuration, the domain of instability is
limited for any orientation of the wave vector. We note that
with the pure imaginary unstable modes which exponen-
tially grow in time there are paired overdamped modes
which exponentially decay in time.

The waves represented by the solutions of the equation
det M̂yz

B ¼ 0 rotate in the y − z plane, as the analogous
solutions of the Abelian configuration, but the rotation in
the color space is not in the two-dimensional subspace but
in the three-dimensional space.

V. ABELIAN CONFIGURATION OF ELECTRIC
FIELD

The constant homogeneous electric field along the axis x
occurs for a potential Āi

a which is known from the Abelian
theory. Specifically, Āμ

aðt; rÞ ¼ δa1ð−xE; 0; 0; 0Þ, where E
is a constant and r ¼ ðx; y; zÞ. Then, using Eqs. (3), one
finds Eaðt; rÞ ¼ δa1ðE; 0; 0Þ and Baðt; rÞ ¼ 0. We also
note that the only nonvanishing elements of F̄μν

a are
F̄x0
1 ¼ −F̄0x

1 ¼ E. The chosen potential solves the Yang-
Mills equations (1) with vanishing current. The non-
Abelian terms disappear because there is only one color
component. We also note that the chosen potential satisfies
the Lorentz gauge condition.
When Āμ

aðt; rÞ ¼ δa1ð−xE; 0; 0; 0Þ, the equation (6) of
aμa becomes

□aμa − 2gExϵa1b∂0a
μ
b þ 2gEϵa1bðδμ0axb þ δμxa0bÞ

þ g2E2x2ϵa1dϵd1baμb ¼ 0: ð45Þ

One sees that the color component aμ1 decouples from the
remaining two color components and it satisfies the free
equation of motion. So, the functions aμ1 represent free
waves which we do not consider any more.
Defining the functions

T�ðxÞ ¼ a02ðxÞ � ia03ðxÞ; X�ðxÞ ¼ ax2ðxÞ � iax3ðxÞ;
Y�ðxÞ ¼ ay2ðxÞ � iay3ðxÞ; Z�ðxÞ ¼ az2ðxÞ � iaz3ðxÞ;

ð46Þ

Eq. (45) provides the equationsFIG. 1. ω2
nðkÞ as a function of k2 for Θ ¼ π=2.

FIG. 2. ω2
nðkÞ as a function of Θ for k2 ¼ gB.
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ð□ ∓ 2igEx∂0 − g2E2x2ÞT� � 2igEX� ¼ 0; ð47Þ

ð□ ∓ 2igEx∂0 − g2E2x2ÞX� � 2igET� ¼ 0; ð48Þ

ð□ ∓ 2igEx∂0 − g2E2x2ÞY� ¼ 0; ð49Þ

ð□ ∓ 2igEx∂0 − g2E2x2ÞZ� ¼ 0: ð50Þ

The equations of Y� and Z� have a diagonal form while the
equations of T� and X� are diagonalized using

G� ≡ Tþ � Xþ; H� ≡ T− � X−: ð51Þ

Then, Eqs. (47) and (48) provide

ð□ − 2igEx∂0 � 2igE − g2E2x2ÞG� ¼ 0; ð52Þ

ð□þ 2igEx∂0 ∓ 2igE − g2E2x2ÞH� ¼ 0: ð53Þ

Assuming that the functions G�; H�; Y�; Z� depend on
t, y, z as e−iðωt−kyy−kzzÞ we find�
k2y þ k2z � 2igE − ðωþ gExÞ2 − d2

dx2

�
G�ðxÞ ¼ 0; ð54Þ

�
k2y þ k2z ∓ 2igE − ðω − gExÞ2 − d2

dx2

�
H�ðxÞ ¼ 0; ð55Þ

�
k2y þ k2z − ðω� gExÞ2 − d2

dx2

�
Y�ðxÞ ¼ 0; ð56Þ

�
k2y þ k2z − ðω ∓ gExÞ2 − d2

dx2

�
Z�ðxÞ ¼ 0: ð57Þ

We note that one obtains exactly the same equations (54)–
(56) using the axial gauge aza ¼ 0 which was applied
in Ref. [5].
Since the eigenenergy Schrödinger equation of inverted

harmonic oscillator can be written as

�
−2mE −m2ω̄2ðx − x0Þ2 −

d2

dx2

�
φðxÞ ¼ 0; ð58Þ

one sees that Eqs. (54)–(57) coincide with Eq. (58) under
the following replacements

k2yþk2zþd→−2mE; gE→mω̄; � ω

gE
→y0; ð59Þ

where d ¼ 0 for Eqs. (56) and (57) and d ¼ �2igE for
Eqs. (54) and (55). In the latter case we deal with the
Schrödinger equation of non-Hermitian Hamiltonian.
As discussed in detail in [29], there are no normalizable

solutions of the Schrödinger equation of inverted harmonic
oscillator which reflects the fact that the solutions run
away either to plus or minus infinite. In this sense
the configuration of constant electric field is genuinely
unstable.

VI. NON-ABELIAN CONFIGURATION OF
ELECTRIC FIELD

A non-Abelian configuration of Āi
a, which produces a

constant homogeneous electric field Ea ¼ δa1ðE; 0; 0Þ, can
be chosen as

FIG. 3. Unstable modes in the non-Abelian (left panel) and Abelian (right panel) configurations as a function of k2 and Θ.
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Āμ
a ¼

2
664

0 0 0 0ffiffiffiffiffiffiffiffi
E=g

p
0 0 0

0
ffiffiffiffiffiffiffiffi
E=g

p
0 0

3
775; ð60Þ

where the Lorentz index μ numerates the columns and the
color index a numerates the rows. The potential (60), which
obviously satisfies the Lorentz gauge condition, does not
solve the Yang-Mills equation (1) with jμa ¼ 0. Instead one
gets

2
664

0 0 0 0

g1=2E3=2 0 0 0

0 −g1=2E3=2 0 0

3
775 ¼ jμa: ð61Þ

Following [7], we assume that the current, which enters the
Yang-Mills equation, equals the left-hand side of
Eq. (61). Then, the potential (60) solves the Yang-Mills
equations (1).

The equation of motion of the small field aμa (6) is found
to be

□aμa þ 2gAðϵa2b∂0 þ ϵa3b∂xÞaμb
þ g2A2ðϵa2eϵe2b − ϵa3eϵe3bÞaμb
þ 2g2A2ϵa1bðδμ0axb þ δμxa0bÞ ¼ 0: ð62Þ

where A≡ ffiffiffiffiffiffiffiffi
E=g

p
.

Assuming that aμaðt; x; y; zÞ ¼ e−iðωt−k·rÞaμa, where k ¼
ðkx; ky; kzÞ and r ¼ ðx; y; zÞ, Eqs. (62) are changed into the
following set of algebraic equations

M̂tx
E a

⃗tx ¼ 0; ð63Þ

M̂y
Ea

y!¼ 0; ð64Þ

M̂z
Ea

z!¼ 0; ð65Þ

where

M̂tx
E ¼

2
6666666664

−ω2 þ k2 −2igAkx −2igAω 0 0 0

2igAkx −ω2 þ k2 þ g2A2 0 0 0 −2g2A2

2igAω 0 −ω2 þ k2 − g2A2 0 2g2A2 0

0 0 0 −ω2 þ k2 −2igAkx −2igAω
0 0 −2g2A2 2igAkx −ω2 þ k2 þ g2A2 0

0 2g2A2 0 2igAω 0 −ω2 þ k2 − g2A2

3
7777777775
; ð66Þ

M̂y
E ¼ M̂z

E ¼

2
64−ω2 þ k2 −2igAkx −2igAω

2igAkx −ω2 þ k2 þ g2A2 0

2igAω 0 −ω2 þ k2 − g2A2

3
75 ð67Þ

and

a⃗tx ¼

2
6666666664

a01
a02
a03
ax1
ax2
ax3

3
7777777775
; a⃗y ¼

2
64
ay1
ay2
ay3

3
75; a⃗z ¼

2
64 az1
az2
az3

3
75: ð68Þ

Since the Eqs. (63)–(65) are all homogeneous, they have
solutions if

det M̂tx
E ¼ 0; det M̂y

E ¼ 0; det M̂z
E ¼ 0; ð69Þ

which are the dispersion equations.

A. Equations det M̂y
E = 0 and det M̂z

E = 0

Let us start with the equation det M̂y
E ¼ 0. Computing

the determinant of the matrix (67) as

det M̂y
E ¼ −ω6 þ ð4g2A2 þ 3k2Þω4

− ð3g4A4 þ 4g2A2ðk2 − k2xÞ þ 3k4Þω2

þ k6 − g4A4k2 þ 4g4A4k2x − 4g2A2k2k2x; ð70Þ

the dispersion equation det M̂y
E ¼ 0 is again the cubic

equation (37) but the coefficients are

a2 ≡ −4g2A2 − 3k2; ð71Þ

a1 ≡ 3g4A4 þ 4g2A2ðk2 − k2xÞ þ 3k4; ð72Þ
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a0 ≡ −k6 þ g4A4k2 − 4g4A4k2x þ 4g2A2k2k2x: ð73Þ

The discriminant equals

1

4g6A6
Δ ¼ 9g6A6 þ 4g4A4ð13k2 − 7k2xÞ

þ 4g2A2ð25k4 þ 14k2k2x − 119k4xÞ
þ 64ðk2 þ k2xÞ3; ð74Þ

and it is positive. Consequently, the solutions, which are
real, can be written, as previously, in the Viète’s trigono-
metric form (43).
The solutions are shown in Figs. 4–8. The x component

of the wave vector k is expressed as kx ¼ k cosΘ and the
solutions are shown as functions of k2 or Θ. The spectrum
of modes of the equation det M̂y

E ¼ 0 is rather complex. In
Figs. 4 and 5 one observes the mode coupling of ω2

2ðkÞ and
ω2
3ðkÞ. One could think that the curves of ω2

2ðkÞ and ω2
3ðkÞ

computed for Θ ¼ 0 and shown in Fig. 4 cross each other.
However, when the curves are computed for Θ ¼ 0.05 and
shown in Fig. 5 one sees that the curves instead only
approach each other. For bigger values of Θ the curves
ω2
2ðkÞ and ω2

3ðkÞ are well separated. The phenomenon of
mode coupling is discussed in detail and explained in
Sec. 64 of the textbook [30].
One observes in Figs. 4–7 that ω2

3ðkÞ can be negative.
Then, there is a pair of pure imaginary modes, one is
unstable and one is overdamped. We show ω2

3ðkÞ as a
function of k2 and Θ in the left panel of Fig. 8. In the
right panel of Fig. 8 one sees the domain of k2

and Θ where ω2
3ðkÞ is negative. The solutions of the

equation det M̂z
E ¼ 0 are obviously the same as those

of det M̂y
E ¼ 0.

FIG. 4. ω2
nðkÞ as a function of k2 for Θ ¼ 0.

FIG. 5. ω2
nðkÞ as a function of k2 for Θ ¼ 0.05.

FIG. 6. ω2
nðkÞ as a function of k2 for Θ ¼ π=2.

FIG. 7. ω2
nðkÞ as a function of Θ for k2 ¼ 0.5gE.
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B. Equation det M̂tx
E = 0

Let us now discuss the equation det M̂tx
E ¼ 0. We start

with the simple special k ¼ 0 when the determinant of the
matrix (66) is computed as

det M̂tx
E ¼ ω4ðω4 − 4g2A2ω2 þ 7g4A4Þ2: ð75Þ

The solutions of the equation det M̂tx
E ¼ 0 are: the double

solution ω2 ¼ 0 and double solutions

ω2
� ¼ ð2� i

ffiffiffi
3

p
Þg2A2; ð76Þ

which give the mode frequencies

ωðþ;�Þ ¼ �71=4gAðcosðϕ=2Þ þ i sinðϕ=2ÞÞ;
ωð−;�Þ ¼ �71=4gAðcosðϕ=2Þ − i sinðϕ=2ÞÞ; ð77Þ

where

ϕ ¼ arctg

� ffiffiffi
3

p

2

�
: ð78Þ

One observes that the modes ωðþ;þÞ and ωð−;−Þ are unstable
as their imaginary parts are positive.
The general case of k ≠ 0 is much more complicated

than the k ¼ 0 case, but there is an important simplifica-
tion. The determinant of the matrix (66), which is the
polynomial of ω2 of order 6, appears to be the square of the
polynomial of order 3 that is

detM̂tx
E ¼½−ω6þð4g2A2þ3k2Þω4

−ð7g4A4þ4g2A2ðk2−k2xÞþ3k4Þω2

þ3g4A4k2þ4g4A4k2x−4g2A2k2k2xþk6�2: ð79Þ

So, we have again the cubic equation (37) in ω2 with the
coefficients

a2 ≡ −4g2A2 − 3k2; ð80Þ

a1 ≡ 7g4A4 þ 4g2A2ðk2 − k2xÞ þ 3k4; ð81Þ

a0 ≡ −3g4A4k2 − 4g4A4k2x þ 4g2A2k2k2x − k6: ð82Þ

We note that because of the square in the determinant (79)
each solution of the cubic equation is doubled.
The discriminant Δ with the coefficients (80)–(82)

equals

FIG. 8. ω2
3ðkÞ (left panel) and negative part of ω2

3ðkÞ (right panel) as functions of Θ and k2.

FIG. 9. Δ
4g3E3 as a function of Θ and k2.
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Δ
4g6A6

¼−147g6A6þ4g4A4ð29k2þ153k2xÞ

−4g2A2ð23k4þ82k2k2xþ167k4xÞþ64ðk2þk2xÞ3:
ð83Þ

It can be either positive or negative as shown in Figs. 9
and 10.
When Δ > 0 the solutions of the cubic equation are real

and can be expressed in the Viète’s trigonometric form (43).
When Δ < 0 there are one real and two complex solutions
which can be found using the Cardano formula [28]. The
solutions are

x1 ¼ −
1

2
ðuþ vÞ þ i

ffiffiffi
3

p

2
ðu − vÞ − 1

3
a2; ð84Þ

x2 ¼ −
1

2
ðuþ vÞ − i

ffiffiffi
3

p

2
ðu − vÞ − 1

3
a2; ð85Þ

x3 ¼ uþ v −
1

3
a2; ð86Þ

where

u≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
q
2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2

4
þp3

27

r
3

s
; v≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
q
2
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2

4
þp3

27

r
3

s
: ð87Þ

The solutions in both regions Δ < 0 and Δ > 0 are
shown in Figs. 11–14. Figures 11–13 present the real
solutions from the domain of Δ > 0 combined with the real
parts of the complex solutions from Δ < 0. The solutions
are shown as functions of k2 for three values of
Θ ¼ 0.05; π=4, π=2. In Fig. 14 we show the imaginary
parts of the complex solutions from the domain Δ < 0.

FIG. 10. Negative part of Δ
4g3E3 as a function of Θ and k2.

FIG. 12. ω2
nðkÞ as a function of k2 for Θ ¼ π=4.

FIG. 13. ω2
nðkÞ as a function of k2 for Θ ¼ π=2.

FIG. 11. ω2
nðkÞ as a function of k2 for Θ ¼ 0.05.
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The whole spectrum of the solutions of the equation
det M̂tx

E ¼ 0 is far not simple.
We first note that the real parts of ω2

1ðkÞ and ω2
2ðkÞ are

equal to each other (Reω2
1ðkÞ ¼ Reω2

2ðkÞ) in the region
Δ < 0while the imaginary parts shown in Fig. 14 are of the
opposite sign (Imω2

1ðkÞ ¼ −Imω2
2ðkÞ).

One sees in Figs. 11–13 that the real part of
low momentum solution ω2

1ðkÞ or ω2
2ðkÞ from the region

Δ < 0 bifurcates into two real solutions ω2
1ðkÞ and ω2

2ðkÞ
from the region Δ > 0. The bifurcation occurs at Δ ¼ 0.
The solution ω2

3ðkÞ is real in both regions Δ < 0 and
Δ > 0 and it is smooth at Δ ¼ 0, as seen in Figs. 11–13.
Figure 11 shows that, as in case of the equation det M̂y

E ¼ 0

discussed in Sec. VI A, the solution ω2
2ðkÞ is coupled

to ω2
3ðkÞ.

There are two unstable modes which occur as square
roots of ω2

1ðkÞ and ω2
2ðkÞ from the regionΔ < 0. These are

the modes with positive imaginary parts which at k ¼ 0 are
equal to ωðþ;þÞ and ωð−;−Þ from Eq. (77). Figure 14 shows
that the imaginary parts are maximal at k ¼ 0 and equal to
Imωðþ;þÞ ¼ Imωð−;−Þ. So, the fastest modes grow as eγt

with γ ¼ Imωðþ;þÞ ≈ 0.57
ffiffiffiffiffiffi
gE

p
.

VII. SUMMARY, DISCUSSION, AND OUTLOOK

Linear stability of classical magnetic and electric fields,
which are constant and uniform, have been studied. We
have considered the Abelian configurations where the
fields are generated by a single-color potential linearly

depending on coordinates and the non-Abelian configura-
tions where the fields occur due to constant noncommuting
potentials of different colors. While the potentials of
Abelian configurations solve the sourceless Yang-Mills
equations the non-Abelian configurations require non-
vanishing currents to satisfy the equations. All four cases
have been analyzed using the same background gauge
condition. The Abelian and non-Abelian configurations are
physically inequivalent and indeed the spectra of eigenm-
odes of small fluctuations around the background fields are
different though similar. The spectra include unstable
modes in all cases.
One asks how our analysis changes when the fields are

uniform not in the infinite coordinate space but only in a
limited domain of a size L? Assuming that the domain is a
cube centered at r ¼ 0 and demanding that the real
potentials aμa vanish at the edge of the cube, the wave
vectors kx, ky, kz should be replaced as

ðkx; ky; kzÞ → ð2lx þ 1; 2ly þ 1; 2lz þ 1Þ π
L
; ð88Þ

where lx, ly, lz are integer numbers. Consequently, a
spectrum of eigenmodes becomes discrete and some
unstable modes can disappear. As an illustrative example
we consider the unstable mode of the Abelian configuration
of magnetic field which is ω2 ¼ −gBþ k2x. After the
replacement (88) it becomes ω2¼−gBþπ2ð2lxþ1Þ2=L2.
One sees that ω2 < 0 at least for lx ¼ 0 if gBL2 > π2. So,
the instability exists if the field is sufficiently strong and
uniform over a sufficiently big domain. Since all unstable
modes we found occur at small wave vectors there are
analogous conditions for existence of instabilities of the
fields which are uniform only in a limited spatial domain.
We intend to extend our analysis to the case of parallel

electric and magnetic fields which are both present at the
same time. Such a situation is expected at the earliest phase
of relativistic heavy-ion collisions described in the frame-
work of Color Glass Condensate. To make our consid-
erations more relevant for relativistic heavy-ion collisions
we plan to analyze stability not of the fields which are
constant and uniform but rather the fields which are
invariant under Lorentz boosts along the collision axis.
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FIG. 14. Imaginary parts of ω2
1ðkÞ and ω2

2ðkÞ as functions of k2

for Θ ¼ 0; π=4, π=2.
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