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1. INTRODUCTION

The quantum chromodynamics (QCD) with quarks and gluons as fundamental con-
stituents is recognized as the dynamical theory, or at least, as a candidate of such a theory
for the strong interactions (see e.g. [Ynd83]). The quark-gluon plasma (QGP) - a macro-
scopic system of deconfined quarks and gluons, appears as a many body aspect of QCD,
and the existence of QGP in the early Universe, or perhaps in the compact stellar objects,
is, in fact, unavoidable consequence of QCD. This explains the interest in studies of QGP,
in particular, in those done in the framework of transport theory.

The transport, or kinetic, theory provides a framework to consider systems out of
thermodynamical equilibrium. Although the theory was initiated more than 100 years ago -
Boltzmann derived his famous equation in 1872, the theory is still under vital development.
Application of the Boltzmann’s ideas to systems which are relativistic and of quantum
nature is faced with difficulties which have been overcome only partly till now. For a review
see the monography [Gro80]. In the case of the quark-gluon plasma specific difficulties
appear due to the non-Abelian character of the dynamics which governs the system. In
spite of this, the transport theory approach to QGP is in fast progress and some interesting
results have been found already.

Because the generation of QGP is supposed to proceed in relativistic heavy-ion col-
lisions, there is a practical aspect of the studies on non-equilibrium QGP. The point is
that the life time of the plasma produced, if indeed produced, in these collisions is not
much longer than the characteristic time scale of parton processes*. Therefore QGP can
achieve, in the best case, only a quasi-equilibrium state, and the studies of nonequilibrium
phenomena are of importance to discriminate the characteristic features of QGP produced
in laboratory experiments.

The aim of this article is to give a systematic presentation of applications of the kinetic
theory methods in the studies of QGP. I start the review with the brief discussion of
kinetic equations and of distribution functions of quarks and gluons (Sec. 2). The problem
of derivation of transport equations is completely omitted here since it is the topic of the
article [Elz89]. The discussion of applications of the transport theory to QGP splits into
two branches. The first one concerns the phenomena of locally colorless plasma.** The
dynamical content of QCD enters here only through the cross-sections of parton-parton
interactions. Consequently, the discussion is of rather general character and it fits, with
minor modifications, to any relativistic system. I consider the hydrodynamic limit of the
kinetic theory and the transport coefficients (Secs. 3 and 4).

The characteristic features of QGP appear when the plasma is not locally colorless and
consequently, it interacts with the chromodynamic mean field. The response of the plasma
to this field is discussed in Secs. 5 and 6. Then, I analyze the oscillations around the

* The word parton is used as a common name of quarks and gluons.
** I call the plasma locally colorless if the color four-current vanishes at each space-time
point. It differs from the terminology used in the electron-ion plasma physics, where the
plasma is called locally neutral if the electric charge (zero component of electromagnetic
four-current) is everywhere zero.
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global thermodynamical equilibrium state (Sec. 7) and in a two-stream system (Sec. 8).
In the later case, specific plasma instabilities occur. The hydrodynamic description of the
colored plasma and the respective transport coefficients are considered in Sec. 9 and 10.
At the end, in Sec. 11 the final remarks are collected.

Presenting the QGP transport theory I try to avoid model dependent concepts con-
cerning the mechanism of confinement, or of nucleus-nucleus interactions. However, a very
crucial assumption is made that the plasma is perturbative, i.e. that the partons weakly
interact with each other due to the smallness of the QCD coupling constant. Indeed, be-
cause of the asymptotic freedom, QGP becomes perturbative at temperatures much greater
than the QCD scale parameter Λ, see e.g. [Kal84]. Since Λ is of order 200 MeV [Ynd83],
the temperature, at which the coupling constant is small, are, at least, of order 1 GeV.
However, one believes that many results obtained in the framework of perturbative QCD
can be extrapolated to the nonperturbative regime.

I do not discuss the numerical values of parameters and relevance of the results for
QGP from heavy-ion collisions. All these problems are very important for the experimental
studies of QGP, however they are still a matter of debates and controversies. Because of
the scope of the review I do not touch several hot topics of the QGP physics, where the
transport theory methods have been successfully applied, see Sec. 11.

In the whole article the units are used, where c = k = h̄ = 1, the metric tensor is
diagonal and g00 = −g11 = −g22 = −g33 = 1.

2. THE DISTRIBUTION FUNCTIONS AND
TRANSPORT EQUATIONS

The (anti-)quark distribution function f(p, x)
(
f̄(p, x)

)
is a hermitian N × N matrix

in color space (for a SU(N) color group) with p denoting quark four-momentum and x
space-time position [Hei83, Win84, Elz86a]. The function transforms under local gauge
transformations as

f(p, x) → U(x)f(p, x)U†(x) . (2.1a)

The color indices are suppressed everywhere. The gluon distribution function [Elz86b] is
a hermitian (N2 − 1) × (N2 − 1) matrix [Mro89] and it transforms as

G(p, x) →M(x)G(p, x)M†(x) , (2.1b)

where
Mab(x) = Tr

[
τaU(x)τbU†(x)]

with τa, a = 1, ..., N2 − 1 being the SU(N) group generators.
One sees that, in contrast to the distribution functions known from the physics of

atomic gases, the distribution functions of quarks and gluons have not simple probabilistic
interpretation due to the gauge dependence. It is however not surprising if one realizes
that the question of probability to find, let me say, a red quark with momentm p in space
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point x is not physical since the color of a quark can be changed by means of a gauge
transformation.

It follows from the transformation laws (2.1) that the traces of the distribution func-
tions are gauge independent, and consequently they can have familiar probabilistic in-
terpretation. Indeed, the question of probability to find a quark of any color with a
four-momentumin p in a space-time point x is of physical character since this question is
gauge independent.

Quantities which are color (gauge) independent, like the baryon current or the energy
momentum tensor, are expressed only through the traces of distribution functions. In
other words, the distribution functions summed over colors enter these quantities. The
baryon current reads

bµ(x) =
∫

d3p

(2π)3E
pµ
[
Trf(p, x) − Trf̄(p, x)

]
, (2.2)

where p ≡ pµ = (E,p). The energy-momentum tensor is expressed as follows

tµν(x) =
∫

d3p

(2π)3E
pµpν

[
Trf(p, x) + Trf̄(p, x) + TrG(p, x)

]
. (2.3)

To simplify the notation I write the expressions as if quarks and gluons are of the same
mass, or massless. The modifications due to the mass difference are trivial.

The color current, which is a gauge dependent quantity, is expressed not only through
the traces of distribution functions and it reads*

jµ(x) = −1
2
g

∫
d3p

(2π)3E
pµ
[
f(p, x) − f̄(p, x) − 1

N
Tr
[
f(p, x) − f̄(p, x)

]
+

+2iτafabcGbc(p, x)
]
,

(2.4)

where g is the coupling constant and fabc is the structure constant of the SU(N) group.
The quarks and gluons are treated as spinless. Additionally, I consider the quarks of

one flavour only. However, if the plasma is in equilibrium with respect to spin and quark
flavours, these quantum numbers can be treated as nondistinguishable internal degrees of
freedom of partons. As seen from Eqs. 2.2 - 2.4 the partons are also assumed to satisfy
the mass-shell constraints. In principle, the mass-shell equations can include medium
corrections, and consequently the quark and gluon masses can differ from those of the
perturbative vacuum.

The distribution functions of quarks and gluons satisfy the following set of transport
equations [Hei83, Win84, Elz86a, Elz86b, Elz88, Mro89]

pµDµf(p, x) + gpµ ∂

∂pν

1
2
{Fµν(x), f(p, x)} = C[f, f̄ , G] , (2.5a)

* For the reader convenience I apply in this article the sign convention which is used in
[Elz89]. Therefore, the most of signs differ from those which appear in my previous works.
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pµDµf̄(p, x) − gpµ ∂

∂pν

1
2
{Fµν(x), f̄(p, x)} = C̄[f, f̄ , G] , (2.5b)

pµD̃µG(p, x) + gpµ ∂

∂pν

1
2
{Fµν(x), G(p, x)} = Cg[f, f̄ , G] , (2.5c)

where {..., ...} denotes the anicommutator; Dµ and D̃µ are the covariant derivatives which
act as

Dµ = ∂µ − ig[Aµ(x), ...] , D̃µ = ∂µ − ig[Aµ(x), ...] ,

where Aµ and Aµ are the mean-field four-potentials defined as

Aµ(x) = Aµ
a(x)τa , Aµ

ab(x) = −ifabcA
µ
c (x) .

Fµν and Fµν are the mean-field stress tensors defined analogously to the four-potentials.
The mean-field is generated by the color current of quarks and gluons (2.4) and the re-
spective equation is

DµF
µν(x) = jν(x) . (2.6)

C, C̄ and Cg are the collisions terms which equal zero in the collisionless limit i.e. when
the plasma evolution is dominated by the mean-field effects*. The collision terms of QGP
kinetic equations have not been derived yet, however it has been argued [Mro87b, Mro88d]
that these terms should be formally similar to those of the so-called Waldmann-Snider
equations describing system of spinning particles [Gro80]. In the applications of Eqs. 2.5
the collision terms in the relaxation time approximation have been used. Then, these terms
read

C = νpµu
µ
(
feq(p, x) − f(p, x)

)
, (2.7a)

C̄ = ν̄pµu
µ
(
f̄eq(p, x) − f̄(p, x)

)
, (2.7b)

Cg = νgpµu
µ
(
Geq(p, x) −G(p, x)

)
, (2.7c)

where ν is the equilibration rate parameter (the inverse relaxation time), which is usually
identified with the particle inverse free flight time (as we will see this identification is not
always correct); uµ is the hydrodynamic four-velocity, which in the plasma rest frame is
(1,0,0,0); feq(p, x) is the local thermodynamical equilibrium distribution function. In the
case of global equilibrium, the distribution function is proportional to the unit matrix in
the color space i.e. it can be expressed as

feq
ij (p) = δijn

eq(p) , i, j = 1, ..., N , (2.8)

where neq(p) is the Fermi-Dirac equilibrium distribution function. The respective quanti-
ties corresponding to antiquarks and gluons are of analogous, to the quark case, meaning.

* This occurs when the characteristic mean-field frequency is much greater than the
parton collision frequency.
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The collision terms (2.7) make the distribution functions evolve towards the local thermo-
dynamical equilibrium with the characteristic time equal ν−1.

Let me note that the set of transport equations (2.5, 2.6) is covariant with respect to
the gauge transformations (2.1). The equilibrium distribution functions of the form (2.8)
are gauge invariant, and they give zero color current (2.4).

The validity of the kinetic equations (2.5) is discussed in [Elz89], here I only mention
that these equations describe the evolution of QGP in the semiclassical limit. In spite of
this limitation the content of these transport equations is, as we will see later, quite rich.

Let me note here that the quark transport equations (2.5a, 2.5b) have been analytically
solved [Bia84, Bia85, Bia 88b] imposing boost-invariant constraints [Bjo83]*. The solutions
have been then used to discuss the variety of problems of QGP, for review see [Bia89].

Variants of the QGP transport theory, other than the presented above, have been also
considered in the literature. An approach, where the central role play the equations de-
scribing the evolution of momentum moments of distribution functions have been discussed
in [Car87]. Transport equations different than (2.5) have been advocated in [Sil85]. Effec-
tive kinetic theory models, which incorporate some features of QCD at a phenomenological
level, have been studied in [Lee86, Miz88].

3. THE COLORLESS PLASMA AND IDEAL HYDRODYNAMICS

When the plasma is locally colorless (the distribution functions are proportional to the
unit matrices in the color space), there is no color current and we expect that there is zero
mean field (Fµν(x) = 0). Then, taking the trace of Eqs. 2.5 one finds

pµ∂µq(p, x) = c[q, q̄, g] , (3.1a)

pµ∂µq̄(p, x) = c̄[q, q̄, g] , (3.1b)

pµ∂µg(p, x) = cg[q, q̄, g] , (3.1c)

where

q(p, x) = Trf(p, x) , q̄(p, x) = Trf̄(p, x) , g(p, x) = TrG(p, x) (3.2a)

and

c[q, q̄, g] = TrC[f, f̄ , G] , c̄[q, q̄, g] = TrC̄[f, f̄ , G] , cg[q, q̄, g] = TrCg[f, f̄ , G] . (3.2b)

Because the trace of a commutator is zero, there are normal derivatives instead of covariant
ones in (3.1).

* The boost-invariant hydrodynamics has been earlier studied in [Gor78].
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Calculating the transport coefficients I will use the collision terms in the relaxation
time approximation i.e.

c = νpµu
µ
(
qeq(p, x) − q(p, x)

)
, c̄ = ν̄pµu

µ
(
q̄eq(p, x) − q̄(p, x)

)
,

cg = νgpµu
µ
(
geq(p, x) − g(p, x)

)
. (3.3)

In the case of colorless plasma, one expects that the collision terms are of the standard
Boltzmann-like form, see e.g. [Gro80]. If the effects of quantum statistics are taken into
account one gets the collision terms of the Nordheim-Uehling-Uhlenbeck form [Nor28,
Uhl33]. Such collision terms are briefly considered in [Hos85, Cha85] in the context of
QGP. Since the explicit expressions of these collision terms are not considered in this
article I do not write them down. Let me only note that any collision terms have to satisfy
the relations ∫

d3p

(2π)3E
{c[q, q̄, g] − c̄[q, q̄, g]} = 0 , (3.4a)

∫
d3p

(2π)3E
pµ{c[q, q̄, g] + c̄[q, q̄, g] + cg[q, q̄, g]} = 0 (3.4b)

in order to be consistent with the baryon number and energy-momentum conservation:

∂µb
µ(x) = 0 , (3.5)

∂µt
µν(x) = 0 . (3.6)

Let me define the entropy four-flux of the colorless plasma as (see e.g. [Bal75])

sµ(x) =
∫

d3p

(2π)3E
pµ{−[(1 − q(p, x)) ln(1 − q(p, x)) + q(p, x) ln q(p, x)]+

−[(1 − q̄(p, x)) ln(1 − q̄(p, x)) + q̄(p, x) ln q̄(p, x)]+
+[(1 + g(p, x)) ln(1 + g(p, x)) − g(p, x) lng(p, x)]} ,

(3.7)

where the quantum statistics of quarks and gluons have been taken into account.
Due to the second principle of thermodynamics one expects ∂µs

µ(x) ≥ 0. To prove
this relation, which is known as H-theorem in kinetic theory, the explicit form of collision
terms is needed. Indeed,

∂µs
µ(x) = −

∫
d3p

(2π)3E

[
c ln
[ q(p, x)

1 − q(p, x)

]
+c̄ ln

[ q̄(p, x)
1 − q̄(p, x)

]
+cg ln

[ g(p, x)
1 + g(p, x)

]]
. (3.8)

With the Nordheim-Uehling-Uhlenbeck collisions terms (see e.g. [Hos85]) one checks fol-
lowing the standard procedure [Gro80, Bal75] that ∂µs

µ(x) from (3.8) is indeed nonnega-
tive.
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When the system reaches local equilibrium ∂µs
µ(x) = 0, therefore this equation defines

the local equilibrium distribution functions. In principle, the form of the local equilibrium
function can not be determined as long the collision terms are unknown. However, as-
suming the conservation laws (3.5, 3.6), or equivalently the relations (3.4), one shows that
∂µs

µ(x) = 0 when the entropy four-flux (3.7) is calculated with the following distribution
functions

qeq(p, x) =
[

exp
(
βµ(x)pµ − β(x)µ(x)

)
+1
]−1

, (3.9a)

q̄eq(p, x) =
[

exp
(
βµ(x)pµ + β(x)µ(x)

)
+1
]−1

, (3.9b)

geq(p, x) =
[

exp
(
βµ(x)pµ

)−1
]−1

, (3.9c)

where βµ(x) = β(x)uµ(x), β(x) = T−1(x) ; T (x), uµ(x), µ(x) are identified with
the local temperature, the hydrodynamic velocity and the local quark chemical potential,
respectively.

Considering the hydrodynamics of colored plasma (Sec. IX) we will see that the problem
of determination of local equilibrium distribution functions is far not academic and not as
trivial as it looks here.

The equations (3.5, 3.6) with the baryon current and the energy-momentum tensor
calculated with the local equilibrium distribution functions (3.9) constitute the set of hy-
drodynamic equations of ideal quark-gluon liquid. Following [Gro80] one easily finds

bµ(x) = b(x)uµ(x) , (3.10)

tµν(x) =
[
U(x) + P (x)

]
uµ(x)uν(x) − P (x)gµν , (3.11)

where b(x), U(x) and P (x) are the baryon density, the energy density and the pressure,
which are expressed by the well-known ideal gas formulas.

Substituting (3.10, 3.11) to (3.5, 3.6) one can get several forms of relativistic hydrody-
namic equations of ideal fluid, see e.g. [Lan63]. In particular, splitting the derivative ∂µ

into its components parallel (convective) and orthogonal to uµ as

∂µ = uµD + ∇µ ,

where
D = uµ∂

µ , ∇µ = ∆µν∂ν , ∆µν = gµν − uµuν ,

one finds [Hos85]
DU(x)+

(
U(x) + P (x)

)
∇µu

µ(x) = 0 , (3.12)(
U(x) + P (x)

)
Duµ(x) −∇µP = 0, (3.13)

Db(x) + b(x)∇µu
µ(x) = 0 . (3.14)

Using the thermodynamic identities, the following relations can be also derived [Hos85]

DT

T
= −

(
∂P

∂U

)
b

∇µu
µ , (3.15)
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TD

(
µ

T

)
= −

(
∂P

∂b

)
U

∇µu
µ . (3.16)

These relations will be used to calculate transport coefficients.
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4. THE VISCOUS LIQUID AND TRANSPORT COEFFICIENTS

While C[qeq, q̄eq, geq] = 0, one sees that pµ∂µq
eq(p, x) �= 0 for nonuniform T , uµ, or

µ. Therefore the local equilibrium distribution functions are not solutions of the trans-
port equations (3.1). Writing q(p, x) = qeq(p, x) + δq(p, x) and analogous expressions for
antiquark and gluon distribution functions, the transport equations (3.1) imply that

δq(p, x) = −(νpλuλ

)−1
pµ∂µq

eq(p, x) , (4.1a)

δq̄(p, x) = −(ν̄pλuλ

)−1
pµ∂µq̄

eq(p, x) , (4.1b)

δg(p, x) = −(νgp
λuλ

)−1
pµ∂µg

eq(p, x) , (4.1c)

where δq, δq̄, δg and their gradients have been assumed much smaller than, repectively,
qeq, q̄eq, geq and their gradients.

Calculating the baryon current and the energy-momentum tensor with q = qeq + δq,
q̄ = q̄eq + δq̄ and g = geq + δg and comparing with (3.10, 3.11), one finds additional
dissipative terms. Specifically,

bµ(x) = b(x)uµ(x) + bµdis(x) , (4.2)

tµν(x) =
[
U(x) + P (x)

]
uµ(x)uν(x) − P (x)gµν + tµν

dis(x) , (4.3)

where

bµdis(x) =
∫

d3p

(2π)3E
pµ{δq(p, x) − δq̄(p, x)} , (4.4)

tµν
dis(x) =

∫
d3p

(2π)3E
pµpν{δq(p, x) + δq̄(p, x) + δg(p, x)} . (4.5)

The equations of hydrodynamics are still those of (3.5, 3.6), however the dissipative
terms from (4.2, 4.3) have to be taken into account. Their structure depends on the
definition of what constitutes the local rest frame of the fluid i.e. on the definition of
hydrodynamic four-velocity. One natural proposition made by Eckart [Eck40] associates
the hydrodynamic velocity with the current, in the case of QGP - the baryon current.
Namely,

uµ(x) =
bµ(x)

bν(x)uν(x)
. (4.6)

If the plasma is baryonless, Eq. 4.6 is obviously ill defined. Another definition is the
one by Landau and Lifshitz [Lan63], which associates the hydrodynamic velocity with the
momentum flow:

uµ(x) =
uν(x)tνµ(x)

uσ(x)uλ(x)tσλ(x)
. (4.7)
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There are possible other definitions interpolating between (4.6) and (4.7) [Isr79]. With
the definition (4.7), the requirements that the dissipative terms are of the first order in
gradients and that the entropy increases with time lead to [Lan63]

bµdis = κ
( bT

U + P

)2

∇µ
(µ
T

)
, (4.8)

tµν
dis = η(∇µuν + ∇νuµ − 2

3
∆µν∇σu

σ) + ζ∆µν∇σu
σ , (4.9)

where κ, η and ζ are the transport coefficients of heat conductivity, shear viscosity and
bulk viscosity. The general discussion of the dissipative term form can be found in [Isr79].

The calculation of the transport coefficients is more, or less straightforward in the
relaxation time approximation and it has been done for a one component gas in [And74].
In the context of QGP the problem has been discussed in [Hos85, Dan85, Gav85, Cha85
and Czy86]. In my presentation I follow [Hos85]. At first, one evaluates bµdis and tµν

dis

substituting (4.1) into (4.4, 4.5). The convective derivatives of T , µ and uµ, which are
absent in (4.8, 4.9), arising from ∂µqeq, ∂µq̄eq and ∂µgeq are eliminated by means of (3.15,
3.16) (the ideal hydrodynamics (3.12 - 3.14) is assumed), and finally one finds [Hos85]

bµdis(x) = T−1

∫
d3p

(2π)3E
pµ

[[1
ν
qeq(1 − qeq) − 1

ν̄
q̄eq(1 − q̄eq)

]
×[pσuσ

(
∂P

∂U

)
b

∇λu
λ + pρX

ρ +
pσpλ

pνuν
∇σuλ

]
+

+
[1
ν
qeq(1 − qeq) +

1
ν̄
q̄eq(1 − q̄eq)

]
×[(∂P

∂b

)
U

∇λu
λ − U + P

b

pν

pσuσ
Xν
]]
,

(4.10)

tµν
dis(x) = T−1

∫
d3p

(2π)3E
pµpν

[[1
ν
qeq(1 − qeq) +

1
ν̄
q̄eq(1 − q̄eq) +

1
νg
geq(1 + geq)

]
×[pσuσ

(
∂P

∂U

)
b

∇λu
λ + pρX

ρ +
pσpλ

pνuν
∇σuλ

]
+

+
[1
ν
qeq(1 − qeq) − 1

ν̄
q̄eq(1 − q̄eq)

]
×[(∂P

∂b

)
U

∇λu
λ − U + P

b

pρ

pσuσ
Xρ
]]
,

(4.11)

where

Xµ =
∇µP

U + P
− ∇µT

T
=

bT

U + p
∇µ
( µ
T

)
.
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Further, we consider the space components of bµdis and tµν
dis. Going to the Landau-Lifshitz

local rest frame of the fluid and comparing the result with (4.8, 4.9) one gets [Hos85]

κ =
1

3T 2

∫
d3p

(2π)3
p2
[1
ν
qeq(1 − qeq)

(
1 − U + P

bE

)2+

+
1
ν̄
q̄eq(1 − q̄eq)

(
1 +

U + P

bE

)2+
1
ν
geq(1 + geq)

]
,

(4.12)

ζ =
1

3T

∫
d3p

(2π)3

[[ 1
ν
qeq(1 − qeq) +

1
ν̄
q̄eq(1 − q̄eq) +

1
νg
geq(1 + geq)

]
×
[ p4

3E2
−
(∂P
∂U

)
b
p2
]
+

−
[ 1
ν
qeq(1 − qeq) − 1

ν̄
q̄eq(1 − q̄eq)

](∂P
∂b

)
U

]
,

(4.13)

η =
1

15T

∫
d3p

(2π)3
p4

E2

[1
ν
qeq(1 − qeq) +

1
ν̄
q̄eq(1 − q̄eq) +

1
νg
geq(1 + geq)

]
. (4.14)

For illustration let me consider the quarkless plasma (q(p, x) = q̄(p, x) = 0). Since the
thermal gluons are assumed massles*

(
∂P
∂U

)
b
= 1/3. Additionally,

(
∂P
∂b

)
U

= 0. Then, one
finds from Eqs. 4.12 - 4.13 [Hos85]

κ =
4π2

45
(N2 − 1)

1
νg
T 3 , ζ = 0 , η =

4π2

225
(N2 − 1)

1
νg
T 4 . (4.15)

To estimate the numerical values of the kinetic coefficients one has to express the
equilibration rate parameters ν, ν̄ and νg through the QCD parameters and through the
thermodynamical characteristics of QGP. Usually ν is identified with the inverse mean free
flight time. Then, assuming that the plasma particles move with the velocity of light (the
plasma is ultrarelativistic) one finds

ν = ρσqq
t + ρ̄σqq̄

t + ρgσ
qg
t ,

ν̄ = ρσq̄q
t + ρ̄σq̄q̄

t + ρgσ
q̄g
t ,

νg = ρσgq
t + ρ̄σgq̄

t + ρgσ
gg
t ,

where ρ, ρ̄ and ρg are the densities of quarks, antiquarks and gluons, respectively; σab
t is

the so-called transport cross section [Lif81] of interaction of a parton a with with a parton
b,

σab
t =

∫
dΩ

dσab

dΩ
sin2 Θ . (4.16)

* In fact, the dispersion relation of gluons in the plasma medium differs from that in the
perturbative vacuum, and gluons are not exactly massless.
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The sin2 Ω weight in (4.16) damps the role of small-angle scattering which proceed with
large cross sections giving small contribution to the transport processes because of small-
ness of momentum transfer.

The perturbative QCD gives the Rutherford-like cross section of parton-parton scatter-
ing i.e. at small angle scattering, the cross section behaves as sin−4 Θ/2. Therefore, in
spite of the sin2 Θ weight, the integral (4.16) is logarythmically divergent.

One easily finds that
σt ∼ α2

s ln(1/Θmin) T−2 ,

where αs is the QCD couplig constant (αs = g2/4π) and Θmin is the small-angle cut-off,
which can be estimated as follows. The Coulomb forces are screened in the plasma at the
distance - the Dedye length, of order 1/gT (see Eq. 7.13), and consequently, the minimal
momentum transfer in parton-parton scattering is of order gT . Because the characteristic
parton momentum is T , Θmin ∼ 1/g. Taking into account that ρ ∼ T 3 for massless
partons, one finally finds that

ν ∼ α2
sT ln 1/αs . (4.17)

The above reasoning is however not quite correct. Considering the scattering of the rel-
ativistic partons one has to take into account, except Coulomb chromoelectric interaction,
the chromomagnetic interaction, which also gives the Rutherford singularity. However, in
contrast to the chromoelectric field, the chromomagnetic field is not screened in the per-
turbative QCD plasma. Therefore the minimal scattering angle is zero, the transport cross
section is infinite and the kinetic coefficients vanish. The problem has been recognized in
[Dan85], where the magnetic screening due to a non-perturbative mechanism in QGP has
been assumed.

It has been argued in a very recent paper [Bay88], that the Rutherford singularity is
removed due to the screening of magnetic field of small but nonzero frequency. It appears
because of a dynamical mechanism analogous to that one responsible for the Landau
damping of plasma oscillations.

The transport coefficienets of QGP has been also considered from the point of view
different than that presented here. Using the effective kinetic theory of quasiparticles -
colorless quarks [Lee86], the transport coefficients have been calculated in [Cal86]. Another
effective approach have been used in [Miz88]. Kubo-type formulas have been applied to
the problem in [Hor87a, Hor87b]. The possibility to extract the transport coefficients from
Monte Carlo lattice calculations has been discussed in [Sch86, Kar87].

The more general discussion of the kinetic coefficients of relativistic systems can be
found in [Gro80].

5. THE COLORED PLASMA NEAR QUASI-STABLE
COLORLESS STATE

In this section I consider, following [Mro89], the plasma which is colored but close to the
quasi-stable colorless homogenous state. Then, the distribution functions can be written
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as
fij(p, x) = n(p)δij + δfij(p, x) , (5.1a)

f̄ij(p, x) = n̄(p)δij + δf̄ij(p, x) , (5.1b)

Gab(p, x) = ng(p)δab + δGab(p, x) . (5.1c)

The functions describing the deviation from the colorless sate are assumed much smaller
that the respective colorless fuctions, and the same is assumed for the momentum gradients
of these fuctions.

Substituting the functions (5.1) in (2.4) one gets

jµ(x) = −1
2
g

∫
d3p

(2π)3E
pµ
[
δf(p, x) − δf̄(p, x) − 1

N
Tr
[
δf(p, x) − δf̄(p, x)

]
+

+2iτafabcδGbc(p, x)
]
.

(5.2)

One sees that the current occurs due to the deviation of the system from the colorless state.
When the system approches this state there is no current and one expects that there is no
mean field. Therefore I linearize Eq. 2.6 with respect to the four potential to the form

∂µF
µν(x) = jν(x) (5.3)

with Fµν = ∂µAν − ∂νAµ. It should be stressed here that the linearization procedure
does not cancel all non-Abelian effects, since gluons contribute to the color current (5.2).
Therefore the gluon-gluon coupling, which is of essentially non-Abelian character is in-
cluded in a specific way. Let me also note that in the linearized theory the color current
is conserved (due to antisymmetry of Fµν) i.e. ∂µj

µ = 0.
Now I substitute the distribution functions (5.1) to the transport equations (2.5) with

the collision terms (2.7). Linearizing the equations with respect to δf , δf̄ and δG, one gets(
pµ∂µ + νpµu

µ
)
δf(p, x) = −gpµFµν(x)

∂

∂pν
n(p) + νpµu

µ
(
neq(p) − n(p)

)
, (5.4a)

(
pµ∂µ + ν̄pµu

µ
)
δf̄(p, x) = gpµFµν(x)

∂

∂pν
n̄(p) + ν̄pµu

µ
(
n̄eq(p) − n̄(p)

)
, (5.4b)

(
pµ∂µ + νgpµu

µ
)
δG(p, x) = −gpµFµν(x)

∂

∂pν
ng(p) + νgpµu

µ
(
neq

g (p) − ng(p)
)
. (5.4c)

Performing the linearization one should remember that Aµ is of order of δf .
Treating the chromodynamic field as an external one, Eqs. 5.4 can be easily solved

δf(p, x) = −g
∫
d4x′∆p(x− x′)

[
pµFµν(x′)

∂

∂pν
n(p) − νpµu

µ
(
neq(p) − n(p)

)]
, (5.5a)

δf̄(p, x) = g

∫
d4x′∆p(x− x′)

[
pµFµν(x′)

∂

∂pν
n̄(p) + ν̄pµu

µ
(
n̄eq(p) − n̄(p)

)]
, (5.5b)
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δG(p, x) = −g
∫
d4x′∆p(x− x′)

[
pµFµν(x′)

∂

∂pν
ng(p) − νgpµu

µ
(
neq

g (p) − ng(p)
)]

, (5.5c)

where ∆p(x) is the Green function of the kinetic operator with the collision term in the
relaxation time approximation,

∆p(x) = E−1Θ(t)e−ν′tδ(3)(x − vt) ,

where t is the zero component of x, xµ ≡ (t,x), v ≡ p/E and ν′ ≡ νpµuµ; in the plasma
rest frame ν′ = ν.

Substituting the solutions (5.5) in Eq. 5.2 and performing the Fourier transformation
with respect to x-variable we get

jµ(k) = σµρλ(k)Fρλ(k) (5.6)

with the color conductivity tensor expressed as

σµρλ(k) = i
g2

2

∫
d3p

(2π)3E
pµpρ

[(
pσ(kσ + iνuσ)

)−1 ∂n(p)
∂pλ

+

+
(
pσ(kσ + iν̄uσ)

)−1 ∂n̄(p)
∂pλ

+ 2N
(
pσ(kσ + iνguσ)

)−1 ∂ng(p)
∂pλ

]
.

(5.7)

If the plasma colorless state is isotropic, which is the case for global equilibrium, one finds
that σµρλ(k) = σµρ(k)uλ and Eq. 5.6 gets more familiar form of the Ohm law, which in
the plasma rest frame reads

jα(k) = σαβ(k)Eβ(k) , (5.8)

where the indices α, β, γ = 1, 2, 3 label the space axes and Eα(k) is the α-component of
the chromoelectric vector.

The conductivity tensor describes the responce of the QGP to the chromodynamic field.
In the approximation used it is a color scalar (no color indices), or one can say that this
tensor is proportional to the unit matrix in the color space. In Secs. 6, 7 and 8 we will
extract the information about QGP contained in σµρλ(k). The conductivity in the static
limit (k → 0) is also discussed in Sec. 10.

6. THE LINEARIZED QCD IN A MEDIUM

Let me introduce, as in electrodynamics, the polarization vector P(x) defined as

divP(x) = −ρ(x) ,
∂

∂t
P(x) = j(x) , (6.1)

where ρ and j are the time-like and space-like components, respectively, of the color four-
current, jµ = (ρ, j). The definition (6.1) is self-consistent, only when the color current is
conserved, not covariantly conserved. This just the case of linearized QCD.
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Further, I define the chromoelectric induction vector D(x),

D(x) = E(x) + P(x) (6.2)

and the chromoelectric permeabilitty tensor, which relates the Fourier transformed D and
E fields,

Dα(k) = εαβ(k)Eβ(k) . (6.3)

In this definition the permeability tensor is a color scalar (no color indices) since the
conductivity tensor (5.7) is a color scalar.

Using the definitions (6.1, 6.2, 6.3) one easily finds that

εαβ(k) = δαβ − i

ω
σα0β(k) − i

ω2

[
kγσαβγ(k) − kγσαγβ(k)

]
(6.4)

with σαγβ(k) given by Eq. 5.7 ; ω is the time-like component of wave four-vector, kµ ≡
(ω,k). For the isotropic plasma the two last terms in Eq. 6.4 vanish, because such plasma
does not interact with the mean chromomagnetic field.

The permeability tensor determines the chromodynamic properties of a medium. In
particular, the spectrum of excitations, which are called plasmons in the quantum language,
or the plasma oscillations in the classical one.

Because the equation of linearized QCD coincide (up to the trivial matrix structure)
with those of electrodynamics, the dispersion relations of the plasma oscillations, or of
plasmons, are those of electrodynamics and they read [Lan60, Sil61]

det | k2δαβ − kαkβ − ω2εαβ(k) |= 0 . (6.5)

The relation (6.5) gets simpler form for the isotropic plasma. Namely,

εL(k) = 0 , εT (k) = k2/ω2 , (6.6)

where the longitudinal and transversal parts of the permeability tensor are defined as

εαβ(k) = εT (k)
(
δαβ − kαkβ/k2

)
+εL(k) kαkβ/k2 . (6.7)

The dispersion relations have transparent meaning in the case of electrodynamics. They
are defined in such a way, that the plane wave with ω(k), which is the solution of dispersion
equation (6.5), is automatically the solution of sourceless Maxwell equations in a medium.
In other words, the solution of the dispersion relation defines the wave which can propagate
in the medium, or using the quantum language, the dispersion relations determine the
connection of energy and momentum of a quasiparticle - the plasmon in the case of plasma,
which can exist in the medium.

The situation with QCD is analogous, however solutions of the dispersion equation
(6.5) correspond to solutions only of the linearized QCD field equations, not the full QCD
equations. If we go beyond this linear approach the correspondence of the dispersion
relation solutions and those of the field equations is unknown.
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There are three classes of solutions of Eq. 6.5. Those with purely real ω are stable -
the wave amplitude is constant with time. If the frequency has negative imaginary part,
the oscillations are damped - the amplitude decreases in time. Of particular interest are
the solution with positive Imω corresponding to the so-called plasma instabilities - the
oscillations, the amplitude of which increases in time.

The permeability tensor in the static limit (ω → 0) provide the information about the
plasma behaviour in constant fields. One easily finds [Lif81, Sil61] that the chromoelectric
potential of the static point-like source behaves as

Ao(x) =
g

4π | x | exp(−mD | x |) ,

where mD is the Debye mass - the inverse screening length, if the chromodielectric tensor
is of the form

εL(ω = 0,k) = 1 +
m2

D

k2
. (6.8)

7. THE OSCILLATIONS AROUND GLOBAL EQUILIBRIUM

Let me cosider a QGP near global thermodynamical equilibrium. Substituting the
explicit form of the equilibrium distribution functions, Fermi-Dirac for (massless) quarks
and Bose-Einstein for gluons, into (5.7) one finds by means of Eq. 6.4 the following
expression of the chromoelectric permeability of the baryonless plasma in its rest frame

εαβ(k) = δαβ − 2g2

ωT

∫
d3p

(2π)3
vαvβ

[
Nf

(
ω − kv + iν

)−1(
ep/T + 1

)−2

+

+2N
(
ω − kv + iνg

)−1(
ep/T − 1

)−2]
ep/T ,

(7.1)

where Nf is the number of flavours, N is the number of colors and p is the length of
the vector momentum here (p ≡| p |). One should note that the numbers of quarks
and of antiquarks are equal in the baryonless plasma, and consequently ν = ν̄. With no
difficulties, the permeability tensor (7.1) can be split into logitudinal and transversal parts
according to Eq. 6.7.

In the case of collisionless (ν = νg = 0) plasma of massless particles, the dielectric
function (7.1) can be calculated analytically and the results are

εL = 1 +
3ω2

o

k2

[
1 − ω

2k

[
ln | k + ω

k − ω
| −iπΘ(k − ω)

]]
, (7.2)

εT = 1 − 3ω2
o

2k2

[
1−
( ω

2k
− k

2ω

)[
ln | k + ω

k − ω
| −iπΘ(k − ω)

]]
, (7.3)
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where k ≡| k | , ωo is the plasma frequency and

ω2
o =

g2T 2(Nf + 2N)
18

. (7.4)

One sees that for ω > k the dielectric functions (7.2, 7.3) are purely real - there are no
dissipative processes, in particular the Landau damping [Lif81] is absent (see below).

Substituting (7.2, 7.3) into (6.6) one finds the following dispersion relations of the
longitudinal (the chromoelectric field is parallel to the wave vector) and transverse (the
chromoelectric field is perpendicular to the wave vector) modes
A) longitudinal mode

ω2 = ω2
o +

3
5
k2 , ωo � k , (7.5a)

ω2 = k2
(

1 + 4 exp(−2 − 2k2/3ω2
o)
)
, ωo � k ; (7.5b)

B) transverse mode

ω2 = ω2
o +

6
5
k2 , ωo � k , (7.6a)

ω2 =
3
2
ω2

o + k2 , ωo � k . (7.6b)

Because the longitudinal and transverse oscillations are time-like (ω2 > k2), the phase
velocity of the waves is greater than the velocity of light. (The possibility of the space-like
longitudinal oscillations in QGP has been discussed in [Sil88].) For this reason the Landau
damping is absent. Let me remind that the Landau damping is a collisionless transfer of
energy from the wave to plasma particles, the velocity of which is equal to the wave phase
velocity [Lif81].

The oscillations of the collisionless QGP around global equilibrium have been studied
by means of the transport theory based on Eqs. 2.5 in several papers [Mro87a, Elz87,
Bia88, Mro89]. The problem has been also discussed using a specific variant of the QGP
theory with classical color [Hei83, Hei85a] in [Hei85b, Hei86]. In the above presentation I
have followed [Mro89].

The dispersion relations for the collisionless plasma (7.5, 7.6) agree, up to the lowest
order in the coupling constant, with those found in the finite-temperature QCD by means
of the one-loop approximation, see e.g. [Wel82, Kal84, Han87, Hei87].

Let me now cosider the dielectric function with nonzero equilibration rates. One easily
evaluates the integral (7.1) when ω � k , ω � ν and ω � νg. Then, we find the following
dispersion relations [Mro89]:
A) longitudinal mode

ω2 = ω2
o − ζ2 +

3
4
φ2 +

3
5
k2 , γ =

1
2
φ , (7.7)
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B) transverse mode

ω2 = ω2
o − ζ2 +

3
4
φ2 +

6
5
k2 , γ =

1
2
φ , (7.8)

where ω and γ denote the real and imaginary part, respectively, of the complex frequency,
i.e. I performed the substitution ω → ω − iγ ; φ and ζ are parameters related to the
equilibration rates,

φ = ν
Nf

Nf + 2N
+ νg

2N
Nf + 2N

, (7.9a)

ζ2 = ν2 Nf

Nf + 2N
+ ν2

g

2N
Nf + 2N

. (7.9b)

One sees that, when compared with the colisionless plasma (Eqs. 7.5, 7.6), the frequency
of the oscillations is smaller and that the oscillations are damped. To find the numerical
value of the damping rate - the plasma oscillation decrement γ, the equilibration rates (ν
and νg) have to be estimated.

If ν or νg is identified with the mean free flight time, as it has been done in Sec. 4, the
equilibration rate is of order g4 ln 1/g. However, in the relativistic plasma, there is another
mechanism of damping different than binary parton collisions. It is the plasmon decays
into quark-antiquark or gluon-gluon pairs. The first process is very similar to the plasmon
decay into electron-positron pair known from ultrarelativistic electrodynamic plasma, while
the second one, which occurs due to the three-gluon coupling, is characteristic for non-
Abelian interactions. The plasmon decay is, in another language, particle-antiparticle pair
generation from vacuum due to the mean (oscillatory) field.

The plasmon decay width, in the lowest order of the perturbation expansion in the
coupling constant, is proportional to g2, however the plasma frequency ωo, which is of
order g, enters the formula and more detailed analysis is needed to find the order of the
width. It is easy to observe that, even in the limit of massless quarks, the decay into gluons
is much more probable than the decay into quarks [Hei87, Mro89]. The argument is as
follows. If one considers the decay of plasmon of zero momentum into (massless) quarks
or gluons, the phase-space volume of the final state is proportional to the factor(

1 ∓ neq(ωo/2)
)2

, (7.10)

where the upper sign is for quark decay, while the lower one for gluon decay. It appears
because of the quantum repulsion of fermions and of the attraction of bosons in the mo-
menum space. Since the plasma frequency (7.4) in the perturbative plasma is much smaller
than the temperature, the factor (6.12) can be expanded as(

1 − neq(ωo/2)
)2∼= 1/4 + ωo/8T ,

(
1 + neq(ωo/2)

)2∼= 4T 2/ω2
o .
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Therefore it is seen that the decay into gluons is more probable than the decay into quarks
by a factor of order g−2, what has been observed in [Hei87].

Using the standard rules of finite-temperature field theory, one easily finds (see [Mro89])
the width of the zero-momentum plasmon decay into gluons

Γd =
g2N

243π
ωo

(
1 + neq(ωo/2)

)2∼= gNT

23/2π(Nf + 2N)1/2
,

which is the same for longitudinal and transverse plasmons. The radiation gauge has been
used in the calculations.

Γd cannot be identified with the plasmon equilibration rate Γ, because, in addition to
the plasmon decays, there are also plasmon formation processes. As shown in [Wel83], see
also [Hei87], the formation rate Γf is related to Γd as

Γf = exp(−ωo/T )Γd
∼= (1 − ωo/T )Γd .

Since the equilibration rate of plasmon (as boson) Γ = Γd − Γf [Wel83], one finds

Γ ∼= g2NT

12π
. (7.11)

This result has been found in [Hei87], where Γ has been evaluated as an imaginary part
of polarization tensor. Let me note that Γd and Γf are of order of g, while Γ is of order
of g2. This means that the plasmon decay and formation rates cancel one another in the
lowest order of g.

One should note that the plasmon decay width is not a Lorentz scalar, since there is a
prefered reference frame - the rest frame of the termostat. Therefore the result (7.11) is
valid only for zero-momentum plasmons, or approximately for long-wave plasmons.

There is a delicate question whether Γ can be identified with νg. Since the momen-
tum distribution of gluons from the long-wave plasmon decays is rather far from thermal
equilibrium one, parton collisions (with the cross section of order g4 ln 1/g) are needed to
equilibrate the system. However, the gluons from plasmon decay locally neutralize the
plasma and consequently damp the oscillations. Therefore if one considers the plasma
oscillations, it seems reasonable to identify νg with Γ.

Substituting νg equal Γ from Eq. 7.11 and ν = 0 (as explained above νg � ν for
the perturbative plasma) in Eq. 6.11, one finds the decrement of the plasma oscillation
damping

γ ∼= g2

12π
N2

Nf + 2N
T . (7.12)

The characteristic feature of Eq. 7.12 is the fact that the damping rate depends on the
number of quark flavours although ν = 0. This seems in agreement with the physical
intuition. When the number of quark flavours is increased the inertia of the system is also
increased, and consequently the time needed to damp the oscillations is longer. However
Eq. 7.12 disagrees (by a factor 2N/(Nf + 2N)) with the result from [Hei87], where γ
equals Γ which is given by Eq. 7.11. Therefore, the damping decrement is independent
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of the number of quark flavours. The only way to reproduce this result in the approach
presented is to assume that ν = νg = Γ. However it is hard to understand this assumption
on physical grounds. Probably, the problem can not be resolved as long as the collision
terms of the QGP transport equations are not derived.

In the kinetic-theory approach discussed here, the plasma oscillations around global
thermodynamical equilibrium are damped, what, in fact, is built in the approach. Due to
the positiveness of the equilibration rate parameters, the plasma always goes to the global
thermodynamical equilibrium described by the distribution function (2.8). Therefore the
considerations presented here do not contribute to the controversy (see [Lop85, Han87,
Kob88, Nad88, Par88, Pis88, Boz89, Pro89]) concerning the sign of the damping decrement
of plasma oscillations and the possible instability of the perturbative QCD vacuum at finite
temperature.

Comparing the chromodielectric tensor (7.1) in the static limit with Eq. 6.8, one finds
the screening mass of the collisionless plasma, which is

m2
D = 3ω2

o . (7.13)

Because the parton density is ∼ T 3, one finds from Eq. 7.13 that the number of partons
in the Debye sphere (the sphere of the radius equal to the screening length) is ∼ 1/g3 .
It is much greater than unity if the plasma is perturbative i.e. the coupling constant is
small. In fact, a big parton number in the Debye sphere justifies the use of the mean-field
concept to describe QGP.

Let me also mention here that the ultrarelativistic perturbative plasma is simultaneously
ideal i.e. the average parton interaction energy, which is ∼ g2/ < r > with < r >∼ T−1

being the average interparticle distance, is much smaller than the parton thermal energy
which equals ∼ T .

In the case of nonrelativistic electron plasma, the plasma frequency and screening
length, respectively, read (see e.g. [Lif81, Sil61])

ω2
o = e2

ne

me
, m2

D = e2
ne

T
, (7.14)

where ne is the electron density and me is the electron mass*. In this case there are
two independent from one another thermodynamic quantities - the electron density and
temperature, which determine two plasma parameters - the plasma frequency and screen-
ing length. (For ultrarelativistic plasma there is only one thermodynamic quantity - the
temperature.) As seen, the smallness of the coupling constant does not guarantee that
the nonrelativistic plasma is ideal. It occurs that the plasma is ideal when the number of
electrons in the Debye sphere is big, i.e. when

T 3/2

e3n
1/2
e

� 1 .

* I use the units, where the fine structure constant α = e2/4π. In the Gauss units, which
are traditionally used the elctron-ion plasma physics, α = e2 .

21



8. OSCILLATIONS IN THE TWO-STREAM SYSTEM

When the plasma state deviates from global thermodynamical equilibrium the insta-
bilities can occur. According to the terminology from the electron-ion plasma [Has75], the
instabilities caused by the system inhomogenity are called macroscopic, while those, which
appear when the momentum distribution of the plasma particles differs from the equilib-
rium one, are known as the microscopic instabilities. In this section I discuss, following
[Mro88c], the particular example of the instability of the second type. However, the con-
siderations can be adopted for other physical situations. The so-called pinch instability,
which is of the first type, has been briefly considered in [Mro88c].

Let me consider two colliding streams of QGP. The streems are assumed infinite in
space and homogenous. The densities of both streams in their rest frames are equal to one
another. It is also assumed that the thermal energy of plasma particle is much smaller than
the particle energy related to the stream collective motion. Then, the quark distribution
function reads

n(p) = (2π)3ρ
[
δ(3)(p − q) + δ(3)(p + q)

]
, (8.1)

where Nρ has to be interpreted as the quark density of the stream in the reference frame,
where the stream velocities are opposite. The form of the distribution functions of anti-
quarks and gluons is analogous, however the gluon density is (N2 − 1)ρg.

Substituting the distribution functions (8.1) in the expression of the chromoelectric
permeability tensor of anisotropic plasma (found from Eqs. 6.4, 5.7), which is

εαβ(k) = δαβ +
g2

2ω

∫
d3p

(2π)3
vα
[(
ω − kv + iν

)−1 ∂n(p)
∂pγ

+
(
ω − kv + iν̄

)−1 ∂n̄(p)
∂pγ

+

+2N
(
ω − kv + iνg

)−1 ∂ng(p)
∂pγ

][(
1 − kv

ω

)
δγβ +

kγvβ

ω

]
,

(8.2)

one gets

εxx(k) = εyy(k) = 1 − ω2
p

ω2
,

εxy(k) = εyx(k) = 0 ,

εxz(k) = εzx(k) = −ω
2
p

ω2

kxkzu
2

ω2 − k2
zu

2
,

εyz(k) = εzy(k) = −ω
2
p

ω2

kykzu
2

ω2 − k2
zu

2
,

εzz(k) = 1 − ω2
p

ω2
− ω2

p

ω2
u2 ω2 + k2

zu
2

(ω2 − k2
zu

2)2
(k2

x + k2
y) − ω2

p

ω2

m2

E2
k2

zu
2 3ω2 − k2

zu
2

(ω2 − k2
zu

2)2
, (8.3)

where the plasma has been assumed collisionless and the vector q has been chosen parallel
to the z-axis; ω2

p = g2(ρ+ ρ̄+ 2Nρg)/E is the plasma frequency, E = (m2 + q2)1/2 is the
energy of particle in the stream and m is the particle thermal energy, which is assumed
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to be identical for quarks and gluons. (If one considers the streams of massive particles
with the temperatures much smaller than the particle mass, m is just the particle mass.)
Finally, u =| q | /E is the stream velocity.

Treating the plasma in the stream as a baryonless ideal gas of massless quarks and
gluons, the parton thermal energy and the densities can be expressed through the plasma
temperature as m = 3T and ρ0 + ρ̄0 + 2Nρ0

g = π−2(3Nf + 4N)ζ(3)T 3, where the index 0
labels the densities in the stream rest frame. Then, the plasma frequency reads

ω2
p =

g2

3π2
(3Nf + 4N)ζ(3)T 2 . (8.4)

Substituting the chromodielectric tensor (8.3) into (6.5) one finds the dispersion rela-
tions. Since we are interested in the relativistic streams, u = 1 in the further considerations.
To simplify the analysis, let me consider two specific cases.

A) Oscillations along the stream axis

Only the z-component of the wave vector is nonzero (k = (0, 0, k)). Then, Eq. 6.5 is
of the form

(k2 − ω2εxx)(k2 − ω2εyy)εzz = 0 .

There are two solutions (k2 − ω2εxx = k2 − ω2εyy = 0), related to the transverse modes
(the chromoelectric field is perpendicular to the wave vector),

ω2 = ω2
p + k2 , (8.5)

which are stable, and there is one solution corresponding to the longitudinal mode (εzz =
0). For ultrarelativistic streams (E � m) the fourth term of εzz from (8.3) can be neglected
(except ω2 = k2) and the dispersion relation reads

ω2 = ω2
p . (8.6)

Therefore, the longitudinal mode, as the transvers ones, is stable. It is interesting to note
that the analogous longitudinal mode for nonrelativistic cold streams (m = E) is unstable
[Has75].

B) Oscillations perpendicular to the stream axis

I choose the wave vector along the x-axis (k = (k, 0, 0)). For this case Eq. 6.5 reads

εxx(k2 − ω2εyy)(k2 − ω2εzz) = 0 .

The dispersion relation of the longitudinal mode coincides with (8.6) and the one of the
transverse mode with the chromoelectric field along the y-axis has the form (8.5). Both

23



modes are stable. For the transverse mode with the chromoelectric field along the z-axis,
one finds two solutions for the equation k2 − ω2εzz = 0,

ω2
± =

1
2

[
ω2

p + k2±
(

(ω2
p + k2)2 + 4ω2

pk
2
)1/2]

. (8.7)

One sees that ω2
+ ≥ 0 and ω2

− ≤ 0. Therefore, the modes represented by ω+ are stable. On
the other hand, the frequency of the modes related to the ω− solutions is pure imaginary.
The mode with the negative Imω is damped, and with the positive Imω, which is called
the filamentation mode [Dav83] is unstable.

In the further discussion I concentrate on the filamentation mode, which in the con-
text of QGP has been considered for the first time in [Pok88]. The physical picture of
filamentation is the following. A density fluctuation of the initially homogenous streams
occurs. When the density gradient is nonzero in the direction perpendicular to the beam,
the fluctuation increases in time, and finally the colliding streams are split into filaments of
transversal size equal to the half-wave-length of the initial fluctuation. The color currents
are of the opposite sign in the neighbouring filaments.

Let me consider time τ of developement of the instability, which equals 1/Imω−. One
sees from Eq. 8.7 that the absolute value of ω2

− increases with k2. If k2 � ω2
p one finds

ω2
− ∼= − ω2

p(1 − ω2
p/k

2) .

Therefore the maximal negative value of ω2
− is −ω2

p. In this way one finds the minimal
time of the instability developement τmin = ω−1

p , which occurs occurs for k2 � ω2
p.

The oscillations of QGP in the two-stream system have been discussed in [Hei84, Sil86,
Pok88, Mro88c]. The analysis presented in this section can be easily adopted for a plasma
system different than the two-stream one.

9. THE IDEAL CHROMOHYDRODYNAMICS

Chromohydrodynamics describes a hydrodynamic evolution of colored QGP interacting
with the self-consistently generated chromodynamic field.

The equations of chromohydrodynamics are, as in the case of colorless plasma, contained
in the conservation law equations. These are the baryon current conservation (3.5), the
color current covariant conservation

Dµjµ(x) = 0 (9.1)

where the color current is defined by Eq. 2.5, and the energy-momentum conservation
which for the colored plasma reads

∂µt
µν(x) = 2Tr

[
F νσ(x)jσ(x)

]
. (9.2)
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The color current conservation implies the relation, which can be written as∫
d3p

(2π)3E
{C[f, f̄ , G] − C̄[f, f̄ , G] + 2igτafabcC

bc
g [f, f̄ , G]} = 0 . (9.3)

where I have taken into account the relation (3.5). The energy-momentum conservation
(9.2) leads to Eq. 3.4b.

To convert Eqs. 9.1, 9.2 into the equations of ideal chromohydrodynamics one has
to calculate the energy-momentum tensor and color current with the local equilibrium
distribution functions of colored plasma.

As usually, the local equilibrium state is assumed to maximize the entropy. I define the
entropy four-flux as in [Dyr87] i.e.

Sµ(x) = −Tr
∫

d3p

(2π)3E
pµ{f(p, x)(lnf(p, x) − 1)+f̄(p, x)(ln(f̄(p, x) − 1)+

+G(p, x)(lnG(p, x) + 1)} .
(9.4)

To simplify the discussion in this section I neglect the quantum statistics of quarks and
gluons, which has been taken into account in Eq. 3.7. The respective modifications are
very simple to implement. Let me note here that the definition (9.4) is gauge invariant.

Assuming that the distribution functions satisfy the transport equations (2.5) one finds
the entropy production*

∂µS
µ(x) = −Tr

∫
d3p

(2π)3E

[
C ln f(p, x) + C̄ ln f̄(p, x) + Cg lnG(p, x)

]
. (9.5)

To derive Eq. 9.5 one should observe that

Tr
(

[Aµ, f ] lnf
)

= 0 .

Such terms appear because of the presence of covariant derivatives in the transport equa-
tions. I have also assumed that the distribution functions vanish for infinite momenta,
then the mean field does not contribute to the entropy production.

The equation ∂µS
µ = 0 is of very complicated structure, and obviously one can not

find the general solution of it not knowing the collisions terms. In the case of the standard
Boltzmann equation [Gro80] one considers two classes of solutions. The first one appears
due to the conservation laws i.e. due to the relations analogous to (3.4, 9.3). The second
class of the solutions makes the collision terms equal zero. And it is of priniciple importance
that the both classes are identical to one another. As we will see below it can be not the
case of QGP transport equations.

* I am grateful to A. Dyrek and W. Florkowski for fruitful correspondence concerning
this point.
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9.1 Chromohydrodynamics with a color-scalar
hydrodynamic velocity

Let me first consider the first class of solutions. Assuming the validity of relations (3.4,
9.3) one finds that the equation ∂µS

µ = 0 is solved if

feq(p, x) = exp
(− βµ(x)pµ + β(x)µ̃(x)

)
, (9.6a)

f̄eq(p, x) = exp
(− βµ(x)pµ − β(x)µ̃(x)

)
, (9.6b)

Geq(p, x) = exp
(− βµ(x)pµ + β(x)µ̃g(x)

)
. (9.6c)

where the color chemical potentials µ̃ and µ̃g are the hermitian matrices N ×N for quarks
and (N2 − 1) × (N2 − 1) for gluons, and

µ̃ab
g = 2igfabcTr[µ̃τc] ;

βµ , as previously, is the color scalar equal uµ/T . I denote with a tilde those matrix
quantities which are usually scalars.

Substituting the functions (9.6) into Eqs. 2.2, 2.3 and 2.4, one gets, respectively,

bµ(x) = b(x)uµ(x) , (9.7)

tµν(x) =
[
U(x) + P (x)

]
uµ(x)uν(x) − P (x)gµν , (9.8)

jµ(x) = ρ(x)uµ(x) . (9.9)

In fact, the structure of expressions (9.7, 9.8, 9.10) follows from the simple observation
that there is only one four-vector - the hydrodynamic four-velocity and one tensor - the
metric tensor, at our disposal.

Because all color components of QGP evolve with the same hydrodynamic velocity the
chromohydrodynamic equations which follow from (9.7-9.9) are trivial in this sense that the
right-hand-side of Eq. 9.2 vanishes in the plasma rest frame (Tr[Fµν(x)jµ(x)]uν(x) = 0
when jµ(x) = ρ(x)uµ(x)).

On the basis of the kinetic theory with classical color [Hei83, Hei85b], chromohydro-
dynamic equations of essentially the same content as those considered above, have been
derived in [Hol84].

9.2 Chromohydrodynamics with a color-matrix
hydrodynamic velocity

Since the collision terms of the QGP tranport equation are unkown, one can not be sure
that the functions (9.6) are the most general solutions of the equation ∂µS

µ = 0. Therefore,
let me now speculate on the class of solutions of this equation, for which C = C̄ = Cg = 0.
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In the case of the standard Boltzmann equation, the collision term vanishes when

f(x, p1)f(x, p2) = f(x, p1′)f(x, p2′) , (9.10)

where
p1 + p2 = p1′ + p2′ .

It seems reasonable to assume that the QGP collision terms vanish when the (matrix)
distribution functions satisfy the relations analogous to (9.10). Since it is not clear how to
generalize the condition (9.10) for quark-gluon scattering, let me consider here the quark
plasma, i.e. the system of quarks and antiquarks with no thermal (nonvirtual) gluons.
Then, I assume that C = C̄ = 0, when the distribution functions satisfy the condition
(9.10) and

f(x, p1)f̄(x, p2) = f(x, p1′)f̄(x, p2′) , (9.11)

f̄(x, p1)f̄(x, p2) = f̄(x, p1′)f̄(x, p2′) . (9.12)

Using the standard arguments [Gro80] one finds that the relations (9.10 - 9.12) are satisfied
if

feq(p, x) = exp
(− ũµ(x)pµ − µ̃(x)

T (x)
)
, (9.13a)

f̄eq(p, x) = exp
(− ũµ(x)pµ + µ̃(x)

T (x)
)
, (9.13b)

where the hydrodynamic velocity ũµ(x) and the chemical potential µ̃(x) are now N × N
hermitian matrices. These matrices have to commute with each other in order to satisfy
the relations (9.10 - 9.12). Because the distribution functions are gauge dependent, the
same holds for the matrices ũµ(x) and µ̃(x). Assuming that these matrices transform
under gauge transformation as tensors i.e. according to (2.1), one finds that the local
distribution functions transform as it is required by Eq. 2.1.

The chromohydrodynamics which emerges from the local equilibrium distribution func-
tions (9.13) is nontrivial, when compared with that considered earlier, because the differ-
ent color components of quark plasma evolve with different hydrodynamic velocitites - the
hydrodynamic velocity is a matrix in the color space. Therefore, it will be considered,
following [Mro88b], in more details.

Because the collision terms vanish with the distribution fucntions (9.13) one finds
adding the transport equation (2.5a) to (2.5b)

DµT
µν(x) =

g

2
{F σν(x), Nσ(x)} , (9.14)

where

Tµν(x) =
∫

d3p

(2π)3E
pµpν

(
f(p, x) + f̄(p, x)

)
(9.15)

and

Nµ(x) =
∫

d3p

(2π)3E
pµ
(
f(p, x) − f̄(p, x)

)
. (9.16)
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Subsituting (9.13) into (9.15) and (9.16) one finds

Tµν(x) =
[
Ũ(x) + P̃ (x)

]
ũµ(x)ũν(x) − P̃ (x)gµν (9.17)

and
Nµ(x) = N(x)ũµ(x) , (9.18)

where Ũ(x) are P̃ (x) the matrix quantities. It looks curious at first sight that the pressure
is a gauge dependent quantity. However one should note that the mechanical pressure is
P = TrP̃ and it is gauge independent. Therefore, as in the case of the mixture of ideal
gases, the pressure is a sum of terms related to the mixture components.

Because of the baryon current conservation (bµ(x) = 1
3
TrNµ) and due to the covariant

conservation of the color current one observes that

DµNµ = 0 . (9.19)

The equation describing the mean field generation reads

DµFµν = −g
[
Nν(x) − 1

N
bν(x)

]
. (9.20)

Eqs. 9.14, 9.19, 9.20 with Eqs. 9.17, 9.18 form the gauge-covariant set of the chromo-
hydrodynamic equations of an ideal quark plasma. To make the set complete one has to
add the baryon current conservation, the well known ideal gas equation of state and the
equation expressing the isoentropic character of an ideal fluid motion.

The equations 9.14, 9.19 and 9.20 can be essentially simplified by the proper choice of a
gauge. As quoted previously the matrices ũµ and µ̃, which are hermitian, transform under
local gauge transformations according to Eq. 2.1. Therefore they can be diagonalized siml-
taneously (because they commute with one another) by means of a gauge transformation.
This is just our gauge condition. Further, one finds that having diagonal Nµ(x), Eq. 9.19
is decomposed into differential equations where the diagonal components of Aµ(x) enter,
and into algebraic equations with the off-diagonal components of the four-potential. Then,
it follows from these algebraic equations that the off-diagonal elements of Aµ(x) have to
vanish. Therefore all matrix quantities which enter the equations are diagonal.

If we introduce the indices i, j which run over the diagonal components of all quanti-
ties of interest, the equations (9.14, 9.19, 9.20) can be rewritten as (the summation over
repeated i, j indices is not implied here)

∂µT
µν
i (x) = gF σν

i (x)Nσi(x) , (9.21)

∂µN
µ
i (x) = 0 . (9.22)

∂µF
µν
i = −g

[
Nν

i (x) − 1
N
bν(x)

]
, (9.23)

where
Tµν

i (x) =
[
Ũi(x) + P̃i(x)

]
ũµ

i (x)ũν
i (x) − P̃i(x)gµν (9.24)
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and
Nµ

i (x) = Ni(x)ũµ
i (x) . (9.25)

Because the field stress tensor is traceless, not all equations from Eq. 9.23 are independent
from one another. The evolution of each color component seems, on the basis of Eqs. 9.21,
9.22, independent from one another. Although, the field generation equation (9.23) mixes
the components since the quarks of all colors contribute to the baryon current present in
l.h.s of Eq. 9.23. Let me also observe that the non-Abelian effects have disappeared in the
equations (9.21 - 9.23) due to the diagonal gauge choice.

For better understanding of the problems discussed in this section, let me briefly con-
sider the hydrodynamics of electromagnetic plasma [Kli82]. In the case of electron-ion
plasma, the ion and the electron component are weakly coupled. This occurs because of
the big difference of masses of electrons and of ions. Therefore, each component achieves
local equilibrium and then, the system goes to the global thermodynamical equilibrium.
Because of the mass difference the local temperatures and hydrodynamic velocities of the
electron and ion components are different from each other until the system achieves the
global equilibrium. Consequently, the ideal hydrodynamic equations of electron-ion plasma
are nontrivial.

The case of the electron-positron plasma (with zero global charge) seems to be quite
different than that of electron-ion plasma. There is no decoupling of electron and positron
componets. Therefore the ideal hydrodynamics of such plasma should be analogous to the
first trivial variant of chromohydrodynamics considered above.

As long the collision terms of QGP transport equations are not derived, the unique
chromohydrodynamics can not formulated.

10. THE VISCOUS CHROMOHYDRODYNAMICS AND
COLOR CONDUCTIVITY

Because of the ambiguities with the determination of local equilibrium distribution
functions of the colored plasma, let me assume that the state of QGP is close to the
colorless local equilibrium one. (I call such plasma quasicolorless). Then, the distribution
functions can be written as

fij(p, x) = neq(p, x)δij + δfij(p, x) , (10.1a)

f̄ij(p, x) = n̄eq(p, x)δij + δf̄ij(p, x) , (10.1b)

Gab(p, x) = neq
g (p, x)δab + δGab(p, x) , (10.1c)

where it is assumed that the functions describing the deviation from the equilibrium and
their (space and momentum) gradients are much smaller than the equilibrium functions
and their gradients, respectively.
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One easily solves the transport equations with the distribution functions of the form
(10.1), and the solutions read

δf(p, x) = −(νpµu
µ)−1

[
pµ∂µ + gpµFµν(x)

∂

∂pν

]
neq(p, x) , (10.2a)

δf̄(p, x) = −(ν̄pµu
µ)−1

[
pµ∂µ − gpµFµν(x)

∂

∂pν

]
n̄eq(p, x) , (10.2b)

δG(p, x) = −(νgpµu
µ)−1

[
pµ∂µ + gpµFµν(x)

∂

∂pν

]
neq

g (p, x) . (10.2c)

Let me note here that when the plasma oscillations have been considered (Sec. 5),
the space-time gradients of the equilibrium functions have been zero (the equilibrium state
has been assumed homogenous and time independent) and, the space-time gradients of the
deviation-from-equilibrium functions have been of major importance for these considera-
tions. In the solutions (10.2), the space-time gradients of the deviation-from-equilibrium
functions have been neglected, which is justified if the mean field slowly varies in the
space-time.

Calculating the baryon current (2.2) and the energy-momentum tensor with the func-
tions (10.1, 10.2) one reproduces the results of Sec. 4, where the colorless plasma has been
studied. In the case of the color current (2.4) one finds

jµ(x) = σµρ(x)uλ(x)Fρλ(x) (10.3)

with the static color conductivity tensor expressed as

σµρ(x) = − g2

2T (x)

∫
d3p

(2π)3E
pµpρ

pσuσ

[ 1
ν
neq(p, x)

(
1 − neq(p, x)

)
+

+
1
ν̄
n̄eq(p, x)

(
1 − n̄eq(p, x)

)
+

2N
νg

neq
g (p, x)

(
1 − neq

g (p, x)
)]

.

(10.4)

Because there is only one four-vector - the hydrodynamic velocity, and only one tensor -
the metric tensor, at our disposal, the color conductivity can be decomposed as

σµν = σgµν + σ1u
µuν , (10.5)

where

σ(x) = − g2

6T (x)

∫
d3p

(2π)3E
pµpµ − pλuλp

ρuρ

pσuσ

[ 1
ν
neq(p, x)

(
1 − neq(p, x)

)
+

+
1
ν̄
n̄eq(p, x)

(
1 − n̄eq(p, x)

)
+

2N
νg

neq
g (p, x)

(
1 − neq

g (p, x)
)]

.

(10.6)

The second term in Eq. 10.5 does not contribute to the color current (due to antisymmetry
of the stress tensor) and is neglected in further considerations.
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One easily calculates the integral (10.6) in the plasma rest frame, the result for massless
partons is

σ = ω2
o

[ 1
ν

Nf

Nf + 2N
+

1
νg

2N
Nf + 2N

]
,

where the plasma frequency ωo is given by Eq. 7.4.
The color conductivity of QGP has been discussed in [Hei86, Czy86, Dyr87 and Mro88a].

In the first two papers the kinetic theory with the classical color [Hei83, Hei85b] has been
used. In [Mro88a] the static conductivity has been found considering the permeability
tensor in the limit k → 0.

The analysis of the transport coefficients presented here is quite simple because the
chromodynamic field does not produce dissipative terms of the baryon current, nor of the
energy-momentum tensor. On the other hand the color current does not appear in spite
of non-zero gradients of uν and of µ. Such decoupling occurs only for the quasicolorless
plasma. The more general case of the quark plasma has been studied in [Dyr87] (see also
[Czy86]), where the local equilibrium distribution functions have been chosen in the form
analogous to (9.6).

At the end of the section let me now write down the set of chromohydrodynamic
equations for the quasicolorless plasma

∂µbµ = 0 ,

DµFµν = σuλFνλ ,

∂µt
µν = 2σuρTr

[
F νσFσρ

]
.

The baryon current and the energy-momentum tensor are as for the colorless plasma
discussed in Sec. 4.
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11. FINAL REMARKS

Presenting the applications of the transport theory to QGP I have tried to consider
the mean stream of the field avoiding model dependent concepts. Unfortunately, there
is a big gap between these rather academic considerations and the questions which are
important for experimental studies of QGP from nucleus-nucleus collisions. To study most
of these problems one has to assume a definite scenario of high-energy nuclear interactions
and to use an extensive phenomenological input to obtain quantitative results. Although
the physics of the nucleus-nucleus collisions at high energies is under fast developement
there is no common consensus concerning most of the points of interest. Therefore I have
resigned from discussing several interesting topics of QGP physics, where the transport
theory methods occured very usefull.

One of the central question, which has risen in the context of the perspectives to produce
QGP in nuclear collisions concerns the time evolution of the generated plasma and, in
particular, the thermalization time - the time interval that it would take for the plasma
to achieve thermodynamical equilibrium. In the most studies of QGP e.g. those based
on hydrodynamic calculations (for review see [Bla89a]), the system under consideration is
assumed locally equilibrated, although it is not a priori impossible that the thermalization
is even longer than the plasma life time.

The problem of plasma equilibration has been addressed in several papers. In [Bay84]
a kinetic equation with a collision term in the relaxation time approximation has been
used. The analogous studies based on the Fokker-Planck equation have been presented in
[Cha84, Hwa85]. The role of the parton production due to the strong color field have been
discussed in [Kaj85], where a phenomenological source term has been added to the trans-
port equations. For further development of such calculations see [Gat87, Gat88]. Cascade
simulations, which provide, in a sense, the numerical solutions of transport equations, have
beed used to study the plasma evolution in [Boa86, Ber88].

Because of diagnostics of QGP produced in heavy-ion collisions a great deal of effort
has been devoted to the question of time evolution of strange quark density in the plasma.
The problem is reviewed in [Koc86, Koc89], see also [Mat86, Bar88, Gaz89].

The transport theory methods have been also applied [Sve88, Gaz89] to the exciting
problem of the possible J/ψ particle production suppression in the presence of QGP. For
review see [Bla89b].

The kinetic theory seems to provide a natural framework to study nonequilibrium
many-body phenomena as those in relativistic nucleus-nucleus collisions. And, in fact,
the idea to formulate such an approach was put forward several years ago [Car76, Coo76,
Car83]. Therefore, concluding this review let me express the belief that in future the kinetic
theory methods will play an important role in the studies of high-energy nucleus-nucleus
interactions as, for example, the internuclear cascade models, based on the so-called Vlasov-
Uehling-Uhlenbeck kinetic equation, play in the physics of intermediate energy heavy-ion
collisions, see e.g. [Cas87] and references therein.
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