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Using the Schwinger-Keldysh technique we discuss how to derive the transport equations for the system of
massless quantum fields. We analyze the scalar field models with quartic and cubic interaction terms. In thef4

model the massive quasiparticles appear due to the self-interaction of massless bare fields. Therefore, the
derivation of the transport equations strongly resembles one of the massive fields, but the subset of diagrams
which provides the quasiparticle mass has to be resummed. The kinetic equation for the finite width quasipar-
ticles is found, where, except for the mean-field and collision terms, there are terms which are absent in the
standard Boltzmann equation. The structure of these terms is discussed. In the masslessf3 model the massive
quasiparticles do not emerge and presumably there is no transport theory corresponding to this model. It is not
surprising since thef3 model is, in any case, ill defined.@S0556-2821~97!07016-1#

PACS number~s!: 11.10.Wx, 05.20.Dd

I. INTRODUCTION

Transport theory is a very convenient tool to study many-
body nonequilibrium systems, nonrelativistic as well as rela-
tivistic. The kinetic equations which play a central role in the
transport approach can usually be derived by means of
simple heuristic arguments similar to those which were used
by Boltzmann over a hundred years ago when he introduced
his famous equation. However, such arguments are insuffi-
cient when one studies a system of very complicated dynam-
ics as the quark-gluon plasma governed by QCD. Then, one
has to refer to a formal scheme which allows one to derive
the transport equation directly from the underlying quantum
field theory. The formal scheme is also needed to specify the
limits of the kinetic approach. Indeed, the derivation shows
the assumptions and approximations which lead to the trans-
port theory, and hence the domain of its applicability can be
established.

Until now the transport equations of the QCD plasma
have been successfully derived in the mean-field or collision-
less limit @1,2# and the structure of these equations is well
understood@1–4#. In particular, it has been shown that in
quasiequilibrium these equations provide@2,4# the so-called
hard thermal loops@5#. The collisionless transport equations
can be applied to a variety of problems. However, one needs
the collision terms to discuss dissipative phenomena. In spite
of some efforts@6–8#, the general form of these terms in the
transport equations of the quark-gluon plasma remains un-
known.

The so-called Schwinger-Keldysh@9# formulation of
quantum field theory provides a very promising basis to de-
rive the transport equation beyond the mean-field limit.
Kadanoff and Baym@10# developed the technique for non-
relativistic quantum systems, which has been further gener-
alized to relativistic ones@11–19#. We mention here only the
papers which provide a more or less systematic analysis of
the collision terms.

The treatment of the massless fields, which are crucial for
the gauge theories as QED or QCD, is particularly difficult
when the transport equations are derived. Except the well-
known infrared divergences which plague the perturbative
expansion, there is a specific problem of nonequilibrium
massless fields. The inhomogeneities in the system cause the
off-mass-shell propagation of particles and then the pertur-
bative analysis of the collision terms appears hardly trac-
table. More specifically, it appears very difficult, if possible
at all, to express the field self-energy as the transition-matrix
element squared and consequently we lose the probabilistic
character of the kinetic theory. The problem is absent for the
massive fields when the system is assumed homogeneous at
the inverse mass or Compton scale. This is a natural assump-
tion within the transport theory which, in any case, deals
with the quantities averaged over a certain scale which can
be identified with the Compton one.

The problem of the masslessnonequilibriumfields has not
been fully recognized in the existing literature. One has usu-
ally assumed, explicitly or implicitly, the on-mass-shell
propagation. Such an assumption is indeed reasonable when
the quasihomogeneous system near global equilibrium is
considered@2#. However, the condition should be imposed
that the inhomogeneity length is much larger than the inverse
quasiparticle mass. It has also been shown on the phenom-
enological level @20# that the off-mass-shell propagation
plays a very important role in the parton system which is far
from equilibrium. Thus, we intend to develop a systematic
approach to the transport of massless fields, which allows
one to treat these fields in a very similar manner to the mas-
sive ones. The basic idea is rather obvious.

The fields which are massless in vacuum gain an effective
mass in a medium due to the interaction. Therefore, the mini-
mal scale at which the transport theory works is not an in-
verse bare mass, which is infinite for massless fields, but the
inverse effective one. The staring point of the perturbative
computation should no longer be free fields but the interact-
ing ones. In physical terms, we postulate the existence of the
massive quasiparticles and look for their transport equation.

At the technical level, we begin with the Lagrangian of*Electronic address: MROW@FUW.EDU.PL
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the massless fields and make a formal trick which is well
known in the quantum field theory at finite temperature, see,
e.g., @21–29#. Namely, the auxiliary mass term is added to
the free Lagrangian and then is subtracted due to a redefini-
tion of the interaction term. As a result the subset of dia-
grams which contributes to the mass, which is determined in
a self-consistent way, is effectively resummed in the pertur-
bative expansion. A somewhat similar technique was applied
to the kinetic theory in@18#.

In this paper we show how the suggested method works
for the self-interacting scalar fields. We discuss in detail the
f3 andf4 models which appear to be qualitatively different.
We successfully derive the transport equations for thef4

model and show why the method does not work for thef3

case. Our discussion closely follows the scheme of deriva-
tion which was earlier developed for the massive fields: self-
interacting scalar fields@15# and the spinor fields interacting
with the scalar and vector ones@16#.

The main steps of the derivation are the following. We
define the contour Green’s function with the time arguments
on the contour in a complex time plane. This function is a
key element of the Schwinger-Keldysh approach. After dis-
cussing its properties and relevance for nonequilibrium sys-
tems, we write down the exact equations of motion, i.e., the
Dyson-Schwinger equations. Assuming the macroscopic
quasihomogeneity of the system, we perform the gradient
expansion and the Wigner transformation. Then, the pair of
Dyson-Schwinger equations are converted into the transport
and mass-shell equations both satisfied by the Wigner func-
tion. The latter equation allows one to identify the initially
introduced fictitious mass with the effective one generated
by the interaction. We further perform the perturbative
analysis showing how the Vlasov terms and the collisional
ones emerge. Finally we define the distribution functions of
standard probabilistic interpretation and find the transport
equations satisfied by these functions.

Throughout this work we use natural units where\5c
51. The signature of the metric tensor is (1,2,2,2). As
long as possible, we keep the convention of Bjorken and
Drell @30#.

II. PRELIMINARIES

We consider the system of massless scalar fields with the
Lagrangian density of the form

L~x!5
1

2
]mf~x!]mf~x!2

g

n!
fn~x!, ~1!

wheren equals 3 or 4. The renormalization counterterms are
omitted in the Lagrangian. We introduce an auxiliary
position-dependent massm* (x) which can be treated as an
external field. Specifically, we redefine the Lagrangian as

Lm~x!5
1

2
]mf~x!]mf~x!2

1

2
m

*
2 ~x!f2~x!1LI~x!

~2!

with the interaction term

LI~x!51
1

2
m

*
2 ~x!f2~x!2

g

n!
fn~x!.

The fields which satisfy the equation of motion

@]21m
*
2 ~x!#f~x!50, ~3!

representfree quasiparticleswith massm* . We observe that
it is not a priori clear whether massive quasiparticles emerge
due to the field self-interaction. It is even less clear whether
the limit of free quasiparticles exist. As will be shown it is
indeed the case for thef4 model, but not for thef3 one.

We write down the energy-momentum tensor defined as

Tmn~x!5]mf~x!]nf~x!2gmnL~x!.

Subtracting the total derivative

1

4
]m]nf2~x!2gmn

1

4
]s]sf2~x!,

we get the energy-momentum tensor which, for the free
fields, is of a form convenient for our purposes: i.e.,

T0
mn~x!52

1

4
f~x!]Jm]Jnf~x!. ~4!

The fields are assumed here to satisfy the equation of motion
~3!.

III. GREEN’S FUNCTIONS

The central role in our considerations plays the contour
Green’s function defined as

iD~x,y!5
def

^T̃f~x!f~y!&,

where the angular brackets denote the ensemble average at
time t0 ~usually identified with2`!; T̃ is the time-ordering
operation along the directed contour shown in Fig. 1. The
parametertmax is shifted to1` in the calculations. The time
arguments are complex with an infinitesimal positive or
negative imaginary part, which locates them on the upper or
on the lower branch of the contour. The ordering operation is
defined as

T̃f~x!f~y!5
def

Q~x0 ,y0!f~x!f~y!1Q~y0 ,x0!f~y!f~x!,

whereQ(x0 ,y0) equals 1 ifx0 succeedsy0 on the contour,
and equals 0 whenx0 precedesy0 .

If the field is expected to develop a finite expectation
value, as it happens when the symmetry is spontaneously
broken, the contribution̂f(x)&^f(y)& is subtracted from
the right-hand side of the equation defining the Green’s func-
tion, see, e.g.,@15,16#. Then, one concentrates on the field
fluctuations around the expectation values. Since^f(x)& is
expected to vanish in the models defined by the Lagrangians
~1! we neglect this contribution in the Green’s function defi-
nition.

FIG. 1. The contour along the time axis for an evaluation of the
operator expectation values.
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We also use four other Green’s functions with real-time
arguments:

iD.~x,y!5
def

^f~x!f~y!&,

iD,~x,y!5
def

^f~y!f~x!&,

iDc~x,y!5
def

^Tcf~x!f~y!&,

iDa~x,y!5
def

^Taf~x!f~y!&,

whereTc(Ta) prescribes~anti!chronological time ordering:

Tcf~x!f~y!5
def

Q~x02y0!f~x!f~y!

1Q~y02x0!f~y!fc~x!,

Taf~x!f~y!5
def

Q~y02x0!f~x!f~y!

1Q~x02y0!f~y!f~x!.

These functions are related to the contour Green’s functions
in the following manner:

Dc~x,y![D~x,y! for x0 ,y0 from the upper branch,

Da~x,y![D~x,y! for x0 ,y0 from the lower branch,

D.~x,y![D~x,y! for x0 from the upper branch andy0 from the lower one,

D,~x,y![D~x,y! for x0 from the lower branch andy0 from the upper one.

One easily finds the identities which directly follow from
the definitions

Dc~x,y!5Q~x02y0!D.~x,y!1Q~y02x0!D,~x,y!,

Da~x,y!5Q~y02x0!D.~x,y!1Q~x02y0!D,~x,y!.
~5!

One also observes that

@ iD"~x,y!#†5 iD"~x,y!,

@ iDa~x,y!#†5 iDc~x,y!,

where † denotes Hermitian conjugation, i.e., complex conju-
gation with an exchange of the Green’s-function arguments.
Because the fields are real, the functionsiD"(x,y) satisfy
the relation

D.~x,y!5D,~y,x!. ~6!

It appears convenient to introduce the retarded~1! and
advanced~2! Green’s functions

D6~x,y!5
def

6@D.~x,y!2D,~x,y!#Q~6x07y0!. ~7!

One immediately finds the identity

D1~x,y!2D2~x,y!5D.~x,y!2D,~x,y!. ~8!

Let us now briefly discuss the physical interpretation of
the Green’s functions. The functionDc(x,y) describes the
propagation of disturbance in which a single particle is added
to the many-particle system in space-time pointy and then is
removed from it in a space-time pointx. An antiparticle
disturbance is propagated backward in time. The meaning of
Da(x,y) is analogous but particles are propagated backward
in time and antiparticles forward. In the zero density limit
Dc(x,y) coincides with the Feynman propagator.

The physical meaning of functionsD.(x,y) andD,(x,y)
is more transparent when one considers the Wigner trans-
form defined as

D"~X,p!5
def E d4ueipuD"S X1

1
2 u,X2

1
2 uD . ~9!

Then, the free-field energy-momentum tensor~4! averaged
over an ensemble can be expressed as

^T0
mn~X!&5E d4p

~2p!4 pmpniD,~X,p!. ~10!

One recognizes the standard form of the energy-momentum
tensor in the kinetic theory with the functioniD,(X,p) giv-
ing the density of particles with four-momentump in a
space-time pointX. Therefore,iD,(X,p) can be treated as a
quantum analogue of the classical distribution function. In-
deed, the functioniD,(X,p) is Hermitian. However, it is not
positively definite and the probabilistic interpretation is only
approximately valid. One should also observe that, in con-
trast to the classical distribution functions,iD,(X,p) can be
nonzero for the off-mass-shell four-momenta.
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IV. GREEN’S-FUNCTION EQUATIONS OF MOTION

The Dyson-Schwinger equations satisfied by the contour
Green’s function are

@]x
21m

*
2 ~x!#D~x,y!

52d~4!~x,y!1E
C

d4x8P~x,x8!D~x8,y!,

~11!

@]y
21m

*
2 ~y!#D~x,y!

52d~4!~x,y!1E
C

d4x8D~x,x8!P~x8,y!,

~12!

whereP(x,y) is the self-energy; the integration overx08 is
performed on the contour and the functiond (4)(x,y) is de-
fined on the contour as

d~4!~x,y!5H d~4!~x2y!

0
2d~4!~x2y!

for x0 ,y0 from the upper branch,
for x0 ,y0 from the different branches,

for x0 ,y0 from the lower branch.

Let us split the self-energy into three parts as

P~x,y!5Pd~x!d~4!~x,y!

1P.~x,y!Q~x0 ,y0!1P,~x,y!Q~y0 ,x0!.

As we shall see later,Pd provides a dominant contribution to
the mean-field whileP: determines the collision terms in
the transport equations. Therefore, we callPd the mean-field
self-energy andP: the collisional self-energy.

With the help of the retarded and advanced Green’s func-
tions ~7! and the retarded and advanced self-energies defined
in an analogous way, Eq.~11! and ~12! can be rewritten as

@]x
21m

*
2 ~x!2Pd~x!#D:~x,y!

5E d4x8@P:~x,x8!D2~x8,y!1P1~x,x8!D:~x8,y!#,

~13!

@]y
21m

*
2 ~y!2Pd~y!#D:~x,y!

5E d4x8@D:~x,x8!P2~x8,y!1D1~x,x8!P:~x8,y!#,

~14!

where all time integrations run from2` to 1`.
Let us also write down the equations satisfied by the func-

tions D6:

@]x
21m

*
2 ~x!2Pd~x!#D6~x,y!

52d~4!~x2y!1E d4x8P6~x,x8!D6~x8,y!,

~15!

@]y
21m

*
2 ~y!2Pd~y!#D6~x,y!

52d~4!~x2y!1E d4x8D6~x,x8!P6~x8,y!.

~16!

V. TOWARDS TRANSPORT EQUATIONS

The transport equations are derived under the assumption
that the Green’s functions and the self-energies depend
weakly on the sum of their arguments, and that they are
significantly different from zero only when the difference of
their arguments is close to zero. To express these properties
it is convenient to define a new set of variables as

D~X,u![DS X1
1

2
u,X2

1

2
uD .

For homogeneous systems, the dependence onX5(x1y)/2
drops out entirely due to the translational invariance and
D(x,y) depends only onu5x2y. For weakly inhomoge-
neous, or quasihomogeneous systems, the Green’s functions
and self-energies are assumed to vary slowly withX. We
additionally assume that the Green’s functions and self-
energies are stronglypeakednearu50. The effective mass
m* (x) is simply assumed to be weakly dependent onx.

We will now convert Eqs.~13! and ~14! into transport
equations by implementing the above approximation and
performing the Wigner transformation~9! for all Green’s
functions and self-energies. This is done using the following
set of translation rules which can be easily derived:

E d4x8 f ~x,x8!g~x8,y!

→ f ~X,p!g~X,p!1
i

2 F] f ~X,p!

]pm

]g~X,p!

]Xm

2
] f ~X,p!

]Xm

]g~X,p!

]pm
,

h~x!g~x,y!→h~X!g~X,p!2
i

2

]h~X!

]Xm

]g~X,p!

]pm
,

h~y!g~x,y!→h~X!g~X,p!1
i

2

]h~X!

]Xm

]g~X,p!

]pm
,

2268 56STANISŁAW MRÓWCZYŃSKI



]x
m f ~x,y!→S 2 ipm1

1

2
]mD f ~X,p!,

]y
m f ~x,y!→S ipm1

1

2
]mD f ~X,p!.

HereX[(x1y)/2, ]m[]/]Xm and the functionsf (x,y) and
g(x,y) satisfy the assumptions discussed above. The func-
tion h(x) is assumed to be weakly dependent onx.

Applying these translation rules to Eqs.~13! and~14!, we
obtain

S 1

4
]22 ipm]m2p21m

*
2 ~X!2Pd~X!2

i

2
]m„m*

2 ~X!2Pd~X!…]p
mDD:~X,p!

5P:~X,p!D2~X,p!1P1~X,p!D:~X,p!1
i

2
$P:~X,p!,D2~X,p!%1

i

2
$P1~X,p!,D:~X,p!%, ~17!

S 1

4
]21 ipm]m2p21m

*
2 ~X!2Pd~X!1

i

2
]m„m*

2 ~X!2Pd~X!…]p
mDD:~X,p!

5D:~X,p!P2~X,p!1D1~X,p!P:~X,p!1
i

2
$D:~X,p!,P2~X,p!%1

i

2
$D1~X,p!,P:~X,p!%, ~18!

where we have introduced the Poisson-like brackets defined as

$C~X,p!,D~X,p!%[
]C~X,p!

]pm

]D~X,p!

]Xm 2
]C~X,p!

]Xm

]D~X,p!

]pm
.

The kinetic theory deals only with averaged system characteristics. Thus, one usually assumes that the system is homoge-
neous on a scale of the Compton wavelength of the quasiparticles. In other words, the characteristic length of inhomogeneities
is assumed to be much larger than the inverse mass of quasiparticles. Therefore, we impose the condition

uD:~X,p!u@U 1

m
*
2 ]2D:~X,p!U, ~19!

which leads tothe quasiparticle approximation. As discussed in the next section and in the Appendix, the requirement~19!
renders the off-shell contributions to the Green’s functionsD: negligible. Thus, we deal with the quasiparticles having
on-mass-shell momenta. Unfortunately, the assumption~19! cannot be applied to massless particles and for this reason we
have introduced the effective massm* .

Let us now take the difference and the sum of Eqs.~17! and ~18!, where the]2 terms have been neglected due to the
quasiparticle approximation~19!. Then, one gets

Fpm]m1
1

2
]m„m*

2 ~X!2Pd~X!…]p
mGD:~X,p!

5
i

2
@P.~X,p!D,~X,p!2P,~X,p!D.~X,p!#

2
1

4
$P:~X,p!,D1~X,p! 1D2~X,p!%

2
1

4
$P1~X,p!1P2~X,p!,D:~X,p!%, ~20!

@2p21m
*
2 ~X!2Pd~X!#D:~X,p!5

1

2
$P:~X,p!@D1~X,p!1D2~X,p!#1@P1~X,p!1P2~X,p!#D:~X,p!%

1
i

4
$P.~X,p!,D,~X,p!%2

i

4
$P,~X,p!,D.~X,p!%, ~21!

where we have used the identity~8! applied to the Green’s functions and self-energies.
One recognizes Eq.~20! as a transport equation while Eq.~21! as a so-called mass-shell equation. We will write down these

equation in a more compact way. From the definition~7! one finds that

D6~X,p!56
1

2
@D.~X,p!2D,~X,p!#1

1

2p i
PE dv8

D.~X,v8,p!2D,~X,v8,p!

v2v8
. ~22!
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The first term on the right-hand side~RHS! is anti-Hermitian while the second one is Hermitian. Thus, we introduce

Im D6~X,p![6
1

2i
@D.~X,p!2D,~X,p!#, ~23!

Re D6~X,p![
1

2p i
PE dv8

D.~X,v8,p!2D,~X,v8,p!

v2v8
. ~24!

With the help of Eq.~24! and analogous formulas forP6, Eqs.~20! and ~21! can be rewritten as

$p22m
*
2 ~X!1Pd~X!1Re P1~X,p!,D:~X,p!%5 i @P.~X,p!D,~X,p!2P,~X,p!D.~X,p!#2$P:~X,p!,ReD1~X,p!%,

~25!

@p22m
*
2 ~X!1Pd~X!1ReP1~X,p!#D:~X,p!52P:~X,p!ReD1~ ,p!2

i

4
$P.~X,p!,D,~X,p!%1

i

4
$P,~X,p!,D.~X,p!%.

~26!

In the case of fields with finite bare mass, the gradient terms on the right-hand sides of Eqs.~25! and~26! aresmall @15,16#
and are usually neglected. When the bare fields are massless, as those studied here, there is no reason to neglect the gradient
terms. The equation analogous to Eq.~25! was derived earlier in@10,11#.

It appears useful to write down the transport and mass-shell equations satisfied by the retarded and advanced Green’s
functions. Starting with Eqs.~15! and ~16! one finds

$p22m
*
2 ~X!1Pd~X!1P6~X,p!,D6~X,p!%50, ~27!

@p22m
*
2 ~X!1Pd~X!1P6~X,p!#D6~X,p!51. ~28!

We observe that the gradient terms drop out entirely in Eq.~28!. Nevertheless, the equation holds within the first order of
gradient expansion. Because of the absence of the gradients, Eq.~28! can be immediately solved as

D6~X,p!5
1

p22m
*
2 ~X!1Pd~X!1P6~X,p!

. ~29!

One notices thatD6 of the form~29! solves not only Eq.~28! but Eq.~27! as well. Indeed, any functionf of K satisfies the
equation$K, f (K)%50.

The real and imaginary parts ofD6(X,p), which are needed in our further considerations, are

Re D6~X,p!5
p22m

*
2 ~X!1Pd~X!1Re P1~X,p!

@p22m
*
2 ~X!1Pd~X!1Re P1~X,p!#21@ Im P1~X,p!#2 , ~30!

Im D6~X,p!5
6Im P1~X,p!

@p22m
*
2 ~X!1Pd~X!1Re P1~X,p!#21@ Im P1~X,p!#2 . ~31!

VI. FREE QUASIPARTICLES

Before further analysis the equations obtained in the pre-
vious section we consider here a very important limit which
corresponds to the free quasiparticles. Specifically, we as-
sume thatPd5P:50. Then, Eqs.~25! and ~26! read

S pm]m1
1

2
]mm

*
2 ~X!]p

mDD0
:~X,p!50, ~32!

@p22m
*
2 ~X!#D0

:~X,p!50. ~33!

Although the quasiparticles are assumed to be free, the trans-
port equation is of the Vlasov, not of the free form. This is a
simple consequence of theX dependence of the effective
mass.

Because of Eq.~33!, D0
:(X,p) is proportional tod(p2

2m
*
2 ), and consequentlyfree quasiparticles are always on

mass shell. If the quasiparticle approximation~19! is not ap-
plied, the mass-shell equation gets the form

S 1

4
]22p21m

*
2 ~X! DD0

:~X,p!50,

and the off-shell contribution to the Green’s functionD0
: is

nonzero. A detailed discussion of the quasiparticle approxi-
mation is given in the Appendix.

We also discuss the~anti!chronological Green’s functions
D0

c(a) in the limit of free quasiparticles. One easily finds their
equations of motion as
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S pm]m1
1

2
]mm

*
2 ~X!]p

mDD0
c~X,p!50,

@p22m
*
2 #D0

c~X,p!51.

For the antichronological functionDa, the right-hand side of
the mass-shell equation equals21 instead of11. The solu-
tion of these equation can be written as

D0
c~X,p!5

1

p22m
*
2 1 i01 1Q~2p0!D0

.~X,p!

1Q~p0!D0
,~X,p!,

whereD0
:(X,p) is assumed to satisfy Eqs.~32! and~33!. It is

worth mentioning that any function which depends on (X,p)
through (p22m

*
2 ) solves the Vlasov equation~32!. D0

c(X,p)
obeys the initial condition of the standard Feynman propaga-
tor. It also satisfies relation~5!.

The antichronological Green’s function is

D0
a~X,p!5

21

p22m
*
2 2 i01 1Q~p0!D0

.~X,p!

1Q~2p0!D0
,~X,p!.

Knowing D0
c and D0

a one immediately gets the retarded
and advanced functions

D0
6~X,p!5

1

p22m
*
2 6 ip001 , ~34!

which obey the respective initial conditions. Confronting the
expressions ofD6 for free~34! and interacting quasiparticles
~29!, one finds that

Im P1~X,p!52Im P2~X,p!5 H01

02

for p0.0,
for p0,0,

~35!

in the limit of free quasiparticles.
It appears useful to express the Green’s functionsD0

:

through the distribution functionf 0 as

Q~p0!iD0
,~X,p!5Q~p0!2pd~p22m

*
2 ! f 0~X,p!

5
p

Ep
d~Ep2p0! f 0~X,p!, ~36!

whereEp[Ap21m
*
2 . This equation should be treated as a

definition of f 0 .
Because of relation~6! we have

D,~X,p!5D.~X,2p!,

and consequently

Q~p0!iD0
.~X,2p!5Q~p0!2pd~p22m

*
2 ! f 0~X,p!

5
p

Ep
d~Ep2p0! f 0~X,p!. ~37!

In that way we express the positive-energy part of
D0

,(X,p) and the negative-energy part ofD0
.(X,p) through

f 0(X,p). We extend these expressions to the whole energy
domain using identity~8!. With the help of the explicit form
of the retarded and advanced functions~34! we get the for-
mula

iD0
.~X,p!2 iD0

,~X,p!

52pd~p22m
*
2 !@Q~p0!2Q~2p0!#, ~38!

which is discussed in detail in the next section.
Combining Eqs.~36! and~37! with Eq. ~38!, one finds the

desired expression of the Green’s functionsD0
: in terms of

the distribution functionf 0 . Namely,

iD0
,~X,p!5

p

Ep
d~Ep2p0! f 0~X,p!

1
p

Ep
d~Ep1p0!@ f 0~X,2p!11#, ~39!

iD0
.~X,p!5

p

Ep
d~Ep2p0!@ f 0~X,p!11#

1
p

Ep
d~Ep1p0! f 0~X,2p!. ~40!

When the system is in thermodynamical equilibrium the
distribution functions reads

f 0
eq~p!5

1

ebmpm21
, ~41!

wherebm[um/T with um being the hydrodynamical velocity
andT the temperature. In thelocal equilibrium the two pa-
rameters areX dependent.

VII. SPECTRAL FUNCTION

In this section we introduce one more function which ap-
pears useful in the analysis of the interacting systems. The
spectral functionA is defined as

A~x,y!5
def

iD.~x,y!2 iD,~x,y!.

Thus,

A~x,y!5^@f~x!,f~y!#&,

where@f(x),f(y)# denotes the field commutator.
Because of the equal-time commutation relations

@f~ t,x!,f~ t,y!#50, @ḟ~ t,x!,f~ t,y!#52 id~3!~x2y!,

with the dot denoting the time derivative, the Wigner trans-
formed spectral function satisfies the two identities

E dp0

2p
A~X,p!50, E dp0

2p
p0A~X,p!51. ~42!

One also sees that@cf. Eq. ~23!#
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A~X,p!572ImD6~X,p!. ~43!

Finally, we observe that the identity~6!, which holds for the
real fields, provides the relation

A~X,p!52A~X,2p!.

From the transport and mass-shell equations~25! and ~26!
one immediately finds the equations forA(X,p) as

$p22m
*
2 ~X!1Pd~X!1Re P1~X,p!,A~X,p!%

52$Im P1~X,p!,ReD1~X,p!%, ~44!

@p22m
*
2 ~X!1Pd~X!1Re P1~X,p!#A~X,p!

52 Im P1~X,p!Re D1~X,p!. ~45!

Substituting ReD1(X,p) from Eq. ~30! into the algebraic
equation~45! we find its solution as

A~X,p!5
2 Im P1~X,p!

@p22m
*
2 ~X!1Pd~X!1Re P1~X,p!#21@ Im P1~X,p!#2 . ~46!

Then, one easily shows that the function of the form~46! solves Eq.~44! as well. In fact, the spectral function~46! can be
found directly from Eq.~30! due to the relation~43!.

The spectral function of the free quasiparticles can be, obviously, obtained from Eq.~46! but the limit should be taken with
care. We first write the spectral function~46! as

A~X,p!5
i

p22m
*
2 ~X!1Pd~X!1Re P1~X,p!1 i Im P1~X,p!

2
i

p22m
*
2 ~X!1Pd~X!1Re P1~X,p!2 i Im P1~X,p!

.

Then we take the limitP→0 keeping in mind condition
~35!. Using the well-known identity

1

x6 i01 5P
1

x
7 ipd~x!,

we get the spectral function of noninteracting quasiparticles
as

A0~X,p!52pd~p22m
*
2 !@Q~p02Q~2p0!#, ~47!

which, of course, coincides with Eq.~38!.
Let us also consider a specific approximate form of the

spectral function. If the condition

p21m
*
2 ~X!2Pd~X!2Re P1~X,p!@uIm P1~X,p!u

is satisfied,A as a function ofp0 is close to zero everywhere
except two narrow regions aroundp056E6(E6.0) which
solve the equations

E6
2 ~X,p!5p21m

*
2 ~X!2Pd~X!2Re P1~X,p056E6 ,p!.

Then, the function~46! can be approximated as

A~X,p!5
1

E1~X,p!

G1~X,p!

@E1~X,p!2p0#21G1
2 ~X,p!

2
1

E2~X,p!

G2~X,p!

@E2~X,p!1p0#21G2
2 ~X,p!

,

~48!

with

G6~X,p![6
Im P1~X,p056E6 ,p!

2E6~X,p!
. ~49!

One easily checks that the spectral function of the form~48!
satisfies the sum rules~42!.

VIII. PERTURBATIVE EXPANSION

As discussed in, e.g.,@13,14,31# the contour Green’s func-
tions admit a perturbative expansion very similar to that
known from vacuum field theory with essentially the same
Feynman rules. However, the time integrations do not run
from 2` to 1`, but along the contour shown in Fig. 1. The
right turning point of the contour (tmax) must be above the
largest time argument of the evaluated Green’s function. In
practice,t0 is shifted to2` and tmax to 1`. The second
difference is the appearance of tadpoles, i.e., loops formed
by single lines, which give zero contribution in the vacuum
case. A tadpole corresponds to a Green’s function with two
equal space-time arguments. Since the Green’s function
D(x,y) is not well defined forx5y we ascribe the function
2 iD,(x,x) to each tadpole. The rest of Feynman rules can
be taken from the textbook of Bjorken and Drell@30#.

In this section we consider the lowest-order contributions
to the self-energies. It should be stressed that the Green’s
functions, which are represented by the lines of the Feynman
diagrams, correspond to those of free quasiparticles not of
noninteracting fields.

A. f4 model

The lowest-order contribution to the self-energy which is
associated with the graphs from Fig. 2 is
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P~x,y!5d~4!~x,y!S m
*
2 ~x!2

ig

2
D0

,~x,x! D ,

giving

Pd~x!5m
*
2 ~x!2

ig

2
D0

,~x,x!, ~50!

and

P.~x,y!5P,~x,y!50.

Substituting D0
, given by Eq. ~39!, where D0

, is ex-
pressed through the distribution function, into Eq.~50! one
finds Pd as

Pd~x!5m
*
2 ~x!2

g

2 E d3p

~2p!32Ep
@2 f 0~x,p!11#.

As seen the integral is quadratically divergent even in the
vacuum limit whenf 0→0. This type of divergence, which
appears due to the zero-mode fluctuations, is well known in
the field theory. We remove it by subtracting the vacuum
value fromPd . Thus one gets

Pd~x!5m
*
2 ~x!2

g

2 E d3p

~2p!3Ep
f 0~x,p!. ~51!

We computePd for the equilibrium system when the dis-
tribution function is given by Eq.~41! with um5(1,0,0,0).
For T@m* we get after elementary integration the well-
known result, see e.g.,@26#,

Pd~x!5m
*
2 ~x!2

gT2~x!

24
, ~52!

where the temperature isx dependent in the case oflocal
equilibrium.

B. f3 model

The lowest-order contribution to the self-energy corre-
sponding to the graphs from Figs. 3~a! and 3~b! is

Pa~x,y!

5d~4!~x,y!S m
*
2 2

i

2
g2E

C
d4x8D0~x8,x!D0

,~x8,x8! D .

Locating the argumentx on the upper branch of the contour,
one finds

Pd~x!5m
*
2 2

i

2
g2E d4x8@D0

c~x8,x!

2D0
,~x8,x!#D0

,~x8,x8!,

where the time integration runs from2` to 1`. Observing
that Dc2D,5D1 we get

Pd~x!5m
*
2 2

i

2
g2E d4x8D0

1~x8,x!D0
,~x8,x8!.

Using the explicit form ofD0
1 ~34! and expressingD0

,

through the distribution function, one finds

Pd~x!5m
*
2 ~x!2

g2

2 E d4x8d4p

~2p!4

d3k

~2p!3Ek

3
e2 ip~x82x!

p22m
*
2 1 ip001 f 0~x8,k!, ~53!

where as previously we have subtracted the vacuum contri-
bution.

In the case of global equilibrium, whenf 0(x,k) is inde-
pendent ofx, the integral from Eq.~53! can be computed as

Pd5m
*
2 1

g2

2m
*
2 E d3k

~2p!3Ek
f 0~k!. ~54!

In the limit T@m* one finally finds

Pd5m
*
2 1

g2

24

T2

m
*
2 . ~55!

The graph from Fig. 3~c! corresponds to

Pb~x,y!52
i

2
g2D0~x,y!D0~y,x!,

and it gives

P:~x,y!52
i

2
g2D0

:~x,y!D0
"~y,x!. ~56!

SubstitutingD0
: expressed through the distribution func-

tion to Eq.~56! one finds

FIG. 2. The lowest-order diagrams of the self-energy in the
f4 model. The bubble in~a! denotes the additional interaction due
to the effective mass.

FIG. 3. The lowest-order diagrams of the self-energy in the
f3 model. The bubble in~a! denotes the additional interaction due
to the effective mass.
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P.~X,p!5
i

2
g2E d3k

~2p!32Ek

d3q

~2p!32Eq
~2p!4d~3!~p1q2k!$d~p02Ek2Eq! f 0~X,k! f 0~X,2q!

1d~p02Ek1Eq! f 0~X,k!@ f 0~X,q!11#1d~p01Ek2Eq!@ f 0~X,2k!11# f 0~X,2q!

1d~p01Ek1Eq!@ f 0~X,2k!11#@ f 0~X,q!11#%, ~57!

P,~X,p!5
i

2
g2E d3k

~2p!32Ek

d3q

~2p!32Eq
~2p!4d~3!~p1q2k!$d~p02Ek2Eq!@ f 0~X,k!11#@ f 0~X,2q!11#

1d~p02Ek1Eq!@ f 0~X,k!11# f 0~X,q!1d~p01Ek2Eq! f 0~X,2k!@ f 0~X,2q!11#

1d~p01Ek1Eq! f 0~X,2k! f 0~X,q!%. ~58!

Let us observe here that due to the trivial kinematical reasonsP,(X,p)5P,(X,p)50 for on-mass-shell four-momentap,
i.e., whenp25m

*
2 .

We further computeP,(X,p) for p50. In the case of equilibrium when the distribution function is of the form~41! and,
as previously,um5(1,0,0,0), one findsP:(X,p) for p5(6v,0) with v.0 as

P.~X,v,0!5P,~X,2v,0!52
ig2

16p
Q~v22m* !A124m

*
2 /v2

1

@exp~bv/2!21#2 , ~59!

P,~X,v,0!5P.~X,2v,0!52
ig2

16p
Q~v22m* !A124m

*
2 /v2

exp~bv!

@exp~bv/2!21#2 . ~60!

We also compute

Im P1~X,6v,0!5
1

2i
@P.~X,6v,0!2P,~X,6v,0!#56

g2

16p
Q~v22m* !A124m

*
2 /v2

1

exp~bv/2!21
.

One sees that the condition~35! is indeed satisfied by the
perturbative self-energy wheng→0 andm* is kept fixed.

IX. QUASIPARTICLE MASS

The structure of Eqs.~25! and ~26! motivates the defini-
tion of the quasiparticle mass as a solution of the equation

Pd~X!1Re P1~X,p05m* ,p50!50. ~61!

The definition is not Lorentz invariant but statistical systems
usually break such an invariance. In the case of global equi-
librium there is, for example, a preferential reference frame
related to the thermostat.

Let us now look for the explicit expression ofm* in the
lowest nontrivial order ing within the two models under
consideration.

A. f4 model

The only nonvanishing contribution to the self-energy in
the lowest order of perturbative expansion comes fromPd ,
which is given by Eq.~51!. Therefore, the effective mass is a
solution of the equation

m
*
2 ~x!5

g

2 E d3p

~2p!3Ep
f 0~x,p!. ~62!

One should keep in mind thatEp and f 0 depend onm* .
For the equilibrium system withT@m* we immediately

get the well-known result

m
*
2 ~x!5

gT2~x!

24
. ~63!

One sees that the conditionT@m* is automatically satisfied
in the perturbative limit whereg21@1.

B. f3 model

Now we have the nonzero contributions to the self-energy
not only from Pd ~53! but from P: ~57! and ~58! as well.
The real part ofP1 which enters Eq.~61! is given by the
equation analogous to Eq.~24!. Thus,

Re P1~X,m* ,0!5
1

2p i
P

3E dv
P.~X,v,0!2P,~X,v,0!

m* 2v
.

Using Eqs.~59! and ~60! one finds

Re P1~X,m* ,0!52
g2

16p2 m* E2m
*

` dv

v22m
*
2

3A124m
*
2 /v2

1

exp~bv/2!21

52
g2

32p2 I ~bm* !, ~64!
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where

I ~a![E
1

` dx

x221/4

A121/x2

eax21
.

Thus, in the case ofglobal equilibrium with T@m* , Eq.
~61! reads

m
*
2 1

g2

24

T2

m
*
2 2

g2

32p2 I ~bm* !50. ~65!

One observes that

I ~a!,
1

a E
1

` dx

x2 5
1

a
.

Thus, I (bm* ),T/m* and consequently the absolute value
of the third term on the LHS of Eq.~65! is much smaller then
that of the second one in the limit ofT@m* . Therefore,
there isno real positivem* which satisfies Eq.~65!. It means
that the massive quasiparticles do not emerge in the massless
f3 model. It is not surprising since the potentialV(f)
5(g/3!)f3 from the Lagrangian~1! has no minimum, even a
local one. So, we do not consider thef3 model any more and
concentrate on thef4 model.

Having the mass of quasiparticles we can determine their
dispersion relation. Since all self-energies exceptPd(X)
vanish in the lowest order of the perturbative expansion, the
mass-shell equation~26! coincides with that one of the free
quasiparticles~33!. Thus, we have explicitly shown that in
the first order ofg, thef4 model provides the system of free
quasiparticles described by the transport equation of the Vla-
sov form, i.e.,

S pm]m1
1

2
]mm

*
2 ~X!]p

mD f 0~X,p!50, ~66!

with the effective mass given by Eq.~62!.

X. HIGHER-ORDER SELF-ENERGY

We discuss here theg2 contributions to the self-energy in
thef4 model, which are represented by graphs shown in Fig.
4. The bubble is again related to the effective mass. The
contributions corresponding to Figs. 4~a! and 4~b! can be
easily computed. However, they are pure real and the only
effect of these contributions is a higher-order modification of
the effective mass. Thus, we do not explicitly calculate these
diagrams but instead we analyze Fig. 4~c! which provides a
qualitatively new effect.

The graph from Fig. 4~c! gives the contour self-energy as

Pc~x,y!5
g2

6
D0~x,y!D0~y,x!D0~x,y!,

and consequently

P:~x,y!5
g2

6
D0

:~x,y!D0
"~y,x!D0

:~x,y!.

SubstitutingD0
: expressed through the distribution func-

tion f 0 as in Eqs.~39! and ~40! one finds the self-energy
P: in the form

P,~X,p!5 i
g2

6 E d3k

~2p!32Ek

d3q

~2p!32Eq

d3r

~2p!32Er
~2p!4d~3!~p1q2k2r !@d~p02Ek2Eq2Er ! f 0

k f 0
2qf 0

r

1d~p02Ek2Eq1Er ! f 0
k f 0

2q~ f 0
2r11!

1d~p02Ek1Eq2Er ! f 0
k~ f 0

q11! f 0
r 1d~p02Ek1Eq1Er ! f 0

k~ f 0
q11!~ f 0

2r11!

1d~p01Ek2Eq2Er !~ f 0
2k11! f 0

2qf 0
r 1d~p01Ek2Eq1Er !~ f 0

2k11! f 0
2q~ f 0

2r11!

1d~p01Ek1Eq2Er !~ f 0
2k11!~ f 0

q11! f 0
r 1d~p01Ek1Eq1Er !~ f 0

2k11!~ f 0
q11!~ f 0

2r11!#, ~67!

P.~X,p!5 i
g2

6 E d3k

~2p!32Ek

d3q

~2p!32Eq

d3r

~2p!32Er
~2p!4d~3!~p1q2k2r !@d~p01Ek1Eq1Er ! f 0

2kf 0
qf 0

2r

1d~p01Ek1Eq2Er ! f 0
2kf 0

q~ f 0
r 11!1d~p01Ek2Eq1Er ! f 0

2k~ f 0
2q11! f 0

2r

1d~p01Ek2Eq2Er ! f 0
2k~ f 0

2q11!~ f 0
r 11!

1d~p02Ek1Eq1Er !~ f 0
k11! f 0

qf 0
2r1d~p02Ek1Eq2Er !~ f 0

k11! f 0
q~ f 0

r 11!

1d~p02Ek2Eq1Er !~ f 0
k11!~ f 0

2q11! f 0
2r1d~p02Ek2Eq2Er !~ f 0

k11!~ f 0
2q11!~ f 0

r 11!#, ~68!

with

FIG. 4. The second-order diagrams of the self-energy in the
f4 model.
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f 0
k[ f 0~X,k!, f 0

2k[ f 0~X,2k!.

It is important to notice that in contrast to the similar expressions of thef3 model, i.e., Eqs.~57! and ~58!, the self-energies
~68! and~67! are nonzero not only for the off-shell but for on-shell momentump as well. However, the number of terms from
Eq. ~68! or ~67! which contribute toP: is reduced whenp25m

*
2 . Indeed, Eqs.~67! and ~68! simplify in this case as

Q~p0!P,~X,p!5 i
g2

6 E d3k

~2p!32Ek

d3q

~2p!32Eq

d3r

~2p!32Er
~2p!4d~3!~p1q2k2r !@d~p02Ek2Eq1Er ! f 0

k f 0
2q~ f 0

2r11!

1d~p02Ek1Eq2Er ! f 0
k~ f 0

q11! f 0
r 1d~p01Ek2Eq2Er !~ f 0

2k11! f 0
2qf 0

r #

5 i
g2

2 E d3k

~2p!32Ek

d3q

~2p!32Eq

d3r

~2p!32Er
~2p!4d~4!~p1q2k2r !~ f 0

q11! f 0
k f 0

r , ~69!

Q~p0!P.~X,p!5 i
g2

6 E d3k

~2p!32Ek

d3q

~2p!32Eq

d3r

~2p!32Er
~2p!4d~3!~p1q2k2r !

3@d~p02Ek2Eq1Er !~ f 0
k11!~ f 0

2q11! f 0
2r1d~p02Ek1Eq2Er !~ f 0

k11! f 0
q~ f 0

r 11!

1d~p01Ek2Eq2Er ! f 0
2k~ f 0

2q11!~ f 0
r 11!#

5 i
g2

2 E d3k

~2p!32Ek

d3q

~2p!32Eq

d3r

~2p!32Er
~2p!4d~4!~p1q2k2r ! f 0

q~ f 0
k11!~ f 0

r 11!, ~70!

wherep05Am
*
2 1p2.

The self-energiesP: provide, through the equations analogous to Eqs.~23! and~24!, the ReP1 and ImP1 which enter the
transport~25! and mass-shell~26! equations. The imaginary part ofP1 is of particular interest. Because of the finite value of
Im P1, the spectral function~46! is no longerd-like but it is of the Breit-Wigner shape. Thus, the quasiparticles are of finite
lifetime. For the on-mass-shell momenta withp0.0 the imaginary part ofP1 equals

Im P1~X,p!5
1

2i
@P.~X,p!2P,~X,p!#

5
g2

4 E d3k

~2p!32Ek

d3q

~2p!32Eq

d3r

~2p!32Er
~2p!4d~4!~p1q2k2r !@ f 0

q~ f 0
k11!~ f 0

r 11!2~ f 0
q11! f 0

k f 0
r #.

~71!

This function was computed for the equilibrium distribution
in @26,28#.

XI. INTERACTING QUASIPARTICLES

In this section we discuss the dispersion relation of the
interacting quasiparticles and then define the respective dis-
tribution function.

Having the self-energies calculated ing2 order we can
determine the quasiparticle dispersion relation in this order.
As previously, the quasiparticle mass is found as a solution
of Eq. ~61!. Therefore, the singular self-energyPd(X) as
well as ReP1(X,m* ,0) are included inm

*
2 (X). To avoid the

double counting, the expression

p22m
*
2 ~X!1Pd~X!1Re P1~X,p!

is replaced everywhere by

p22m
*
2 ~X!1Re P̃1~X,p!,

with

Re P̃1~X,p![1Re P1~X,p!2Q~p0!Re P1~X,m* ,0!

2Q~2p0!Re P1~X,2m* ,0!.

The dispersion relation is given by the equation

p22m
*
2 ~X!1Re P̃1~X,p!50, ~72!

but according to Eq.~46!, which determines the spectral
function, the quasiparticles are of the finite width and the
relation~72! gives only the most probable quasiparticle four-
momentum. We call the four-momenta, which satisfies the
relation~72!, as ‘‘on-mass shell,’’ however, one should keep
in mind that the meaning of this term differs for the finite
and zero width quasiparticles.

Equation ~72! can be easily solved if ReP̃1 provides
only a small correction to the free quasiparticle dispersion
relation. Then, one finds the on-mass-shell momentum as
p65(6Ep

6 ,p) with

Ep
65Am

*
2 ~X!1p21Re P̃1

„X,6Am
*
2 ~X!1p2,p….

~73!
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The distribution functionf (X,p) of the interacting quasi-
particles is defined in a way analogous to Eq.~36!, i.e.,

Q~p0!iD,~X,p!5Q~p0!A~X,p! f ~X,p!, ~74!

whereA(X,p) is the spectral function~46!. In contrast with
the case of free quasiparticles,f (X,p) depends not on the
three-vectorp but on the four-vectorp. Because of the iden-
tities

D,~X,p!5D.~X,2p!, A~X,p!5 iD.~X,p!2 iD,~X,p!,

we have

iD.~X,p!5Q~p0!A~X,p!@ f ~X,p!11#

2Q~2p0!A~X,p! f ~X,2p!, ~75!

iD,~X,p!5Q~p0!A~X,p! f ~X,p!

2Q~2p0!A~X,p!@ f ~X,2p!11#. ~76!

There is a very important property ofD: expressed in the
form of Eqs.~75! and~76!. Namely, if the Green’s functions
D: satisfy the transport equation~25! and the spectral func-
tion solves Eq.~45!, the mass-shell equation ofD:, i.e., Eq.
~26!, is satisfiedautomaticallyin the zeroth order of the gra-
dient expansion. Let us derive this result.

The transport and mass-shell equations~25! and~26! with
the gradient terms neglected read

05P.~X,p!D,~X,p!2P,~X,p!D.~X,p!,

@p22m
*
2 ~X!1Re P̃1~X,p!#D:~X,p!

52P:~X,p!Re D1~X,p!.

SubstitutingD: in the form of Eqs.~75! and ~76! into the
first equation and taking only the terms corresponding to
p0.0, the equation is

05A~x,p!$P.~X,p! f ~X,p!2P,~X,p!@ f ~X,p!11#%.
~77!

Now we substituteD, given by Eq.~76! into the mass-shell
equation and get

@p22m
*
2 ~X!1Re P̃1~X,p!#A~x,p! f ~X,p!

52P,~X,p!Re D1~X,p!, ~78!

wherep0 is assumed to be positive. Using the spectral func-
tion equation~45!, Eq. ~78! is manipulated to the form

Re D1~x,p!@P.~X,p! f ~X,p!2P,~X,p!„f ~X,p!11…#50.
~79!

One sees that iff solves Eq.~77!, it automatically satisfies
Eq. ~79!. Similar considerations can be easily repeated for
p0,0 and then forD, with p0.0 andp0,0.

Let us observe that the quasiparticles studied in this paper
are narrow. Indeed, the effective mass~62! is of orderg1/2

while the width of the Breit-Wigner distribution given by Eq.
~49! is proportional tog in power at least 3/2. Thus, the
width of quasiparticles is much smaller than their mass~g is
obviously assumed to be small!. Due to this property we will
often refer to the case of zero-width quasiparticles or on-
mass-shell momenta.

XII. TRANSPORT EQUATION

The distribution functionf satisfies the transport equation
which can be obtained from Eq.~25! for D. or D,. After
using Eq.~44! one finds

A~X,p!$p22m
*
2 ~X!1Re P̃1~X,p!, f ~X,p!%

5 iA~X,p!$P.~X,p! f ~X,p!2P,~X,p!@ f ~X,p!11#%1 i f ~X,p!$P.~X,p!,ReD1~X,p!%

2 i ~ f ~X,p!11!$P,~X,p!,ReD1~X,p!%, ~80!

wherep0.0. We have also used here the following property of the Poisson-like brackets:

$A,BC%5$A,B%C1$A,C%B.

Since Eq.~80! is one of the main results of this paper we discuss it in detail.
The left-hand side of Eq.~80! is a straightforward generalization of the drift term of the standard relativistic transport

equation. Computing the Poisson-like bracket and imposing the mass-shell constraint~72! one finds the familiar structure

1

2
Q~p0!$p22m

*
2 ~X!1Re P̃1~X,p!, f ~X,p!%5Ep

1S ]

]t
1v¹ D f ~X,p!1¹V~X!¹pf ~X,p!,

where

V~X![m
*
2 ~X!2Re P̃1~X,p!,

and the velocityv equals]Ep
1/]p with the energyEp

1 given
by Eq. ~73!.

Let us now analyze the right-hand side of Eq.~80!. Since

the quasiparticles of interest are narrow, we take into
account only those terms contributing to the self-energies
P: which are nonzero for the on-mass-shell momenta.
The other terms are negligibly small. Then,P: from
the transport equation~80! are given by the formulasanalo-
gous to Eqs. ~69! and ~70! with f instead of f 0 .
Consequently,
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Q~p0!P,~X,p!5 i
g2

2 E d4kAk
1

~2p!4

d4qAq
1

~2p!4

d4rAr
1

~2p!4

3~2p!4d~4!~p1q2k2r !~ f q11! f kf r ,

~81!

Q~p0!P.~X,p!5 i
g2

2 E d4kAk
1

~2p!4

d4qAq
1

~2p!4

d4rAr
1

~2p!4

3~2p!4d~4!~p1q2k2r ! f q~ f k11!~ f r11!, ~82!

where

Ak
1[Q~k0!A~X,k!.

One sees that in the limit of zero-width quasiparticles

d4kAk
1

~2p!4 →
d3k

~2p!32Ek
.

The first term on the RHS of the transport equation~80! is
very similar to the standard collision term of the relativistic
transport equation@32#. Indeed,

i $P.~X,p! f ~X,p!2P,~X,p!@ f ~X,p!11#%

5
g2

2 E d4kAk
1

~2p!4

d4qAq
1

~2p!4

d4rAr
1

~2p!4 ~2p!4d~4!~p1q2k2r !@~ f p11!~ f q11! f kf r2 f pf q~ f k11!~ f r11!#. ~83!

The last two terms from the RHS of Eq.~80!, analogous
to those found a long time ago in@10,11#, are absent in the
usual transport equation. We are going to show that in the
local equilibrium, when the collision term~83! vanishes, we
reproduce the standard collisionless equation if the four-
momentum is on-mass shell.

As is well known@32#, the standard collision term, which
emerges from Eq.~83! when the quasiparticle width tends to
zero @cf. Eq. ~47!#, vanishes for the local equilibrium distri-
bution function of the form~41!. Following @32#, one easily
shows that the collision term~83! also vanishes for the dis-
tribution function ~41! with the particle momentump no
longer constrained by the mass-shell condition.

One observes that in the local equilibrium the collisional
self-energies can be written as

P.~X,p!52i Im P1~X,p!@ f eq~X,p!11#,

and

P,~X,p!52i Im P1~X,p! f eq~X,p!.

The transport equation~80! then simplifies to

A~X,p!$p22m
*
2 ~X!1Re P̃1~X,p!, f eq~X,p!%

52 Im P1~X,p!$ f eq~X,p!,ReD1~X,p!%.

Using Eqs.~30! and~46! one manipulates this equation to the
form

Im P1~X,p!$p22m
*
2 ~X!1Re P̃1~X,p!, f eq~X,p!%

5@p22m
*
2 ~X!1Re P̃1~X,p!#

3$Im P1~X,p!, f eq~X,p!%. ~84!

As seen, the term on the RHS drops down for the on-mass-
shell momenta and then we reproduce the usual Vlasov equa-
tion, i.e.,

$p22m
*
2 ~X!1Re P̃1~X,p!, f eq~X,p!%50. ~85!

The role of the two unusual terms from the RHS of the
transport equation~80! beyond the local equilibrium is rather
unclear and needs further studies.

XIII. SUMMARY AND CONCLUDING REMARKS

We have discussed in this paper the nonequilibrium fea-
tures of the massless fields. The derivation of the kinetic
equation in such a case faces serious difficulties because
there is no natural length scale over which the system inho-
mogeneities can be integrated over. As known the transport
theory deals with the quantities averaged over an elementary
phase-space cell of the minimal size given by the particle
Compton wavelength.

The fields with the zero bare mass usually gain an effec-
tive mass due to the self-interaction. Therefore, we have in-
troduced the auxiliary mass term in the Lagrangian and then,
the transport theory has been derived in a way very similar to
the earlier studied@15,16# case of massive fields. However,
due to the position dependence of the effective mass, the
limit of the noninteracting quasiparticles corresponds to the
Vlasov rather than the free particle case. The smallness of
the effective mass has also forced us to take into account
some extra gradient terms which are usually neglected in the
transport equation.

We have considered in detail thef3 and f4 models
which appear to be very different from each other. In the
f4 model the effective mass is generated in the lowest non-
trivial order of the perturbative expansion. In contrast, the
massive quasiparticles do not emerge in thef3 model and
most probably there is no transport limit of this model which,
as is well known, is, in any case, ill defined.

Within thef4 model we have derived the transport equa-
tion for the finite width quasiparticles. The distribution func-
tion has been defined in such a way that the mass-shell con-
straint is automatically satisfied~in the gradient zeroth
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order!. We have found, except for the mean-field and colli-
sion terms, the specific ones which are absent in the standard
transport equation. However, in the case of local equilibrium
we have been able to reproduce the usual collisionless equa-
tion if the four-momentum is on the mass shell.

The massless fields play a crucial role in the gauge theo-
ries such as QED or QCD. We believe that the methods
developed in this study will be useful in the discussion of the
transport theory of quarks and gluons. However, the applica-
tion of our approach to QCD is not straightforward. The
QCD effective action, which is analogous to our Eq.~2!, is
known only for the equilibrium case@24,23,29#. The gener-
alization of this result to an inhomogeneous system is a se-
rious problem which should be solved before the complete
QCD transport equations could be derived.
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APPENDIX

We discuss here the quasiparticle approximation for the
system of noninteracting fields. To simplify the discussion
the bare massm is assumed to be nonzero or equivalently
m* is treated as a constant. The transport equation and the
mass-shell constraint read

pm]mD0
:~X,p!50, ~A1!

S 1

4
]22p21m2DD0

:~X,p!50. ~A2!

These equations, which directly follow from the field equa-
tion of motion~3! with m5m* , are exact in the case of the
massive free fields — the gradient expansion is not needed to
derive them.

The mass-shell constraint~A2! shows that the function
D0

:(X,p) is indeed nonzero for the off-shell momenta, i.e.,
D0

:(X,p)Þ0 for p2Þm2. This result looks surprising if one
keeps in mind that the field, which solves the equation of
motion ~3!, is, in a sense, on-mass shell. The field is the sum
of the plane waves

f~x!5E d3k

A~2p!32vk

@e2 ikxa~k!1eikxa* ~k!#,

~A3!

wherek[(vk ,k) with vk[Ak21m2. Thus,k25m2. Sub-
stituting the field~A3! into theD:(X,p) definition, one finds
that the off-shell contribution toD0

:(X,p) comes from the
interference of the positive- and negative-energy parts
present in Eq.~A3!. Let us consider when such a contribu-
tion can be neglected.

One easily shows that the transport equation~A1! is
solved by the function which depends on the four-position
X5(t,x) only throughx2vt: i.e.,

D0
:~X,p!5F~x2vt,p!,

wherev[p/p0 . The quasiparticle condition~19! applied to
the functionF reads

uF~x2vt,p!u@
1

m2 U~v iv j2d i j !
]2F~x2vt,p!

]~x2vt ! i]~x2vt ! j
U.

If this condition is satisfied for everyx at a given moment of
time, sayt0 , it is satisfied atany time. In other words, if the
initial condition at t0 is sufficiently homogeneous that the
quasiparticle approximation can be applied, then this ap-
proximation is applicable at any time — the system remains
homogeneous.

The question arises whetherD0
: , which simultaneously

solves the transport~A1! and mass-shell~A2! equations,can
satisfy the quasiparticle condition. We introduce the Fourier-
transformed functionD̃0

:(Q,p) defined as

D̃0
:~Q,p!5

defE d4XeiQ•XD0
:~X,p!. ~A4!

The equations corresponding to Eqs.~A1! and ~A2!, respec-
tively, read

pmQmD̃0
:~Q,p!50,

S 2
1

4
Q22p21m2D D̃0

:~Q,p!50.

They are both solved by

i D̃0
:~Q,p!5d~p•Q!dS 2

1

4
Q22p21m2DA~Q,p!,

~A5!

with A(Q,p) controlled by the initial condition. Since
iD0

:(X,p) is real,A(Q,p) has the property

A~Q,p!5A* ~2Q,p!. ~A6!

The solution of the Eqs.~A1! and~A2! satisfies the quasi-
particle condition~19! when

uA~Q,p!u@UQ2

m2 A~Q,p!U, ~A7!

or equivalentlyA(Q,p)Þ0 only for Q2!m2.
It is instructive to consider the explicit solution of Eqs.

~A1! and ~A2! in 111 dimensions. Using Eq.~A5! we get

iD0
:~X,p!5E d2Q

~2p!2 e2 iQ•Xd~p•Q!

3dS 2
1

4
q22p21m2DA~Q,p!,

5@Q~2p2!1Q~p22m2!#
1

~2p!2up2u
Ap2/~p22m2!

3@e2Q̃XA~Q̃,p!1eiQ̃XA~2Q̃,p!#, ~A8!

whereQ̃ denotes the two-vector
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Q̃[2up0uA~p22m2!/p2 S p1

p0
,1D .

Keeping in mind the property~A6!, the solution~A8! can be
rewritten as

iD0
:~X,p!5@Q~2p2!1Q~p22m2!#

3@h~p!sin~Q̃X!1g~p!cos~Q̃X!#, ~A9!

whereh(p) andg(p) are the real functions ofp determined
by the initial condition.

The quasiparticle condition~19! is satisfied by Eq.~A9! if

uQ̃2u54up22m2u!m2.

One also sees thatD0
:(X,p);d(p22m2) only for Q̃50. In

other words, the functionD0
:(X,p) is strictly zero for the

off-mass-shell momenta when the system is exactly homoge-
neous. If we are interested in the weakly nonhomogeneous
systems, the functions are nonzero forp2.m2. Equivalently,
if p2>m2 thenp2.m2 but notp2,m2.

The properties of the functionD0
: in 111 dimensions can

be trivially generalized to the 311 case showing the limita-
tions of the quasiparticle approximation.
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