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Using the Schwinger-Keldysh technique we discuss how to derive the transport equations for the system of
massless quantum fields. We analyze the scalar field models with quartic and cubic interaction termg® In the
model the massive quasiparticles appear due to the self-interaction of massless bare fields. Therefore, the
derivation of the transport equations strongly resembles one of the massive fields, but the subset of diagrams
which provides the quasiparticle mass has to be resummed. The kinetic equation for the finite width quasipar-
ticles is found, where, except for the mean-field and collision terms, there are terms which are absent in the
standard Boltzmann equation. The structure of these terms is discussed. In the nysseiestel the massive
guasiparticles do not emerge and presumably there is no transport theory corresponding to this model. It is not
surprising since theb®> model is, in any case, ill definefiS0556-282(97)07016-1

PACS numbeis): 11.10.Wx, 05.20.Dd

[. INTRODUCTION The treatment of the massless fields, which are crucial for
the gauge theories as QED or QCD, is particularly difficult
Transport theory is a very convenient tool to study many-when the transport equations are derived. Except the well-
body nonequilibrium systems, nonrelativistic as well as relaknown infrared divergences which plague the perturbative
tivistic. The kinetic equations which play a central role in theexpansion, there is a specific problem of nonequilibrium
transport approach can usually be derived by means ahassless fields. The inhomogeneities in the system cause the
simple heuristic arguments similar to those which were usedff-mass-shell propagation of particles and then the pertur-
by Boltzmann over a hundred years ago when he introducebative analysis of the collision terms appears hardly trac-
his famous equation. However, such arguments are insufftable. More specifically, it appears very difficult, if possible
cient when one studies a system of very complicated dynarrat all, to express the field self-energy as the transition-matrix
ics as the quark-gluon plasma governed by QCD. Then, onelement squared and consequently we lose the probabilistic
has to refer to a formal scheme which allows one to deriveeharacter of the kinetic theory. The problem is absent for the
the transport equation directly from the underlying quantummassive fields when the system is assumed homogeneous at
field theory. The formal scheme is also needed to specify théhe inverse mass or Compton scale. This is a natural assump-
limits of the kinetic approach. Indeed, the derivation showsion within the transport theory which, in any case, deals
the assumptions and approximations which lead to the transvith the quantities averaged over a certain scale which can
port theory, and hence the domain of its applicability can bebe identified with the Compton one.
established. The problem of the massleasnequilibriumfields has not
Until now the transport equations of the QCD plasmabeen fully recognized in the existing literature. One has usu-
have been successfully derived in the mean-field or collisionally assumed, explicitly or implicitly, the on-mass-shell
less limit[1,2] and the structure of these equations is wellpropagation. Such an assumption is indeed reasonable when
understood 1-4]. In particular, it has been shown that in the quasihomogeneous system near global equilibrium is
quasiequilibrium these equations providg4] the so-called considered2]. However, the condition should be imposed
hard thermal loop$§5]. The collisionless transport equations that the inhomogeneity length is much larger than the inverse
can be applied to a variety of problems. However, one needguasiparticle mass. It has also been shown on the phenom-
the collision terms to discuss dissipative phenomena. In spitenological level[20] that the off-mass-shell propagation
of some effort46—8], the general form of these terms in the plays a very important role in the parton system which is far
transport equations of the quark-gluon plasma remains urfrom equilibrium. Thus, we intend to develop a systematic
known. approach to the transport of massless fields, which allows
The so-called Schwinger-Keldysf9] formulation of  one to treat these fields in a very similar manner to the mas-
guantum field theory provides a very promising basis to desive ones. The basic idea is rather obvious.
rive the transport equation beyond the mean-field limit. The fields which are massless in vacuum gain an effective
Kadanoff and Baynj10] developed the technique for non- mass in a medium due to the interaction. Therefore, the mini-
relativistic quantum systems, which has been further genemal scale at which the transport theory works is not an in-
alized to relativistic onegl1-19. We mention here only the verse bare mass, which is infinite for massless fields, but the
papers which provide a more or less systematic analysis dfiverse effective one. The staring point of the perturbative
the collision terms. computation should no longer be free fields but the interact-
ing ones. In physical terms, we postulate the existence of the
massive quasiparticles and look for their transport equation.
*Electronic address: MROW@FUW.EDU.PL At the technical level, we begin with the Lagrangian of
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the massless fields and make a formal trick which is well ; - ~
known in the quantum field theory at finite temperature, see, ! — J ; -
e.g.,[21-29. Namely, the auxiliary mass term is added to Emin tmax

the free Lagrangian and then is subtracted due to a redefini-
tion of the interaction term. As a result the subset of dia- FI!G. 1. The contour along the time axis for an evaluation of the
grams which contributes to the mass, which is determined iPerator expectation values.
a self-consistent way, is effectively resummed in the pertur- i . i i )
bative expansion. A somewhat similar technique was applied The fields which satisfy the equation of motion
to the kinetic theory irf18]. 2. 2 _

In this paper we show how the suggested method works L7+ m, (01600 =0, ©

for the self-interacting scalar fields. We discuss in detail therepresentree quasiparticlesvith massm, . We observe that
¢° and ¢* models which appear to be qualitatively different. jt js not a priori clear whether massive quasiparticles emerge
We successfully derive the transport equations for ée  gye to the field self-interaction. It is even less clear whether
model and show why the method does not work for #%  tne |imit of free quasiparticles exist. As will be shown it is
case. Our discussion closely follows the scheme of derivaygeed the case for thé* model, but not for thep® one.
tion which was earlier developed for the massive fields: self- \ye write down the energy-momentum tensor defined as
interacting scalar fieldgl5] and the spinor fields interacting
with the scalar and vector ong6]. THY(X)= " d(X) 9" Pp(X) — g*"L(X).

The main steps of the derivation are the following. We
define the contour Green's function with the time argumentsSubtracting the total derivative
on the contour in a complex time plane. This function is a 1 1
key element of the Schwinger-Keldysh approach. After dis- — MG AX)— g*t = 399,h2(X),
cussing its properties and relevance for nonequilibrium sys- 4 4 7
tems, we write down the exact equations of mation, i.e., the .
Dyson-Schwinger equations. Assuming the macros;copi?a./e get the energy-momentum tensor WhICh,.f.OI‘ the free
quasihomogeneity of the system, we perform the gradien elds, is of a form convenient for our purposes: i.e.,
expansion and the Wigner transformation. Then, the pair of 1 o
Dyson-Schwinger equations are converted into the transport TEY(X)=— = P(X)9"d" P(X). (4)
and mass-shell equations both satisfied by the Wigner func- 4
tion. The latter equation allows one to identify the initially
introduced fictitious mass with the effective one generate
by the interaction. We further perform the perturbative
analysis showing how the Vlasov terms and the collisional
ones emerge. Finally we define the distribution functions of

standard probabilistic interpretation and find the transport The central role in our considerations plays the contour

‘{he fields are assumed here to satisfy the equation of motion
3).

Ill. GREEN’S FUNCTIONS

equations satisfied by these functions. Green'’s function defined as
Throughout this work we use natural units whérec
=1. The signature of the metric tensor is (—,—,—). As iA(x,y)dzef(?¢(x)¢(y)>,
long as possible, we keep the convention of Bjorken and
Drell [30]. where the angular brackets denote the ensemble average at
time tg (usually identified with—<0); T is the time-ordering
Il. PRELIMINARIES operation along the directed contour shown in Fig. 1. The

earametetmax is shifted to+ < in the calculations. The time
arguments are complex with an infinitesimal positive or
negative imaginary part, which locates them on the upper or
1 g on the lower branch of the contour. The ordering operation is
LX) =5 9 $(X)d,¢(X)— d"(x), (1)  defined as

We consider the system of massless scalar fields with th
Lagrangian density of the form

~ def
wheren equals 3 or 4. The renormalization counterterms are T¢(X) ¢(Y) =0 (Xq,Yo) d(X) d(Y)+ O (Yo, X0) (Y) p(X),
omitted in the Lagrangian. We introduce an auxiliary )
position-dependent mass, (x) which can be treated as an Where®(xo,yo) equals 1 ifx, succeedy, on the contour,

external field. Specifically, we redefine the Lagrangian as and equals 0 wher, precedey,. . .
If the field is expected to develop a finite expectation

1 1, ) value, as it happens when the symmetry is spontaneously
Ln(X) =5 9*$(X)d,H(x) = 5 M (X) $%(X) + L,(X) broken, the contributior ¢(x)){¢(y)) is subtracted from
2) the right-hand side of the equation defining the Green’s func-
tion, see, e.g.[15,16. Then, one concentrates on the field

with the interaction term fluctuations around the expectation values. Si€x)) is
. expected to vanish in the models defined by the Lagrangians
g 1) we neglect this contribution in the Green'’s function defi-
LX) =+ 5 M2 ()0~ — ¢"(X). (L we neg
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We also use four other Green'’s functions with real-timewhereT¢(T?) prescribegantchronological time ordering:
arguments:

def
TEH(X) p(Y) =0 (Xo—Yo) d(X) (Y)

def
A7) E), +01(Yo— Xo) S(Y) bC(x),
def
470y =(8()£09). T24(X) d(y) = O(Yo—X0) ) ()
iAC(X’y)d:ef<TC¢(X) (), + 0O (X0~ Yo) d(Y) P(X).
def These functions are related to the contour Green’s functions
IA2(X,Y)=(T2p(X) P(Y)), in the following manner:

AS(x,y)=A(x,y) for Xq,yo from the upper branch,
A%(x,y)=A(x,y) for xq,yo from the lower branch,
A~ (x,y)=A(x,y) for x, from the upper branch ang, from the lower one,

A=(x,y)=A(x,y) for x, from the lower branch and, from the upper one.

One easily finds the identities which directly follow from  Let us now briefly discuss the physical interpretation of
the definitions the Green’s functions. The functiofd®(x,y) describes the
propagation of disturbance in which a single particle is added
to the many-particle system in space-time pgirnd then is
removed from it in a space-time poixt An antiparticle
disturbance is propagated backward in time. The meaning of

a - _ > Dy < A?(x,y) is analogous but particles are propagated backward
AT = 0o =X A7 (XY) + O (X0 = Vo) A7 (XY). (5)  in time and antiparticles forward. In the zero density limit

A®(x,y) coincides with the Feynman propagator.
One also observes that The physical meaning of functions™(x,y) andA=<(x,y)
is more transparent when one considers the Wigner trans-
form defined as

AS(X,Y) =0 (Xo—Yo) A~ (X,Y) + O(Yo—Xo) A=(X,y),

[IAZ(x 1T =1A%(xy),

def ) 1 1
s — 4 AIPUA S _
[iAa(X,y)]T=iAC(X,y), A=(X,p) f d*ue'PA (X-i— 5 u,X 5 uj. (9)

where T denotes Hermitian conjugation, i.e., complex conjuThen, the free-field energy-momentum tengéy averaged
gation with an exchange of the Green’s-function argumentspyer an ensemble can be expressed as

Because the fields are real, the functions™(x,y) satisfy
the relation

d’p o
(TSV(X)>=f Wp“p”m (X,p). (10
A7 (X,y)=A%(y,X). (6)

It appears convenient to introduce the retarded and ~ ON€ recognizes the standard form of the energy-momentum
advanced —) Green’s functions _tensor in the I_<|net|c theqry W|th.the functiod =(X,p) giv-
ing the density of particles with four-momentum in a
. space-time poinK. ThereforejA<(X,p) can be treated as a
ef ; atriby i :
+ T ATA> A< T guantum analogue of the classical distribution function. In-
AT (X,Y)=%[A7(X,Y) —AT(X,Y) IO (£ X+ Yo). (7) deed, the functionA =(X,p) is Hermitian. However, it is not
One immediately finds the identity positive_ly definite _and the probabilistic interpretation i_s only
approximately valid. One should also observe that, in con-
trast to the classical distribution functiong, =(X,p) can be
AT(XY)—AT(XY)=A7(X,Y)—AS(X,Y). (8)  nonzero for the off-mass-shell four-momenta.
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IV. GREEN'S-FUNCTION EQUATIONS OF MOTION

The Dyson-Schwinger equations satisfied by the contour

Green’s function are

[95+mZ(x)]A(X,Y)
=—5<4>(x,y)+f d*x'TI(x,x")A(X",y),
C
(11

& (x-y)
s (x,y)= 0
— 59 (x-y)

Let us split the self-energy into three parts as

I1(x,y) =TT 5(x) 8'(x,y)
+I17(X,y) O (X0,Yo) +II7(X,¥)O (Yo, Xo)-
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[o5+m3 (y)]A(X.Y)
=— 6 (x,y)+ Jc d*x' A(x,x")II(x",y),
(12
whereTl(x,y) is the self-energy; the integration ove} is

performed on the contour and the functiéff)(x,y) is de-
fined on the contour as

for xp,yo from the upper branch,
for xg,yo from the different branches,
for xp,yo from the lower branch.

V. TOWARDS TRANSPORT EQUATIONS

The transport equations are derived under the assumption
that the Green’s functions and the self-energies depend
weakly on the sum of their arguments, and that they are
significantly different from zero only when the difference of

As we shall see latel] 5 provides a dominant contribution to their arguments is close to zero. To express these properties
the mean-field whildI= determines the collision terms in it is convenient to define a new set of variables as

the transport equations. Therefore, we ¢h}ithe mean-field
self-energy andI= the collisional self-energy.

With the help of the retarded and advanced Green'’s func-

1 1
X+ =z u,X—zul.

AX,W=A| X+ 3 5

tions(7) and the retarded and advanced self-energies defined

in an analogous way, E411) and(12) can be rewritten as
[9+mE (%) —TL5() JA=(x,y)
=f d*/[TT=(x,x")A ™ (X", y) + T (x,x )A= (X, y)],
(13
[o5+mi(y)—TL5(y)JA=(x,Y)
=f d A= (%X )T (X", y) + A" (x,x)HIT=(x,y)],
(14)

where all time integrations run from o to +oo.

Let us also write down the equations satisfied by the func-

tionsA*:
[d5+mZ () —TT5(0)]A™(x,Y)
=—5<4)(x—y)+f d*x'TL* (x,x")A*(x",y),
(15)
[95+m3 (y)—TL5(y)JA*(x,y)
=—5<4)(x—y)+f d*% A (x,x)IT*(x',y).

(16)

For homogeneous systems, the dependenc¥-e(x+y)/2
drops out entirely due to the translational invariance and
A(x,y) depends only ou=x—y. For weakly inhomoge-
neous, or quasihomogeneous systems, the Green’s functions
and self-energies are assumed to vary slowly wthWe
additionally assume that the Green’s functions and self-
energies are stronglgeakednearu=0. The effective mass
m, (x) is simply assumed to be weakly dependentxon

We will now convert Eqs/(13) and (14) into transport
equations by implementing the above approximation and
performing the Wigner transformatio®) for all Green’'s
functions and self-energies. This is done using the following
set of translation rules which can be easily derived:

f d*x’ f(x,x")g(x’,y)

dat(X,p) 99(X,p)
IXH

i
—>f(X,p)g(X,p)+§ P,

_ 9f(X,p) 99(X,p)
IXH p, '

i gh(X) 9g(X,p)
h(X)g(X,Y)Hh(X)g(X,p)—IE[?)((—M%
I

i oh(X) dg(X,p)

N(YIGY)=NOGP)+ 5 o 5o,
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_ 1 HereX=(x+y)/2, 9#=dl9X, and the functiong(x,y) and
(9fff(X7Y)—>( —ipft+ 5 ﬁﬂ)f(x,p), g(x,y) satisfy the assumptions discussed above. The func-
tion h(x) is assumed to be weakly dependenton
Applying these translation rules to Eq43) and(14), we

) 1
dyty)—|ip“t 5 0“)f(X,p)- obtain

1 2_iAM 2 2 I 2 Y =
7 77 1p%9, = pTH M (X) —I14(X) = 5 3, (M}, (X) — I 5(X))d | A=(X,p)

=I=(X,p)A™ (X,p) + 117 (X,p)A=(X,p) + |§ {II=(X,p), A~ (X,p)} + |§ {IT*(X,p),A=(X,p)}, (17

1 i _
(Z P +ipta,—pP+mi (X) —T15(X) + 5 a,L(mi<X>—H5<X>)ag)A<<x,p>

AT (X,p)+ AT (XDITI=O4P)+ 5 AZ(Xp) T (X P} + 5 (AT (Xp)L I (Xp), (19

where we have introduced the Poisson-like brackets defined as

dC(X,p) dD(X,p) JC(X,p) dD(X,p)
Py IXH IXH P,

{C(X,p),D(X,p)}=

The kinetic theory deals only with averaged system characteristics. Thus, one usually assumes that the system is homoge-
neous on a scale of the Compton wavelength of the quasiparticles. In other words, the characteristic length of inhomogeneities
is assumed to be much larger than the inverse mass of quasiparticles. Therefore, we impose the condition

= 1 =
[AZ(Xp)[> | =7 P*AZ(X,p)], (19
*

which leads tahe quasiparticle approximatiorAs discussed in the next section and in the Appendix, the requireth@nt
renders the off-shell contributions to the Green’s functias negligible. Thus, we deal with the quasiparticles having
on-mass-shell momenta. Unfortunately, the assumptl®h cannot be applied to massless particles and for this reason we
have introduced the effective masg .

Let us now take the difference and the sum of E439) and (18), where thes? terms have been neglected due to the
quasiparticle approximatiolL9). Then, one gets

1
P“d,u+ 5 3,(M5 (X)—I15(X))d5 |A=(X,p)
i
=5 [M7(X,p)A=(X,p) ~[T=(X,p)A7(X,p)]
1 = —
—Z{H<(X,p),A*(X,p) +A(X,p)}
1
= 7 T (X,p) + T (X,p), A=(X, p)}, (20
1
[—p2+mi(x)—H5(X)]Az(X,p)=5{Hz(X,p)[N(X,p)+A’(X,p)]+[H*(X,p)+H’(X,p)]A2(X,p)}
i i
+Z{H>(X,p),A<(X,p)}—Z{H<(X,p),A>(X,p)}, (21
where we have used the identit§) applied to the Green'’s functions and self-energies.

One recognizes E@20) as a transport equation while EG1) as a so-called mass-shell equation. We will write down these
equation in a more compact way. From the definiti@gnone finds that

A7 (X,0",p)—A=(X,0',p)

w—w'

1 1
Ai(X,p)ZiE[A>(X,p)—A<(X,p)]+ﬁ Pf do' (22
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The first term on the right-hand sidRHS) is anti-Hermitian while the second one is Hermitian. Thus, we introduce
. 1
Im A—(X,p)EiE[A>(X,p)—A<(X,p)], (23)

A7 (X,0',p)—A<(X,0’,p)

w—ow'

1
ReAi(X,p)Eﬁ Pf do’ (24

With the help of Eq(24) and analogous formulas féf =, Eqgs.(20) and(21) can be rewritten as

{IOZ—mi(X)+H5(X)+ReH+(X,p),A2(X,p)}=i[H>(X,P)A<(X,p)—H<(X,p)A>(X,p)]—{H2(X,P),RGN(X,PE}, )
25

[p?=m (X) + I5(X) + RelT" (X,p) JA=(X,p) = —II=(X,p)ReA " (,p) = 7{IT”(X,p),A=(X,p)} + Z{TI=(X,p), A7 (X,p)}.
(26)
In the case of fields with finite bare mass, the gradient terms on the right-hand sides (3t qsd(26) aresmall[15,16
and are usually neglected. When the bare fields are massless, as those studied here, there is no reason to neglect the gradie
terms. The equation analogous to E25) was derived earlier ifi10,11].

It appears useful to write down the transport and mass-shell equations satisfied by the retarded and advanced Green's
functions. Starting with Eqg15) and(16) one finds

{p2—m2 (X)+ M 4 X)+ 1 (X,p),A*(X,p)}=0, (27)
[p2—mZ (X)+TT4(X)+TT*(X,p)JA*(X,p)=1. (28)

We observe that the gradient terms drop out entirely in (8). Nevertheless, the equation holds within the first order of
gradient expansion. Because of the absence of the gradient®8gan be immediately solved as
1

A*(X,p)= p2—ms (X)+ T4 X)+IT5(X,p)

(29

One notices thah * of the form(29) solves not only Eq(28) but Eq.(27) as well. Indeed, any functioh of K satisfies the
equation{K,f(K)}=0.
The real and imaginary parts &f* (X,p), which are needed in our further considerations, are

p2—mZ(X)+ I 4 X)+ReIl*(X,p)

Re AT (XP) = 22 (3 + TL,(X) + Re 117 (X,p) T2+ [Im ¥ (X, p) 2" (30
i AZ(X. o) +Im I1*(X,p) a1
M A O4P) = P22 (X0 4 TT,(X) + Re I (X, p) T2+ [Im T (X,p) 2 3
[
VI. FREE QUASIPARTICLES Because of Eq(33), Ay (X,p) is proportional tod(p?

Before further analysis the equations obtained in the pre= m;), and consequentliree quasiparticles are always on
vious section we consider here a very important limit whichass shelllf the quasiparticle approximatiol9) is not ap-
corresponds to the free quasiparticles. Specifically, we ad?liéd; the mass-shell equation gets the form
sume thafll ;=I1==0. Then, Eqs(25) and(26) read

1 2 2 2 = —

p“&M+%ﬁﬂmi(X)o"’g Ag(X,p)=0, (32 2 7P A (Xp) =0,
[p?—m2(X)]A5 (X,p)=0. (33)  and the off-shell contribution to the Green’s functiag is
nonzero. A detailed discussion of the quasiparticle approxi-

Although the quasiparticles are assumed to be free, the trangiation is given in the Appendix.
port equation is of the Vlasov, not of the free form. Thisisa We also discuss th@ntjchronological Green’s functions
simple consequence of thé dependence of the effective AS® in the limit of free quasiparticles. One easily finds their
mass. equations of motion as
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1 5 In that way we express the positive-energy part of
p'uﬁ,u—}_ 5 (9Ium*(X)(9’g Ag(xvp)

> =0, Ag (X,p) and the negative-energy part &f (X,p) through
fo(X,p). We extend these expressions to the whole energy

[p2—m2]AS(X,p)=1. domain using identity8). With the help of the explicit form

*ITO0M of the retarded and advanced functidBg) we get the for-

For the antichronological functioA?, the right-hand side of mula

the mass-shell equation equald instead of+ 1. The solu- FA> A<
tion of these equation can be written as 140 (X,p) =140 (X,p)
=2m8(p*~mZ)[O(po)—O(—pg)], (39)

which is discussed in detail in the next section.

Combining Eqs(36) and(37) with Eq. (38), one finds the
+0(po)Ag (X,p), desired expression of the Green’s functiag in terms of
the distribution functiorf,. Namely,

A§(X,p)= +0(—po)Ag (X,p)

p?—mZ +i0"

whereAg (X,p) is assumed to satisfy E¢®2) and(33). Itis
worth mentioning that any function which depends &) - T
through @?—m?) solves the Vlasov equatidB2). AS(X,p) 140 (X,p)= - 8(Ep=Po)fo(X,P)
obeys the initial condition of the standard Feynman propaga- P
tor. It also satisfies relatio(b).

v
The antichronological Green’s function is + E, S(Eptpo)lfo(X,—p)+1], (39

AR(X,p)= pz_rnTWJF@(po)Ag(X,p) iAg(X,p)= El S(Ep—po)[fo(X,p)+1]
* p

+0O(—po)Agy(X,p).
PR (5P + 2 5(Ey+po)fo(X, ). (@0
Knowing A§ and A§ one immediately gets the retarded P
and advanced functions When the system is in thermodynamical equilibrium the
distribution functions reads
Ag(X,P)= 5 (34)
AR fEtp)= o (41
which obey the respective initial conditions. Confronting the e

expressions oA = for free (34) and interacting quasiparticles where8#=u#/T with u* being the hydrodynamical velocity

(29), one finds that andT the temperature. In thiecal equilibrium the two pa-

0+t for p ~0 rameters ar&X dependent'
0 L

0~ for pp<O,
(35

ImIIT(X,p)=—Im I~ (X,p)=
VIl. SPECTRAL FUNCTION

. o o In this section we introduce one more function which ap-
in the limit of free quasiparticles. pears useful in the analysis of the interacting systems. The

It appears useful to express the Green’s functiﬂrfs spectral functionA is defined as
through the distribution functiofiy as

def
©(po)i A5 (X,P) = O (o) 2m (P>~ ) fo(X.p) ACGYIZIATOY) A 0.
- Thus,
& AE,-pofoXp), (30
Ep P T AxY)=([$(x), $(¥)]),

where EpE\/p2+ m*z. This equation should be treated as awhere[ ¢(x), ¢(y)] denotes the field commutator.
definition of f. Because of the equal-time commutation relations
Because of relatio6) we have

[(t,X),(t,y)]=0, [¢(t,X),¢(t,y)]=—i5D(x-y),

with the dot denoting the time derivative, the Wigner trans-

AT(X,p)=A7(X,=p),

and consequently formed spectral function satisfies the two identities
O (Po)idg (X,—p)=0(py)2ms(p>—m2)fo(X, d d
(Po)iAg (X,=p)=0(po)275(p~—m)fo(X,p) f 2—'°°A(X,p)=o, Z_DODOA(X,p):l. 42)
- o o
=— 6(E,—po)fo(X,p). 3
Ep (Ep=Po)fo(X.P) 37 One also sees thatf. Eq. (23)]
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A(X,p)=F2ImA*(X,p). (43 =2{Im I1*(X,p),Re A" (X,p)}, (44

Finally, we observe that the identitg), which holds for the

real fields, provides the relation
P [p2—m2 (X) +I15(X) + Re T1* (X, p) JACX,p)

AX.p)==AX,=p). —21Im IT*(X,p)Re A* (X,p). (45)
From the transport and mass-shell equati@® and (26)

one immediately finds the equations #(X,p) as
Substituting Re\*(X,p) from Eq. (30) into the algebraic

{p?—m5 (X)+ I 5(X)+Re Il (X,p),A(X,p)} equation(45) we find its solution as

2ImII*(X,p)

A P) = F 2 (X +TT,(X) + Re IT (X, p) P+ [Im I (X.p) T

(46)

Then, one easily shows that the function of the fddf) solves Eq.44) as well. In fact, the spectral functig@6) can be
found directly from Eq(30) due to the relatiori43).

The spectral function of the free quasiparticles can be, obviously, obtained frof@rdut the limit should be taken with
care. We first write the spectral functiga6) as

i i
2-mi(X)+ T4 X)+Rell ™ (X,p)+i IMITT(X,p) p?—m:(X)+II4X)+Rell " (X,p)—i Im T (X,p)"

A(X,p)= 0

Then we take the limill—0 keeping in mind condition Im I (X,po=*E- ,p)
(35). Using the well-known identity r.(X,p)== 2E.(X.p) : (49
1 1
XFiot P X i 8(x), One easily checks that the spectral function of the f648)

satisfies the sum rulgg?2).
we get the spectral function of noninteracting quasiparticles

as VIIl. PERTURBATIVE EXPANSION
Ao(X,p)=278(p*— mi NO(Po—O(—po)], @47 As discussed in, e.d.13,14,31 the contour Green’s func-
tions admit a perturbative expansion very similar to that
which, of course, coincides with E¢38). known from vacuum field theory with essentially the same
Let us also consider a specific approximate form of theFeynman rules. However, the time integrations do not run
spectral function. If the condition from —oo to + o, but along the contour shown in Fig. 1. The
right turning point of the contourtf,,,) must be above the
p?+m2(X)—TI4X)—ReII*(X,p)>|Im IT*(X,p)| largest time argument of the evaluated Green'’s function. In

practice,t, is shifted to—o andt,,,to +«. The second

is satisfiedA as a function oy is close to zero everywhere difference is the appearance of tadpoles, i.e., loops formed

except two narrow regions aroupg=+E. (E.>0) which by single lines, which give zero contribution in the vacuum
solve the equations S case. A tadpole corresponds to a Green’s function with two

equal space-time arguments. Since the Green’s function
E2(X,p)=p?+m2(X)—I5X)—ReIl*(X,po=*E. ,p). A(_x,y) is not well defined foix=y we ascribe the function
—iA<(x,X) to each tadpole. The rest of Feynman rules can

Then, the functior(46) can be approximated as be taken from the textbook of Bjorken and Drgd0].
In this section we consider the lowest-order contributions
T.(X,p) to the self-energies. It should be stressed that the Green’s
A(X,p)= ’2 > functions, which are represented by the lines of the Feynman
E+(X,p) [EL(X,p)—pol“+T%(X,p) diagrams, correspond to those of free quasiparticles not of
1 T_(X,p) noninteracting fields.
E_(X,p) [E_(X,p)+Pol2+ T2 (X,p)’
48) A. ¢* model

The lowest-order contribution to the self-energy which is
with associated with the graphs from Fig. 2 is
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(@) (b) (@) (b) ©
FIG. 2. The lowest-order diagrams of the self-energy in the @

¢* model. The bubble irfa) denotes the additional interaction due
to the effective mass.

i FIG. 3. The lowest-order diagrams of the self-energy in the
II(x,y)= 6<4)(X,y)< mi(x)_ '9 A5 (X,X) ¢° model. The bubble irfa) denotes the additional interaction due
2 to the effective mass.

giving i
’ 11,00=m2 - 5 07 [ dx[a50¢ %)
500 =mi (x) = 5 Ag (x.X), (50 ) )
—Ag (X", x)]Ag (X",X"),
and L . .
where the time integration runs fromo to +. Observing
I~ (x,y)=11<(x,y)=0. that A°—A==A" we get

Substituting Ag given by Eq.(39), where Ay is ex-
pressed through the distribution function, into E§0) one
finds Il ; as

i
Ms(x)=m2— > ng d*'Ag (X", X)A5 (X" ,x").

Using the explicit form ofA; (34) and expressing\g

I 4(x) = m (X)— = f T )32E [2fo(x,p)+1]. through the distribution function, one finds

g d*'d*p d3k
As seen the integral is quadratically divergent even in the H 5(x)= m ()~ J 2m?* (2m)°E
vacuum limit whenfy—0. This type of divergence, which k
appears due to the zero-mode fluctuations, is well known in e 1P(x' —x)

the field theory. We remove it by subtracting the vacuum

oF fo(x',k), (53
value fromIls. Thus one gets

X—
2 2
pT—m; +1pPo
where as previously we have subtracted the vacuum contri-

IT 5(x)=mZ -9 f o 3E fo(X,p). (51)  bution.
) In the case of global equilibrium, whefy(x,k) is inde-

We computdl , for the equilibrium system when the dis- Pendent ok, the integral from Eq(53) can be computed as

tribution function is given by Eq(41) with u#=(1,0,0,0). 2 E
For T>m, we get after elementary integration the well- 5= mi 9 > — fo(k). (54)
known result, see e.d.26], 2m; ) (2m7)°Ey
T2(x In the limit T>m, one finally finds
I () = m2 () — L) (52 *
24 2
M= g ! (55)
where the temperature is dependent in the case tdcal =M 24m
equilibrium.
The graph from Fig. @) corresponds to
B. ¢* model )
i
Thg lowest-order contributiqn to the selfjenergy corre- Hb(x,y)z—z 92Ao(X,¥)Ag(y,X),
sponding to the graphs from FigsiaBand 3b) is
T1,(X,y) and it gives
=6<4)(x,y)(m -59 f d*x’ Ag(x' X)Ag (X' ,X") . I=(x,y) == 5 Q*Ag (x.Y)AG (¥.X). (56)

Locating the argument on the upper branch of the contour, SubstitutingA? expressed through the distribution func-
one finds tion to Eq.(56) one finds
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> ! d3q
I (X.p)=§92f (2m)°2E, (2m)°2E,
+ 0(po= Bt Eq)fo(X,K)[Fo(X,a) + 1]+ o(po+ B = Eq)Lfo(X, —k) +1]fo(X, ~q)

+8(Pot+ ExtEg)[fo(X, —k) +1][fo(X,q) + 11}, (57)

(2m)*6¥(p+a—K){8(po— Ex—Eq) fo(X,K) fo(X,—0)

H<(X p)zl—ng d3q (277)45(3)(p+q_k){5(p —E,—E )[f (x k)+1][f (X _q)+1]
, 2 (277)32Ek (27T)32Eq 0~ BT Eg)LTolA, o( X,

+8(Po— Ext Eg)[fo(X,k) +1]fo(X,q) + 8(po+ Ex—Eg) fo(X, = K)[fo(X,—0) +1]
+0(po+ Ext+Eg) fo(X, —K)fo(X,a)}. (58)

Let us observe here that due to the trivial kinematical rea$bngX,p)=I1<(X,p) =0 for on-mass-shell four-momenta
i.e., whenp?=mZ.

We further computdI=(X,p) for p=0. In the case of equilibrium when the distribution function is of the f¢4t) and,
as previouslyu*=(1,0,0,0), one find$§I=(X,p) for p=(=* w,0) with >0 as

in2
> X — 0.0 = — -2 @0 1= amlia?
I~ (X, 0,00 =11~ (X, - 0,0)= 167 O(w—2m,)y1-4m/w [ex qﬁw/Z) 12 (59
in2
< I __i _ — 7, 2 expfw)
I5(X,0,0) =117 (X,~0,0)= = 75— O(0 2m,)V1—4m?/w Foxp Bol2) — 1T (60)
We also compute
Im I+ (X, +w0)——[H>(X +0,00-I15(X, 2 w,0)]= tlen @(w 2m, ) \1—4m?/ o2 exp(,Bw/Z) T
|
One sees that the conditiqB5) is indeed satisfied by the ) gT2(x)
perturbative self-energy whan—0 andm, is kept fixed. m () ==—%—- (63

IX. QUASIPARTICLE MASS One sees that the conditidr>m, is automatically satisfied

The structure of Eqs(25) and (26) motivates the defini- in the perturbative limit wherg™'>1.
tion of the quasiparticle mass as a solution of the equation

B. ¢° model
IT5(X)+Re Il (X,pp=m, ,p=0)=0. (61)

Now we have the nonzero contributions to the self-energy
The definition is not Lorentz invariant but statistical systemsnot only fromIl 5 (53) but fromII= (57) and (58) as well.
usually break such an invariance. In the case of global equithe real part offll ™ which enters Eq(61) is given by the
librium there is, for example, a preferential reference frameequation analogous to E¢R4). Thus,
related to the thermostat.

Let us now look for the explicit expression of, in the

lowest nontrivial order ing within the two models under
consideration.

1
Rell"(X,m, ,0)= P

f ks (wa) H=(X,0,0)
dw

A. ¢* model -

The only nonvanishing contribution to the self-energy in

the lowest order of perturbative expansion comes fibg Using Eqs.(59) and(60) one finds

which is given by Eq(51). Therefore, the effective mass is a o q
solution of the equation + _ - @
y Rell"(X m; ,0) W m; om, m
2= 9 f _ah
m*(X)— 2 (277)3Ep fO(X!p)' (62) 1

_ 2 2
KNI Am o N Bal2)— 1

One should keep in mind th&t, andf, depend omm, . )
For the equilibrium system witi’>m, we immediately 9 1(Bm,) (64)
get the well-known result 27?
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where

(@) (b) ()
| _fw dx  J1—-1/K?
@=], -1 -1
Thus, in the case oflobal equilibrium with T>m, , Eg.
(61) reads
2 12 2
2, 97T 9 _
m; + Zlm_i_ 3272 I(Bm,)=0. (65) ” FIG(.j éll The second-order diagrams of the self-energy in the
model.

One observes that with the effective mass given by E¢62).

Y2

|(a)<l F dxzi_ X. HIGHER-ORDER SELF-ENERGY
a1 X a

We discuss here thg? contributions to the self-energy in

Thus, I(8m, )<T/m, and consequently the absolute valuethe ¢* model, which are represented by graphs shown in Fig.
of the third term on the LHS of Eq65) is much smaller then 4. The bubble is again related to the effective mass. The
that of the second one in the limit Gf>m, . Therefore, contributions corresponding to Figs(a# and 4b) can be
there isnoreal positivem, which satisfies Eq65). It means ~ €asily computed. However, they are pure real and the only
that the massive quasiparticles do not emerge in the massleg§ect of these contributions is a higher-order modification of
#® model. It is not surprising since the potentis( ) the effective mass. Thus, we do not_exphcmy calcu!ate these
=(g/3!) ¢ from the Lagrangiaiil) has no minimum, even a dlagrams but instead we analyze Figc)dwhich provides a
local one. So, we do not consider t#é model any more and  gualitatively new effect.

concentrate on the®* model. The graph from Fig. &) gives the contour self-energy as
Having the mass of quasiparticles we can determine their g2
dispersion relation. Since all self-energies excépj(X) I.(x,y)= 5 Ao(X,Y)Ao(Y,X)Ag(X,Y),

vanish in the lowest order of the perturbative expansion, the
mass-shell equatiof26) coincides with that one of the free
quasiparticleg33). Thus, we have explicitly shown that in
the first order ofy, the ¢* model provides the system of free _ 9®> _ _ _
quasiparticles described by the transport equation of the Vla- I=(x,y) =5 A0 (X.Y)Aq (¥, X)Ag (X,Y).
sov form, i.e.,

and consequently

SubstitutingA? expressed through the distribution func-

“ - 2 “ _ tion fy as in Egs.(39 and (40) one finds the self-energy

g° d3k d3q d3r
I=(X,p)=i — f
' 6 | (2m)32E, (2m)°2E, (2m) 2E,

(2m)*8 (p+q—k—r1)[ 8(po— Ex— Eq—E,) fff o 95

+8(po— Ex—Eq+E) o %(fo"+1)

+ 8(po— Ex+ Eq— E)FE(F3+1)fh+ 8(po— Ex+ Eq+E)fi(f3+1)(fo " +1)

+8(po+ Ex—Eq—E/) (fo *+ 1) o %5+ 8(po+ Ex— Eq+E,) (fo *+ 1) U(fo"+1)

+8(pot+ Ext+Eq— E)(fo "+ 1)(fa+1)fh+ 8(po+ Ex+ Eqt E)(fo "+ 1) (fa+1)(fy"+1)], (67

g° d3k d3q d3r
I (X,p)=i — f
’ 6 (2m)32Ey (2m)32E, (27)°2E,

(2m)* 8@ (p+q—k—r)[8(po+ Ex+Eq+E)fo  flfo"

+ 8(po+ Ex+Eq—E) o “FY(Fh+ 1)+ 8(po+ Ex— Eq+E,) o “(fo O+ 1)f "

+8(po+ Ex—Eq—E)fo “(fo 9+ 1)(f5+1)

+8(po— Ex+Eq+E) (f§+ 1) 3o "+ 8(po— Ex+ Eq— E) (f5+ 1) f3(fH+1)

+8(po— Ex—Eq+E)(f§+1)(fo 9+ 1) fo "+ 8(po— Ex— Eq— E.)(f§+ 1) (fo 9+ 1) (fh+1)], (68)

with
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fi=fo(X,k), fo*=Ffo(X,—K).

It is important to notice that in contrast to the similar expressions offthenodel, i.e., Eqs(57) and(58), the self-energies
(68) and(67) are nonzero not only for the off-shell but for on-shell momenfuas well. However, the number of terms from
Eq. (68) or (67) which contribute tdl= is reduced whep?= mi. Indeed, Eqs(67) and (68) simplify in this case as

< . gz d3k d3q d3r 4 «(3) ke—qre—r
®(pO)H (Xxp)zl E (27T)32Ek (27T)32E (27T)32E (277) 5( (p+q_k_r)[5(p0_Ek_Eq+Er)fOfO (fo +1)
q r

+8(po— Ex+Eq—E)TE(F3+1)fi+ 8(po+ Ex— Eq— E/) (o 4+ 1) 5 9]
_ g_zf d3k d3q d3r
2 (2m)32Ey (2m)°2E, (27)°2E,

(2m)*6W(p+q—k—r)(fd+ 1)KL, (69)

N S d3k d3q d’r 3
®(pO)H (Xap)_l EJ (277)32Ek (277)32Eq (277)32Er (277)46( (p+q_k—r)

X[ 8(po— Ex—Eq+E)(f§+1)(fo 3+ 1) "+ 8(po— Ex+ Eq— E)(f§+1)f3(fh+1)
+8(po+ Ex—Eq—E,)fo “(fo 4+ 1)(fh+1)]

¢ d3k d3q d3r 44 a ek ;
=i 7J (2m)92E, (27)%2E, (27)°2E, (2m)* 6 W (p+q—k—r)fd(fs+1)(fo+1), (70)

wherepo=\m2 + p?.

The self-energieBl = provide, through the equations analogous to E2@®.and(24), the Rell* and ImII* which enter the
transport(25) and mass-she(26) equations. The imaginary part Bf* is of particular interest. Because of the finite value of
Im IT*, the spectral functioli46) is no longers-like but it is of the Breit-Wigner shape. Thus, the quasiparticles are of finite
lifetime. For the on-mass-shell momenta wji>0 the imaginary part ofl* equals

1
Im 117 (X, p) = o [117(X,p) = 11=(X,p)]

¢ f d3k d3q d3r
T4 ) (2m)%2E, (2m)%2E, (2m)°2E,

(2m)* 8D (p+q—k—r)[F(F§+1)(Fh+1)— (FI+1)FSFE].

(71)

ThEs funél:tion was computed for the equilibrium distribution Re ﬁ+(x,p)5+ Rell*(X,p)—©(py)Re I (X,m,,0)
in [26,28.
—0O(—py)Rell*(X,—m,,0).
XI. INTERACTING QUASIPARTICLES . . . .
The dispersion relation is given by the equation

In this section we discuss the dispersion relation of the
interacting quasiparticles and then define the respective dis- p?—mZ(X)+Re ﬁ*(x,p)=0, (72
tribution function.

Having the self-energies calculated g3 order we can but according to Eq(46), which determines the spectral
determine the quasiparticle dispersion relation in this orderfunction, the quasiparticles are of the finite width and the
As previously, the quasiparticle mass is found as a solutiomelation(72) gives only the most probable quasiparticle four-
of Eq. (61). Therefore, the singular self-enerdg¥s;(X) as  momentum. We call the four-momenta, which satisfies the
well as Rell*(X,m,,0) are included irmi(x). To avoid the  relation(72), as “on-mass shell,” however, one should keep

double counting, the expression in mind that the meaning of this term differs for the finite
and zero width quasiparticles. _
p2—m2 (X)+ 14 X)+ReIl*(X,p) Equation (72) can be easily solved if RH" provides
only a small correction to the free quasiparticle dispersion
is replaced everywhere by relation. Then, one finds the on-mass-shell momentum as

p*=(*E, ,p) with

" E§=\/mi(x)+p2+Reﬁ+(X,t Vmz2 (X) +p?,p).
wit (73

p?—m?2(X)+Rell*(X,p),
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The distribution functiorf (X,p) of the interacting quasi-
particles is defined in a way analogous to E2p), i.e.,

O(p)iA~(X,p)=0O(po)A(X,p)f(X,p),

whereA(X,p) is the spectral functiofd6). In contrast with
the case of free quasiparticlel(X,p) depends not on the
three-vectop but on the four-vectop. Because of the iden-
tities

(749

A=(X,p)=A"(X,—p), A(X,p)=iA~(X,p)—iA~(X,p),
we have

IA7(X,p)=0O(p) AX,p)[f(X,p)+1]

iIA=(X,p)=0(po)A(X,p)f(X,p)
—O(—po)AX,p)[f(X,—p)+1]. (76)

There is a very important property AF expressed in the
form of Egs.(75) and(76). Namely, if the Green'’s functions
A= satisfy the transport equatig@5) and the spectral func-
tion solves Eq(45), the mass-shell equation af<, i.e., Eq.
(20), is satisfiedautomaticallyin the zeroth order of the gra-
dient expansion. Let us derive this result.

The transport and mass-shell equati@s and(26) with
the gradient terms neglected read

0=I17(X,p)A<(X,p) —II<(X,p) A~ (X,p),
[p2—m?(X)+Rell* (X,p)JA=(X,p)
=—II=5(X,p)Re A" (X,p).

A(X,p){p2—m? (X)+ReIl* (X,p),f(X,p)}
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SubstitutingA= in the form of Eqgs.(75) and (76) into the
first equation and taking only the terms corresponding to
po>0, the equation is

0=A(X,p){H>(X,p)f(X,p)—H<(X,p)[f(X,p)+1]}(-77)

Now we substituted < given by Eq.(76) into the mass-shell
equation and get

[p2—m2(X)+Re Tl " (X,p)JA(X,p)f(X,p)

=—II<(X,p)Re A" (X,p), (78)

wherep, is assumed to be positive. Using the spectral func-
tion equation(45), Eq. (78) is manipulated to the form

Re A" (x,p)[I17(X,p) f(X,p) = II=(X,p)(f(X,p) +1)] (=78)-

One sees that if solves Eq.(77), it automatically satisfies
Eqg. (79). Similar considerations can be easily repeated for
Po<<0 and then forA = with p,>0 andpy<O0.

Let us observe that the quasiparticles studied in this paper
are narrow. Indeed, the effective mag82) is of orderg*?
while the width of the Breit-Wigner distribution given by Eq.
(49) is proportional tog in power at least 3/2. Thus, the
width of quasipatrticles is much smaller than their m@sss
obviously assumed to be smjalDue to this property we will
often refer to the case of zero-width quasiparticles or on-
mass-shell momenta.

XIl. TRANSPORT EQUATION

The distribution functiorf satisfies the transport equation
which can be obtained from E@25) for A~ or A<. After
using Eq.(44) one finds

=IAX,p){IT7(X,p)f(X,p) = II=(X,p)[F(X,p) + 1]} +if (X,p){TI7(X,p),Re A" (X,p)}

_I(f(xip)+ 1){H<(x!p)!ReA+(x!p)};

(80)

wherepy>0. We have also used here the following property of the Poisson-like brackets:

{A,BC}={A,B}C+{A,C!B.

Since EQ.(80) is one of the main results of this paper we discuss it in detail.
The left-hand side of Eq(80) is a straightforward generalization of the drift term of the standard relativistic transport
equation. Computing the Poisson-like bracket and imposing the mass-shell con@@gaimte finds the familiar structure

1 ~
5 0P {p?~mL (X)+ReIl"(X,p).f(X,p)} =E,

where
V(X)=m2(X)—ReIl*(X,p),
and the velocity equalsdE, /Jp with the energyE, given

by Eq.(73).
Let us now analyze the right-hand side of E80). Since

O v
Y

f(X,p)+VV(X)V,f(X,p),

the quasiparticles of interest are narrow, we take into
account only those terms contributing to the self-energies
I1= which are nonzero for the on-mass-shell momenta.
The other terms are negligibly small. Thehl= from

the transport equatio(80) are given by the formulasanalo-
gous to Egs.(69) and (70) with f instead of f,.
Consequently,
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O (b II<(X . QZJ’ d'kA; digA; dfrAf where
(pO) ( 1p)—| ? (27_[_)4 (27_[_)4 (277)4
X (2m) 8@ (p+q—k—r)(f9+1)f ",
(81

A =0 (ko)A(X,K).
One sees that in the limit of zero-width quasiparticles

d*kA; d3k
(2m)*  (2m)32E,

g% [ d'kA d*gA, dUrA]
O (p) T~ (X,p)=i & Z 2 7 ) .
2 (2m)" (2m)" (2m) The first term on the RHS of the transport equati®®) is

very similar to the standard collision term of the relativistic
X (2m)* 8@ (p+a—k—nfUf+ (I +1), (82) traglsport equatiofi32]. Indeed,

HIT™ (X,p) F(X,p) — TT= (X, p)[ f(X,p)+ 1]}
g2 [ d*kA; d*gA; drA]
:7f 2m® 2m* (2m* ™

A6 (p+q—k—r)[(fP+1)(fI+ 1) F"— FPFA(FX+ 1) (f"+1)]. (83

The last two terms from the RHS of E(0), analogous {p?—mZ(X)+Re ﬁ+(x,p),fe0(x,p)}:0. (85)
to those found a long time ago [i0,11], are absent in the
usual transport equation. We are going to show that in the
local equilibrium, when the collision teri83) vanishes, we
reproduce the standard collisionless equation if the four
momentum is on-mass shell.

As is well known[32], the standard collision term, which
emerges from Eq83) when the quasiparticle width tends to XlIl. SUMMARY AND CONCLUDING REMARKS
zero|[cf. Eq. (47)], vanishes for the local equilibrium distri-
bution function of the form41). Following [32], one easily
shows that the collision terr{83) also vanishes for the dis-
tribution function (41) with the particle momentunp no
longer constrained by the mass-shell condition.

One observes that in the local equilibrium the collisional
self-energies can be written as

The role of the two unusual terms from the RHS of the
transport equatio(B0) beyond the local equilibrium is rather
unclear and needs further studies.

We have discussed in this paper the nonequilibrium fea-
tures of the massless fields. The derivation of the kinetic
equation in such a case faces serious difficulties because
there is no natural length scale over which the system inho-
mogeneities can be integrated over. As known the transport
theory deals with the quantities averaged over an elementary
phase-space cell of the minimal size given by the particle

17 (X,p)=2i Im II*(X,p)[fe4X,p)+1], Compton wavelength. _

The fields with the zero bare mass usually gain an effec-

and tive mass due to the self-interaction. Therefore, we have in-

troduced the auxiliary mass term in the Lagrangian and then,

I=(X,p)=2i Im II"(X,p)f*Y(X,p). the transport theory has been derived in a way very similar to

] o the earlier studiedl15,16 case of massive fields. However,

The transport equatiof80) then simplifies to due to the position dependence of the effective mass, the

> 2 ~, o limit of the noninteracting quasiparticles corresponds to the

AX,p){p*—my (X)+Rell" (X,p),f*Y(X,p)} Vlasov rather than the free particle case. The smallness of

the effective mass has also forced us to take into account

some extra gradient terms which are usually neglected in the
transport equation.

We have considered in detail th¢® and ¢* models

=21Im T (X,p){f*AX,p),Re A*(X,p)}.

Using Eqs(30) and(46) one manipulates this equation to the

form which appear to be very different from each other. In the
Im H*(X,p){pz—mi(x)+ Reﬁ+(x,p),fe0(x7p)} ¢* model the effective mass is generated in the lowest non-
trivial order of the perturbative expansion. In contrast, the
=[p2—m?(X)+Rell"(X,p)] massive quasiparticles do not emerge in #itmodel and
most probably there is no transport limit of this model which,
x{Im IT7(X,p), 4 X,p)}. (84) as is well known, is, in any case, ill defined.

Within the ¢* model we have derived the transport equa-
As seen, the term on the RHS drops down for the on-masgion for the finite width quasiparticles. The distribution func-
shell momenta and then we reproduce the usual Vlasov equéien has been defined in such a way that the mass-shell con-
tion, i.e., straint is automatically satisfiedin the gradient zeroth
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o.rder). We have foupq, except f_or the mean-figld and colli- Af(x,p)zp(x_vt,p),

sion terms, the specific ones which are absent in the standard

transport equation. However, in the case of local equilibriumwherev=p/p,. The quasiparticle conditiofll9) applied to
we have been able to reproduce the usual collisionless equtite functionF reads

tion if the four-momentum is on the mass shell.

The massless fields play a crucial role in the gauge theo-
ries such as QED or QCD. We believe that the methods
developed in this study will be useful in the discussion of the
transport theory of quarks and gluons. However, the applicalf this condition is satisfied for every at a given moment of
tion of our approach to QCD is not straightforward. Thetime, sayto, it is satisfied aanytime. In other words, if the
QCD effective action, which is analogous to our EB), is initial condition atty is sufficiently homogeneous that the
known only for the equilibrium casg24,23,29. The gener- quasiparticle approximation can be applied, then this ap-
alization of this result to an inhomogeneous system is a sa?roximation is applicable at any time — the system remains
rious problem which should be solved before the completélomogeneous.

2F (x—
(viwj— 8 F°F(x—vt,p) |

1
|F(x—vt,p)|> 17 a(x=vt)a(x—vt)j|

m2

QCD transport equations could be derived. The question arises whethdr , which simultaneously
solves the transpotAl) and mass-shellA2) equationsgcan
ACKNOWLEDGMENTS satisfy the quasiparticle condition. We introduce the Fourier-

_ _ _ transformed functiom\; (Q,p) defined as
| am very grateful to Heribert Weigert for suggesting the

use of the effective massive Lagrangian to study the fields ~> el [ 4y QXA =
with a zero bare mass. This work was partially supported by A5(Q.p)= | d"Xe¥TAg(X,p). (Ad)
the Polish Committee of Scientific Research under Grant No. ) )
2 PO3B 195 09. 'I_'he equations corresponding to E¢al) and(A2), respec-
tively, read
APPENDIX p.Q A5 (Q.p)=0,
We discuss here the quasiparticle approximation for the 1
system of noninteracting fields. To simplify the discussion (_ Z 02—p2+m?|AZ -0
the bare mass is assumed to be nonzero or equivalently 4 Q- 0(QP)=0.
m,. is treated as a constant. The transport equation and the
mass-shell constraint read They are both solved by
= ~ 1
Pu* B0 (X.P) =0, (AL) iAg(Q,m:&(p-Q)a( -2 Qz—p2+m2)A(Q,p),

1 _ (A5)

— ?—p2+m?|A5(X,p)=0. (A2) _ L . _

4 with A(Q,p) controlled by the initial condition. Since

iAg(X,p) is real,A(Q,p) has the propert
These equations, which directly follow from the field equa- o (X.p) (QP) property

tion of motion (3) with m=m, , are exact in the case of the A(Q,p)=A*(—Q,p). (AB)
massive free fields — the gradient expansion is not needed to
derive them. The solution of the EqgA1) and(A2) satisfies the quasi-

The mass-shell constrairiA2) shows that the function particle condition(19) when
Af(x,p) is indeed nonzero for the off-shell momenta, i.e.,
AG(X,p)#0 for p?#m?2. This result looks surprising if one IA(Q,p)|>
keeps in mind that the field, which solves the equation of

motion (3), is, in a sense, on-mass shell. The field is the sum . 222
of the plane waves or equivalentlyA(Q,p)#0 only for Q“<m?*.

It is instructive to consider the explicit solution of Egs.
(Al) and(A2) in 1+1 dimensions. Using EqA5) we get

2
2 A(Q,p)’, (A7)

[e—ikxa(k) + eikxa* (k)],

J2m 2w,

iAZ(X —f TQ e0xs
(A3) I 0( :p)— (277)29 (pQ)
wherek= (o} k) with w,=k?+m?. Thus,k?=m?. Sub- 1l
stituting the field A3) into theA=(X, p) definition, one finds XO| —z AP MAQ.P),
that the off-shell contribution ta\g (X,p) comes from the
interference of the positive- and negative-energy parts 2 @2 2 1 S
present in Eq(A3). Let us consider when such a contribu- =[0(=pH)+0(p=m7] (27T)z|p | P/ (p=—m’)
tion can be neglected. - —~ _
One easily shows that the transport equatiéd) is x[e” A(Q,p)+e*A(-Q,p)], (A8)

solved by the function which depends on the four-position _
X=(t,x) only throughx—vt: i.e., whereQ denotes the two-vector
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G=2lpol (7= 7P? P11,
Keeping in mind the propert§A6), the solution(A8) can be
rewritten as
iA5 (X,p)=[0(~p?)+06(p*~m?)]
X [h(p)sin(QX)+g(p)cogQX)], (A9)

whereh(p) andg(p) are the real functions gf determined
by the initial condition.
The quasiparticle conditiofl9) is satisfied by Eq(A9) if

STANISLAW MROWCZYNSKI

Q¥ =4|p?—m?*[<m?.

One also sees thatg (X,p)~ 8(p?—m?) only for Q=0. In
other words, the functiom\?(x,p) is strictly zero for the
off-mass-shell momenta when the system is exactly homoge-
neous. If we are interested in the weakly nonhomogeneous
systems, the functions are nonzero jée>m?. Equivalently,
if p?=m? thenp?>m? but notp?<m?.

The properties of the functiofi; in 1+ 1 dimensions can
be trivially generalized to the-81 case showing the limita-
tions of the quasiparticle approximation.
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