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Parton-parton collisions do not neutralize local color charges in the quark-gluon plasma as they only
redistribute the charges among momentum modes. We discuss color diffusion and color conductivity as
the processes responsible for the neutralization of the plasma. For this purpose, we first compute the
conductivity and diffusion coefficients in the plasma that is significantly colorful. Then, the time
evolution of the color density due to the conductivity and diffusion is studied. The conductivity is shown
to be much more efficient than the diffusion in neutralizing the plasma at the scale longer than the
screening length. Estimates of the characteristic time scales, which are based on close to global
equilibrium computations, suggest that first the plasma becomes white and then the momentum degrees
of freedom thermalize.
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I. INTRODUCTION

Production of the quark-gluon plasma is expected
at the early stage of high-energy nucleus-nucleus colli-
sion when the energy density is sufficiently high.
The experimental data on the so-called elliptic flow [1],
which have been obtained at the Relativistic Heavy-Ion
Collider (RHIC) in Brookhaven National Laboratory,
suggest a surprisingly short, below 1 fm=c [2], equilibra-
tion time of the system. Understanding of the thermal-
ization process is thus a key issue of the quark-gluon
plasma physics.

In our previous study [3], we have analyzed the lo-
cal equilibrium of the plasma, which is defined as a
state of maximal local entropy. Using the kinetic
equations with the collision terms of the Waldmann-
Snider form, we have proved that such a state is
generically colorful, i.e., the color four-current is
nonvanishing. Thus, the collisions, which are responsi-
ble for equilibration of the parton momenta, do not
neutralize the local color density. Since the color cur-
rent is (covariantly) conserved in every collision pro-
cess, the interparton collisions redistribute the
color charges among various momentum modes
but they do not change a local macroscopic color charge.
Consequently, if the color charges are not homoge-
neously distributed in the process of the plasma produc-
tion due to, say, statistical fluctuations, the interparton
collisions will not neutralize the system. On the
other hand, the global equilibrium of the quark-gluon
plasma is locally colorless because of the maximum
entropy principle. We assume here that the system does

not carry a global color charge and that it does not
experience an external chromodynamic field. Once the
interparton collisions are not responsible for the neutral-
ization of the local charges, one has to invoke other
collective mechanisms to whiten the plasma. This is the
subject of this article.

Local charges are neutralized due to the currents
that flow in the system. We consider the diffusive currents
generated by the charge density gradient (Fick’s law)
and the Ohmic currents caused by the chromoelectric
field (Ohm’s law) which is, in turn, induced by the charge
density. The color conductivity of the quark-gluon plasma
has been studied for long time [4–11], but only recently
the problem has been well understood [12–19]. As far
as we know, the color diffusion was only briefly discussed
in [11]. In all these papers, the plasma near the color-
less global equilibrium was studied. We are, however,
interested in the plasma that is locally colorful. Thus,
in Sec. II we derive the diffusion and conductivity coef-
ficients in such a plasma, and then, in Sec. III the
temporal evolution of the color charge density is consid-
ered. The Ohmic currents are shown to be much more
efficient than the diffusive ones in neutralizing the local
charges.

Unless stated otherwise, we follow here the same con-
ventions and notations as in [3].

II. COLOR DIFFUSION AND CONDUCTIVITY
COEFFICIENTS

In this section we derive, using transport theory,
the diffusive and Ohmic currents in a plasma that is
locally colorful. The transport equations of quarks, anti-
quarks, and gluons, which form the basis of our analysis,
read
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�D0 � v � D�Q�p; x� � g
2
fE� v�B;rpQ�p; x�g

� C�Q; �Q;G	; (1a)

�D0 � v � D� �Q�p; x� � g
2
fE� v�B;rp

�Q�p; x�g
� �C�Q; �Q;G	; (1b)

�D0 � v � D�G�p; x� � g
2
fE� v�B;rpG�p; x�g

� Cg�Q; �Q;G	: (1c)

The (anti-)quark on-mass-shell distribution functions
Q�p; x� and �Q�p; x�, which are Nc � Nc Hermitian matri-
ces, belong to the fundamental representation of the
SU(Nc) group, while the gluon distribution function
G�p; x�, which is a �N2

c � 1� � �N2
c � 1� matrix, belongs

to the adjoint representation. The covariant derivative
D� 
 @� � ig�A��x�; � � �	, the chromoelectric and chro-
momagnetic fields, E and B, which enter the transport
equations also belong to either the fundamental or adjoint
representation, correspondingly. To simplify the notation,
and differently than in [3], we use the same symbols D0,
D, E, and B to denote a given quantity in the fundamental
or adjoint representation. x 
 �t;x� denotes the four-
position while p is the three-momentum. Because the
partons are assumed to be massless, the velocity v equals
p=jpj. The collision terms C, �C, and Cg will be discussed
later on.

We are interested in a state close to the colorful local
equilibrium. When the effects of quantum statistics are
neglected, the (on-mass-shell) local equilibrium distribu-
tion functions read [3]

Qeq�p; x� � exp����x��u��x�p� ��b�x� � e��x��	; (2a)
�Qeq�p; x� � exp����x��u��x�p� ��b�x� � e��x��	; (2b)

Geq�p; x� � exp����x��u��x�p� � e�g�x��	; (2c)

where p� � �Ep;p�, and Ep � jpj for massless quarks
and antiquarks, and for gluons; � � 1=T, u�, �b denote,
respectively, the inverse temperature, hydrodynamic ve-
locity and baryon chemical potential; the colored chemi-
cal potentials of quarks � e�� and of gluons � e�g� obey the
relationship

e�g�x� � 2TaTr��a e��x�	 � �a�x�Ta; (3)

where �a, Ta with a � 1; :::; N2
c � 1 are the SU(Nc) group

generators in the fundamental and adjoint representations,
normalized as Tr��a�b	 � 1

2�
ab and Tr�TaTb	 � Nc�

ab.
In the local equilibrium state there is a nonvanishing

color charge density, which is defined as

��x� � �g
2

Z d3p

�2��3 �q�p; x� � �q�p; x�

�2�aTr�TaG�p; x�	�; (4)

with

q�p; x� 
 Q�p; x� � 1

Nc
Tr�Q�p; x�	;

�q�p; x� 
 Q�p; x� � 1

Nc
Tr� �Q�p; x�	:

In the local rest frame, where u� � �1; 0; 0; 0�, the color
current defined as

j�x� � � g
2

Z d3p

�2��3 v�q�p; x� � �q�p; x�

�2�aTr�TaG�p; x�	�; (5)

vanishes because the distribution functions are locally
isotropic.

We now study the system for long time scales. We
consider small deviations from local equilibrium, and
we write down the quark distribution function as
Q�p; x� � Qeq�p; x� � �Q�p; x�. Assuming that

jQeqj � j�Qj; jD0Qeqj � jD0�Qj;
jDQeqj � jD�Qj; jrpQ

eqj � jrp�Qj; (6)

and taking into account the local isotropy of the equilib-
rium state, the transport Eq. (1) can be approximated as

�D0 � v � D�Qeq � g
2
fE;rpQ

eqg � L��Q	; (7)

where L��Q	 is the collision term linearized around the
local equilibrium distribution function. Analogous equa-
tions hold for antiquarks and gluons. Let us recall here
that the collision terms evaluated for the local equilib-
rium distribution functions (2) vanish [3].

To get the transport coefficients of color diffusion and
conductivity we assume that the linearized collision
terms L, �L, and Lg satisfy the relationship

Z d3p

�2��3 vL��Q	 � ��
Z d3p

�2��3 v�Q; (8)

where 1=� is the characteristic relaxation time which, for
simplicity, is assumed to be the same for quarks, anti-
quarks, and gluons. Our analysis based on the linearized
transport Eq. (7) with Ansatz (8) is valid for t * 1=�.
The relation (8) is obeyed [16] by the Waldmann-Snider
collision term linearized around global (colorless) equi-
librium. Such a linear collision term turns out to be non-
local in velocities, allowing for the covariant color
current conservation [12]. A similar linearization around
the local colorful equilibrium is, in principle, feasible,
but it appears rather difficult as it requires knowledge of
the scattering matrix elements computed in the colorful
background.

The relationship (8) is trivially satisfied by the colli-
sion term in the relaxation time approximation (RTA)
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CRTA�Q; �Q;G	 � 1

�
�Qeq�p; x� �Q�p; x�	

� � 1

�
�Q�p; x� � LRTA��Q	; (9)

with � � 1=�. Unfortunately, this approximation is
known to contradict the covariant current conservation
as C, �C, and Cg in the form (9) violate the collisional
invariant

Z d3p

�2��3 �C� �C� 2�aTr�TaCg	� � 0: (10)

However, the collision term (9) can be improved to a form
that complies with the condition (10). In analogy to the
so-called Bhatnagar-Gross-Krook model of the
Boltzmann collision operator (BGK) [20], we have found
the expression

CBGK�Q; �Q;G	 � 1

�
�Q�p; x� � N�x��Neq�x���1Qeq�p; x�	

� � 1

�
��Q�p; x� � �N�x��Neq�x���1

�Qeq�p; x�	
� LBGK��Q	; (11)

with

N�x� 

Z d3p

�2��3Q�p; x�; (12)

and �Neq��1 being the inverse matrix of Neq. One easily
shows that the collision terms of the form (11) satisfy the
constraint (10), as

Z d3p

�2��3 C
BGK �

Z d3p

�2��3
�CBGK �

Z d3p

�2��3 C
BGK
g � 0:

The collision term (11) also obeys the relation (8). It still
violates the energy-momentum conservation law, but it
can be further improved [20].

Using the relation (8), the color current generated by
deviations from equilibrium is

j�x� � �g
2

Z d3p

�2��3 vf�q�p; x� � � �q�p; x� � 2�aTr�Ta�G�p; x�	g

� g
2�

D0
Z d3p

�2��3 v�q
eq � �qeq � 2�aTr�TaGeq�	 � g

2�

Z d3p

�2��3 v�v � D��q
eq � �qeq � 2�aTr�TaGeq�	

� g2

4�

Z d3p

�2��3 v
�
fE;rp�Qeq � �Qeq�g � 2

Nc
Tr�E � rp�Qeq � �Qeq�	

�
� g2

2�
�a

Z d3p

�2��3 vTr�T
afE;rpGeqg	: (13)

One observes that the term with D0 drops out as the color current vanishes in local equilibrium. We also take into
account that the local equilibrium is isotropic and we perform partial integrations in the terms with the chromoelectric
field. Putting additionally v2 � 1, the current gets the form

j � g
6�

D
Z d3p

�2��3 �q
eq � �qeq � 2�aTr�TaGeq	� � g2

6�

Z d3p

�2��3
1

Ep

�
fE; �Qeq � �Qeq�g � 2

Nc
Tr�E�Qeq � �Qeq�	

�

� g2

3�
�a

Z d3p

�2��3
1

Ep
Tr�TafE; Geqg	; (14)

which can be written as

j � �DD�� 1

2

�
f	q;Eg � 2

Nc
Tr�	qE	

�
��aTr�Taf	g;Eg	; (15)

where the diffusion constant D and conductivity coeffi-
cients 	q, 	g are

D � 1

3�
; 	q � g2

3�

Z d3p

�2��3
1

Ep
�Qeq � �Qeq�;

	g � g2

3�

Z d3p

�2��3
1

Ep
Geq:

(16)

As seen, the current (15) is traceless as it should be. It gets
a much simpler form in the adjoint representation.
Namely, for ja � 2Tr��aj	, we get

j a�x� � �DDab�b�x� � 	abEb�x�; (17)
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where Dab � �abr� gfacbAc, and the color conductiv-
ity tensor reads

	ab � g2

3�

Z d3p

�2��3
1

Ep
�Tr�f�a; �bg�Qeq � �Qeq�	

�Tr�fTa; TbgGeq	�: (18)

The diffusion constant is, as previously, 1=3�. When the
equilibrium is colorless, the conductivity 	 is propor-
tional to the unit matrix in color space, but for a colorful
configuration it is not.

It is interesting to note that the chromoelectric field
contributes to the induced baryon current. Repeating the
analysis fully analogous to that of the color current, one
finds that the baryon current defined as

b �x� � 1

3

Z d3p

�2��3 vTr�Q�p; x� �
�Q�p; x�	; (19)

equals

b �x� � �Drb�x� � 2

3g
Tr�	qE�x�	; (20)

where b is the baryon density while D and 	q are given
by Eq. (16). When the equilibrium is colorless, the con-
ductivity 	 is proportional to the unit matrix in color
space, and the effect of the chromoelectric field on the
baryon current disappears.

III. TEMPORAL EVOLUTION OF THE COLOR
DENSITY

Our aim here is to discuss how a locally colorful quark-
gluon plasma becomes white. As an introduction to our
chromodynamic considerations, we first discuss the tem-
poral evolution of the electric charge density in the elec-
tromagnetic plasma.

A. Diffusion vs conductivity - electrodynamic case

The electric current (j) generated by both the gradient
of charge density (�) and the electric field (E) is

j �x� � �Dr��x� � 	E�x�: (21)

D and	 are assumed here to be the transport coefficients
derived in a semistatic limit as in Sec. II. Therefore,
Eq. (21) holds for slowly varying ��x� and E�x�.

Taking into account the Gauss law rE�x� � ��x�, the
current conservation @�=@t�rj � 0 combined with
Eq. (21) provides the equation�

@
@t

�Dr2 � 	
�
��x� � 0; (22)

which, supplemented by the initial condition ��0;x� �
�0�x�, is solved by

��x� � e�	tn�x� (23)

with n satisfying the diffusion equation�
@
@t

�Dr2

�
n�x� � 0; (24)

and the initial condition n�0;x� � �0�x�. Equation (22)
can be easily solved by means of the Fourier transforma-
tion as

��x� �
Z d3k

�2��3 e
��	�Dk2�t�ikx�0�k�; (25)

where �0�k� is the Fourier transform of the initial charge
density

�0�k� �
Z
d3xe�ikx�0�x�: (26)

It is assumed here that the integral (26) exsists which
requires vanishing of �0�x� when jxj ! 1.

We note that the solution (25) can be also written down
as

��x� � 1

�4�Dt�3=2
Z
d3x0exp

�
�	t� �x� x0�2

4Dt

�
�0�x0�;

(27)

where the Green’s function

G�x;x0; t� � 1

�4�Dt�3=2 exp
�
�	t� �x� x0�2

4Dt

�
; (28)

represents the charge density which obeys Eq. (22) and
equals ��3��x� x0� at t � 0.

The solution (25) shows that the charge density modes
of all k decay exponentially. The long-wavelength modes
with k2 <	=D are dominantly neutralized by the
Ohmic currents while those with k2 >	=D are neutral-
ized due to the diffusion. It should be remembered, how-
ever, that we can trust the solutions to (25) or (27) only
for sufficiently long time intervals because Eq. (21) holds
for slowly varying ��x� and E�x�. We return to this point
in the next section where it is discussed quantitatively in
the context of quark-gluon plasma.

B. Diffusion vs conductivity - chromodynamic case

The color current generated by both the gradient of
color density and the chromoelectric field is given by
Eq. (17). The covariant current conservation D0��
Dj � 0 combined with the Gauss law DE�x� � ��x�,
provides the equation

�D0 �DD2 � 		��x� � 0; (29)

where the term �D; 		E has been neglected. In the
Appendix we show that �D; 		E 
 	DE in the small
coupling limit. All chromodynamic quantities discussed
in this section belong to the adjoint representation, and
thus, the color indices are suppressed.
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Equation (29) can be treated as its Abelian counterpart
(22) if �D0; 		 � 0. In the Appendix this commutator is
shown to be indeed small. Thus, Eq. (29) is solved by

��x� � e�	tn�x� (30)

with n satisfying the diffusion equation

�D0 �DD2	n�x� � 0: (31)

��x� and n�x� obey the initial condition ��0;x� �
n�0;x� � �0�x�. Thus, we expect that, as in the electro-
magnetic case, the charge density decays exponentially
and the conductivity dominates over the diffusion for the
modes with k2 <	=D.

For further discussion one needs an estimate of the
relaxation time 1=� which controls both 	 and D.
However, the reliable estimate can be given only for the
quark-gluon plasma close to global (colorless) equilib-
rium of very high temperatures where 1=g� 1. Then,
the color conductivity is of order [9,16]

	� T
ln�1=g� : (32)

According to Eq. (18), the conductivity, due to the di-
mensional argument, can be approximated as 	�
g2T2=� which combined with the estimate (32) provides

1

�
� 1

g2ln�1=g�T � tsoft; (33)

where tsoft is the characteristic time scale of the parton-
parton collisions at momentum transfers of order g2T
[16]. We also observe that

	
D � g2T2 �m2

D; (34)

where mD is the screening mass. Having these estimates,
we first note that all modes of charge density longer than
the screening length are neutralized dominantly by the
Ohmic currents. However, we can trust Eqs. (30) and (31)
only for time intervals longer than 1=� because the
derivation of the color conductivity presented in Sec. II
is valid for t * 1=�. Taking into account the estimate
(32), we find that all modes of charge density vanish at
t * 1=�. Since the characteristic time scale of color dis-
sipation cannot be shorter than tsoft, the whitening of the
quark-gluon plasma occurs at t� tsoft. At shorter times
scales the color density is expected to oscillate. We note
that in the electromagnetic plasma local charges are
neutralized very fast, but the currents survive in the
system for a long time as the plasma is a very good
conductor. Although the quark-gluon plasma is a rather
poor color conductor, the color currents can still persist in
the system significantly longer than the color charge
density [12], as they couple to the nonperturbative chro-
momagnetic fields.

Since the conductivity is responsible for whitening of
the quark-gluon plasma in the long-wave limit, we dis-
cuss in more detail the equation

�D0 � 		��x� � 0; (35)

which describes how the Ohmic currents neutralize the
system. Equation (35) is solved by

��x� � ��x; x0�e�	t�0�x���x0; x�; (36)

where x 
 �t;x�, x0 
 �0;x�, and ��x; x0� is the parallel
transporter

��x; x0� � T exp
�
ig

Z t

0
dt0A0�t0;x�

�
; (37)

with T denoting the time ordering. Observing that�
@
@t

� igA0�x�
�
��x; x0� � ��x0; x�

�
�
@

@t
� igA0�x�

�
� 0;

(38)

one shows by direct calculation that the expression (36)
solves Eq. (35). Since 	 has nondiagonal entries, various
colors are coupled to each other in the course of temporal
evolution.

IV. DISCUSSION

As discussed in our previous paper [3], parton-parton
collisions thermalize the momentum degrees of freedom
but they do not neutralize the local color charges. To
whiten the quark-gluon plasma collective phenomena
are required. The local charges generate chromoelectric
fields, which, in turn, induce color currents. At the scale
longer than

������������D=	
p

, these Ohmic currents effectively
neutralize the system, more effectively than the diffusive
currents caused by the charge density gradients.

The question arises what is the characteristic time scale
of momentum thermalization and that of the plasma
whitening? Our analysis implicitly assumes that the
equilibration of momentum is much faster than the neu-
tralization, as we linearize the transport equations
around the local equilibrium distribution functions which
cancel the collision terms. In other words, it is implicitly
assumed that the plasma momentum distribution first
reaches its local equilibrium form, and then the system
is neutralized. Unfortunately, we are unable to compute
the two scales of interest as it requires an analysis of
parton-parton scattering in a colorful nonequilibrium
configuration. Our choice of local equilibrium configura-
tion found in [3] is to some extent dictated by technical
reasons. The local equilibrium distribution functions rep-
resent a nontrivial colorful configuration that is conve-
nient to compute transport coefficients as the collision
terms then vanish.

The problem of plasma equilibration is also compli-
cated by the fact that color collective phenomena are not
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only responsible for the whitening but they also contrib-
ute to the momentum equilibration. One of us has argued
for a long time [21–24], see also [25,26], that color
plasma instabilities, which occur in anisotropic systems,
speed up the momentum thermalization. If the plasma
momentum distribution is strongly elongated in one di-
rection, as it occurs in heavy-ion collisions, the instabil-
ities generate momentum in the transverse direction,
making the system more isotropic. However, the instabil-
ities also generate local color charges that have to be
neutralized. Thus, the whole process of equilibration of
the quark-gluon plasma is very complex, and it depends
on the plasma initial state.

The only reliable estimates of the time scales of inter-
est have been found for the perturbative quark-gluon
plasma which is close to global equilibrium. To equili-
brate the system’s momentum degrees of freedom, the
parton-parton interactions with momentum transfers of
order T are needed. Such a transfer can be achieved in a
single parton-parton collision or as a cumulative effect of
many soft scatterings. The time scale of such processes is
[16]

thard � 1

g4ln�1=g�T : (39)

As argued in the previous section, the whitening of the
quark-gluon plasma occurs at t * tsoft. Thus, the plasma
becomes white first and then the momentum degrees of
freedom thermalize as tsoft 
 thard. Analogous analysis
for a colorful background should include the effect of the
colored chemical potentials that might alter the above
picture.

In the end, let us recapitulate our considerations.Within
the QCD transport theory we have found the conductivity
and diffusion coefficients in the colorful equilibrium
configuration. While the diffusion constant is propor-
tional to the unit matrix in color space, the conductivity
coefficient has a nontrivial tensorial structure. The mac-
roscopic equation describing the temporal evolution of
the color charge density has been derived. Its solution
shows that the Ohmic currents dominate whitening of the
quark-gluon plasma at sufficiently long scale.
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APPENDIX

In this Appendix we argue that the commutators
�D0; 		 and �D; 		 are small in a perturbative regime,
but we first show that �D�;		 � � eD�

	� where eD� is the
covariant derivative of rank 2.

We are interested in the following expression

D aa0 �	a0bEb� � ��aa0r � gfaea
0
Ae��	a0bEb�: (A1)

Because of the antisymmetry of the structure constants
fabc, Eq. (A1) can be rewritten as

Daa0 �	a0bEb� � Daa0 �	a0bEb� � gfbeb
0
Ae	ab

0
Eb

�gfbeb0Ae	abEb0

� �eDaa0
bb0	a0b0 �Eb � 	abDbb0Eb0 ; (A2)

where

�eD�acbd 
 r�ac�bd � gfaec�bdAe � gfbed�acAe: (A3)

In matrix notation Eq. (A2) gets the form

D �	E� � 	DE� �eD	�E; (A4)

and thus

�D�;		 � � eD�
	�: (A5)

We are now going to show that �D�;		 is negligible
when 1=g� 1. We actually demonstrate that �D�	q�,
computed in the fundamental representation, is sup-
pressed by powers of g when compared to 	qD�. The
same analysis can be done in the adjoint representation,
and for the gluons, but it requires tedious manipulations
with color indices.

We first compute D	q. Because of the local isotropy of
the equilibrium state, we have

D	q � g2

3�

Z d3p

�2��3
1

Ep
D�Qeq � �Qeq�

� g2

�

Z d3p

�2��3
v
Ep

�v � D��Qeq � �Qeq�; (A6)

where we have used the fact that v2 � 1. Using the trans-
port equation (7), Eq. (A6) is rewritten as

D	q � g2

�

Z d3p

�2��3
v
Ep

�
�D0�Qeq � �Qeq�

�g
2
fE;rp�Qeq � �Qeq�g � �L��Q	 � �L�� �Q	�

�
:

(A7)

The first term in the right hand side of Eq. (A6) vanishes
because of local isotropy. The remaining two terms are
nonzero but D	qE is seen to be smaller than 	qDE by at
least two powers of g. The terms with the collision terms
are even more suppressed.

Let us now discuss D0	q. Using the transport equa-
tion (7), one gets
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D0	q � g2

3�

Z d3p

�2��3
1

Ep

�
� vr�Qeq � �Qeq�

� g
2
fE;rp�Qeq � �Qeq�g � �L��Q	 � �L�� �Q	�

�
:

(A8)

The first and the second term on the right hand side
of Eq. (A8) both vanish because of local isotropy of
the equilibrium momentum distribution. The third
term does not vanish but �D0	q�� is suppressed
with respect to 	qD

0� by powers of g hidden in L and
�L.
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