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Abstract. Using the so called pressure ensemble, the 
multiplicity distribution in multi-fireball model is 
found. The distribution satisfies KNO scaling and 
fulfils other features of experimental multiplicity data 
of hadron-hadron and nucleus-nucleus interactions. 

High multiplicities of particles produced in high 
energy collisions seem to be a good reason for applying 
statistical methods to study production processes. It 
is well-known [1] that fluctuations of the number, N, 
of particles in a grand canonical ensemble are (outside 
a phase-transition region) proportional to the root 
square of an average number of particles, ( N ) .  This 
leads to a disagreement with multiplicity data on 
hadron-hadron collisions which provides a linear 

2 dependence of dispersion, D = x / ( N  ) - ( N )  2, on 
average value--Wr0blewski formula [2]. 

The volume of all systems, in particular those with 
different number of particles, belonging to the grand 
canonical ensemble is the same. However, the hot 
hadron gas which occurs in high energy collisions is 
not closed in any container with a fixed volume. Thus, 
in our opinion, a more appropriate basis for studying 
the problem is the so-called pressure ensemble [3]. In 
this ensemble one considers systems under fixed 
external pressure, while the volumes of the systems 
can be different. Up to our knowledge, Gorenstein was 
the first who applied the pressure ensemble to hadron 
physics [4]. In our considerations we use some results 
of Gorenstein's paper [4], where the distribution of 
the number of quarks in the MIT bag and possible 
implications for multiplicity distributions were 
discussed. 

The grand canonical pressure partition function is 
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defined as [5] 

H(~, r # )  = S d Vexp( -  ~ V)S(V, T, #), 
o 

where T is the temperature and # is the chemical 
potential. ~ is a new intensive parameter related to 
the volume, V, of the system in the similar way as 
fl = T -1 is related to the energy. 3 is the grand 
canonical partition function. 

S(V, T,#) = ~ zNQN(V, T), 
N=0 

where z = expfl# and QN is the canonical partition 
function of N particles. 

The probability of finding N particles, NN, in the 
grand canonical pressure ensemble is expressed as 

z N ~ 
NN = ~ ! d Vexp(-  ~ V)QN(V, T). (1) 

Let us consider the model of hadron gas extensively 
discussed in the literature [6], where attractive forces 
are represented by the mass spectrum of particles, 
p(m), and repulsive forces by a Van der Waals 
correction to the volume. The canonical partition 
function of such gas looks like (in units where 
c=h=k=l)  

QN(V, T) 

1.ard3p,  / 

The integration is performed over the momenta and 
masses of particles, vi is the volume of an i-th hadron. 
There are so many different types of particles that, 
except for high densities at low temperature, quantum 
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effects are negligible and Boltzmann statistics is 
sufficient. 

Substituting (2) and (1), one finds the geometrical 
distribution 

~N = (1 - q)qN, (3) 

where 

z d3p 2 
q =_ ~ d m p ( m ) e x p ( -  flx/~ + m2 - r 

It is seen that the form of (3) is independent of details 
of the hadron gas model. In particular, the distribution 
(3) is valid for ideal gas. 

The geometrical distribution fulfils approximately 
KNO scaling [7] for ( N )  >> 1. Thus, the Wr6blewski 
formula is also approximately satisfied. Although, the 
shape of the geometrical distribution is far from the 
experimental one. 

As pointed out many years ago, experimental data 
cannot be described within the model where the 
existence of one fireball is assumed [8]. Only a 
few-fireball model can be realistic [9]. In the case 
of e+e - annihilation into hadrons, jets can be 
interpreted as a result of the existence of two or more 
fireballs [10]. 

Let us consider a model of k-fireballs. To simplify 
our discussion we transform the discrete distribution 
(3) into continuous one (4) 

~(n) = a e x p ( -  an), (4) 

where n is a continuous variable. When < N > >> 1, 

~N-----~(n), q = e x p ( - - a ) ~ l - - a .  

Because the statistical methods are applicable to 
< N > >> 1, it is sufficient for us to use the continuous 
distribution (4). 

We restrict ourselves to the simplest situation where 
the thermodynamic characteristics of all fireballs are 
the same. Assuming that the fireballs independently 
contribute to the resulting multiplicity, the distribution 
of particles emitted by these fireballs is the convolution 
of k distributions (4): 

~k(n)= ~oi=lh [dni~(n~)]6(n- i=l ~ l"li) 
a k 

exp(-- an)n k- 1. (5) 
(k-  

The above distribution has been also found by other 
authors [4, 11] whose argumentation, however, has 
been different than ours. 

The average value of n is expressed by the formula 

k 
<n> - =  - (6) a 

and the second moment of (5) is the following 

a w/k" (7) 
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The ratio D/<n) is simply related to a number of 
fireballs. 

Multiplying Nk(n) by (n>,  we get 

--kkl)! I T/ ] k - l @ > -  ( . . F/ ) (n)Nk(n) = (k exp - k~-~- . 

Thus, the distribution (5) exactly fulfils KNO scaling. 
An analogous discrete distribution satisfies KNO 
approximately. 

In the case of hadron-hadron or lepton-lepton 
collisions we expect that an increase of multiplicity 
with incident energy is mainly due to decreasing of 
the thermodynamical factor "a" present in (6). The 
assumption of constancy of the number of fireballs 
leads to KNO scaling and, in particular, to the linear 
function D (< n >). In order to compare the distribution 
(5) with experimental data on hadron-hadron 
collisions, we assume that the number of fireballs is 
the same in each event. This assumption is quite 
realistic in the case of e+e - or /Sp annihilation. 
Because in hadron-hadron interactions there are 
collisions with different inelasticity coefficient, the 
above assumption is only approximately valid. 
Comparing (7) with the experimental value of D/( n ) 
ratio [2, 12], we find that k is about 3 up to the collider 

energy region while at xfS = 540 GeV k-~ 4. Thus, 
the number of fireballs seems to slowly increase with 
incident energy. In Fig. 1 we compare the experimental 
multiplicity distribution in pp interactions at collider 
[12] with the predictions of (5) for k = 4. Keeping in 
mind the simplicity of the model, the agreement is 
quite satisfactory. 

In the case of collisions with nuclei the number of 
fireballs can strongly depend on impact parameter. 
Thus, the multiplicity distribution in inelastic nucleus- 
nucleus collisions is the sum of distributions (5) with 
different k. Such summation gives the distribution 
which is "wider" than that in pp interactions. If we 
consider central nucleus-nucleus collisions where an 
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Fig. I. The multiplicity distribution of charged particles produced 

in antiproton-proton collisions at x/~ = 540 GeV. The data are taken 
from [12]. The solid line is found according to the formula (5) with 
k=4  
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Fig. 2. The dispersion versus the average number of negative pions 
produced in nucleus-nucleus collisions at a momentum 4.5 GeV/c 
per nucleon. Crosses--inelastic collisions, circles--central colli- 
sions. The full and open circles correspond to different central 
triggers, for details see [13]. The straight line corresponding to 
multiplicity distributions for proton-proton inelastic collisions is 
found according to WrOblewski formula [2] 

impact parameter is restricted to small values, we 
expect that the number k does not change significantly 
from event to event. Because the number of fireballs 
in central collisions with nuclei is greater than in pp 
interactions, the multiplicity distribution should be 
"narrower" than in pp, see formula (7). In Fig. 2 taken 
from [13] it is shown the dispersion versus an average 
value for ~z- produced in nucleus-nucleus, inelastic 
and central, collisions for fixed incident energy of 
projectile and different targets. Both features of the 
multiplicity distributions discussed above are seen. If 
we assume that at fixed projectile energy the thermo- 
dynamical factor "a" is independent of target mass 
and the increase of multiplicity is due to increase of 
the number of fireballs, we find, comparing (6) and (7), 

D = ~ ) .  As shown in Fig. 2 such a Poisson type 
relation has been found in the experiment [13]. 
Because "a" decreases with incident energy we expect 
that at future higher energies experiments the multi- 
plicity distributions in central nucleus-nucleus 
collisions will be "narrower" than the Poisson one. 

If it were possible to choose such a phase-space 
region of secondaries where only one source contri- 
butes, the geometrical distribution (3) would be found 
in this region. A good candidate for such a region is 
the backward hemisphere in LAB for nucleus-nucleus 
collisions. Because the emission of backward particles 
is kinematically unfavorable, we expect that only 
fireball with the smallest value of rapidity significantly 
contributes to this region. Consequently, the multi- 
plicity distribution of backward particles should be 
geometrical. It occurs that such a distribution has been 
experimentally found [14, 15], see Fig. 3. 

We summarize our considerations as follows. In the 
pressure ensemble one finds the geometrical distri- 
bution of the number of particles emitted from one 
source. Assuming the existence of a few fireballs in 
high energy collisions, we are led to the multiplicity 
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Fig. 3. The multiplicity distribution of protons with momentum 
greater than 240 MeV/c (non-evaporation protons) emitted in 
backward (in LAB) hemisphere for 12C-aSlTa collisions at a 
momentmn 4.2 GeV/c per nucleon. The data are taken from [14]. 
The solid line corresponds to the geometrical distribution (3) 

distribution being the convolution of a few geometrical 
ones. This resulting distribution satisfies KNO scaling 
and fulfils other features of experimental multiplicity 
data of hadron-hadron and nucleus-nucleus inter- 
actions. 
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