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Brownian Motion
Presenting methods of statistical physics, we have discussed characteristics of physical systems

averaged over intervals of time which are so long that effects of fluctuations occurring at a shorter
time scale can be ignored.

Let us consider, as an example, a pressure which results from collisions of gas particles with a
container wall of unit area. If on average one particle hits the wall in time interval τ , we observe
the smooth pressure if averaged over the time interval ∆t� τ . The pressure fluctuations show
up if ∆t becomes comparable to τ .

Pressure fluctuations are not of particular interest but there are phenomena, known as
stochastic, which fully depend on random events. The Brownian motion is the first discovered
stochastic process and historically the most important. Its understanding led to the establish-
ment of molecular structure of matter.

In 1827, Robert Brown (1773-1858) – a Scottish botanist – observed under a microscope the
chaotic continuous motion of small particles suspended in a liquid. It was only in the years
1905-1906 that Albert Einstein (1879-1955) and Marian Smoluchowski (1872-1917) – a Polish
physicist and mountaineer, gave a satisfactory explanation of the phenomenon as a result of
collisions of the observed particles with liquid molecules. The predicted regularities of Brownian
motion were soon observed by the French physicist Jean Baptiste Perrin (1870-1942), the Nobel
Prize winner in 1926.

I start the presentation of the Brownian motion theory with the Einstein approach formulated
in his 1905 paper. I will pay some attention to a diffusion equation here. Further on the approach
formulated by Paul Langevin will be presented.

Einstein approach
• A Brownian motion typically takes place on the surface of the liquid that is it occurs in two

dimensions. A three dimensional motion is also possible but at the beginning we consider
a one-dimensional motion along axis x of N particles.

• Let n(t, x) be the time dependent density of particles – Brownian or random walkers. The
normalization condition reads ∫ ∞

−∞
dxn(t, x) = N. (1)

• There is a permanent thermal motion of molecules of liquid which hit a Brownian walker
and cause its motion left or right. Let us assume that in the time interval τ the walker
moves at a distance ∆ with the probability φ(∆).

• The probability φ(∆) obeys the normalization condition∫ ∞
−∞

d∆φ(∆) = 1, (2)

and the left-right symmetry requires that

φ(∆) = φ(−∆). (3)

• If at the time t + τ the walker is in the position x, then it was at t in x − ∆ with the
probability φ(∆). So, we write

n(t+ τ, x) =
∫ ∞
−∞

d∆n(t, x+ ∆)φ(∆), (4)

where the condition (3) is taken into account.
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• If τ is much shorter than the characteristic time interval ∆t when n(t, x) changes substan-
tially that is |n(t, x) − n(t + ∆t, x)| is of the order of n(t, x), then we expand n(t + τ, x)
around t as

n(t+ τ, x) = n(t, x) +
∂n(t, x)
∂t

τ. (5)

• Now, we assume φ(∆) is small for such ∆ that n(t, x) changes substantially and we expand

n(t, x+ ∆) = n(t, x) +
∂n(t, x)
∂x

∆ +
1
2
∂2n(t, x)
∂x2

∆2. (6)

• Substituting the expansions (5, 6) into Eq. (4) we get

n(t, x) +
∂n(t, x)
∂t

τ = n(t, x)
∫ ∞
−∞

d∆φ(∆) (7)

+
∂n(t, x)
∂x

∫ ∞
−∞

d∆ ∆φ(∆) +
1
2
∂2n(t, x)
∂x2

∫ ∞
−∞

d∆ ∆2φ(∆).

• Taking into account the conditions (2, 3), we get the well known diffusion equation

∂n(t, x)
∂t

= D
∂2n(t, x)
∂x2

, (8)

where
D ≡ 1

2τ

∫ ∞
−∞

d∆ ∆2φ(∆), (9)

is the diffusion constant.

• Let us note that a specific form of the probability distribution φ(∆) merely influences
the diffusion constant (9) but not the diffusion equation (8) provided the distribution is
normalized (2), symmetric (3) and its second moment (9) exists.

• It should be noted that a process of diffusion – a spontaneous propagation of one substance
relative to another and the diffusion equation were known long before Einstein and Smo-
luchowski studied the Brownian motion. The method of derivation of the equation and its
application to describe random walkers were innovative.

Diffusion equation

• We are going to briefly discuss the diffusion equation (8), or rather its three-dimensional
generalization

∂n(t, r)
∂t

= D∇2n(t, r). (10)

• First of all we note that the presented derivation of the diffusion equation is far not the only
possible. One immediately gets the equation starting with the experimentally established
Fick’s law

j = −D∇n (11)

which states that the flux of diffusing substance j is proportional to the concentration
gradient. The sign minus in Eq. (11) tell us that the flux flows in the direction of the
concentration decrease as D ­ 0.
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• Substituting the flux (11) into the continuity equation

∂n

∂t
+∇ · j = 0, (12)

which expresses the conservation of particle number of diffusing substance, we find the
diffusion equation (10).

• The Fick’s law and the diffusion equation can be derived within the kinetic theory as the
identical in form the equation of heat conductivity which is discussed in Lecture X.

• We are going to solve the equation (10) with the initial condition

n(0, r) = n0(r). (13)

• Substituting into Eq. (10) the density n(t, r) expressed through its Fourier transform as

n(t, r) =
∫ d3k

(2π)3
e−ik·rn(t,k), (14)

one finds the equation
∂n(t,k)
∂t

= −Dk2n(t,k), (15)

solved as
n(t,k) = C(k) e−Dk

2t, (16)

where C(k) is an arbitrary function to be found from the initial condition.

• Computing the Fourier transform we have

n(t, r) =
∫ d3k

(2π)3
e−ik·rC(k) e−Dk

2t. (17)

• Since for t = 0 Eq. (17) gives the initial condition

n0(r) =
∫ d3k

(2π)3
e−ik·rC(k), (18)

we see that the function C(k) is the Fourier transform of n0(r) that is

C(k) =
∫
d3r eik·rn0(r). (19)

• Substituting the expression (19) into Eq. (17), we obtain the general solution of the diffusion
equation

n(t, r) =
1

(4πDt)3/2

∫
d3r′n0(r′) e−

(r−r′)2
4Dt , (20)

where we have computed the integral

∫ d3k

(2π)3
e−ik·r e−ak

2
=

e−
r2
4a

(4πa)3/2
. (21)

• We note that the solution (20) satisfies the expected normalization condition∫
d3r n(t, r) =

∫
d3r n0(r). (22)
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• If the diffusing particles originate from r = 0 and

n0(r) = Nδ(3)(r), (23)

then
n(t, r) =

N

(4πDt)3/2
e−

r2
4Dt . (24)

• Defining 〈rk〉 as

〈rk〉 ≡ 1
N

∫
d3r rkn(t, r), (25)

the solution (24) provides the desired relation

〈r2〉 = 6Dt. (26)

We note that 〈r〉 = 0.

• Eq. (26) tell us that the average of a displacement square of the Brownian walker linearly
grows with time which was the main prediction of the Einstein-Smoluchowski theory which
was soon later confirmed experimentally by Jean Perrin.

Langevin approach
Paul Langevin developed an alternative approach to the Brownian motion. The approach is

dynamically well motivated and applicable to various stochastic problems. We will present its
three-dimensional version.

• The starting point for the approach is the Newtonian equation of motion

m
dv(t)
dt

= −λv(t) + F(t), (27)

where m is the mass of the Brownian walker and v(t) its velocity. There are two forces acting
of the walker: the friction equal to −λv(t) and the stochastic force F(t) which occur due to
the thermal motion of liquid molecules. One usually writes down the equation divided by
m

dv(t)
dt

= −γv(t) + L(t), (28)

where γ ≡ λ/m is the friction coefficient and L ≡ F/m is called the Langevin force, which,
as we will see soon, plays a key role in the approach.

• We will solve Eq. (28) with the initial condition

v(0) = v0, (29)

using the technique of Laplace transform

• The Laplace transform of a function f(t) is defined as

f̃(s) ≡
∫ ∞
0

dt e−stf(t). (30)

It obviously assumed that the above integral exists. The inverse transform can be found as

f(t) =
∫ i∞+c

−i∞+c

ds

2πi
estf̃(s), (31)

where the real number c is chosen in such a way that singularities of f̃(s) are on the left
side of the straight line s = c.
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• Except the definition (30) and Eq. (31) we will refer to two simple formulas. The first is
the Laplace transform of the derivative of a function∫ ∞

0
dt e−st

df(t)
dt

= f(t)e−st
∣∣∣∣∞
0

+ s
∫ ∞
0

dt e−stf(t) = −f(0) + s f̃(s), (32)

where the partial integration has been performed. The second needed formula is the trans-
form of the exponential function ∫ ∞

0
dt e−ste−at =

1
s+ a

. (33)

• Let us now perform the Laplace transformation of the Langevin equation (28). After the
transformation the differential equation (28) becomes algebraic

sṽ(s)− v0 = −γṽ(s) + L̃(s), (34)

which is solved by

ṽ(s) =
v0 + L̃(s)
s+ γ

. (35)

• To get v(t), the inverse transformation of the function (35) should be performed. According
to the formula (31) the first term of the solution (35) gives

v0
∫ i∞+c

−i∞+c

ds

2πi
est

s+ γ
= v0e−γt, (36)

which is obtained either using the integral Cauchy’s formula or the equation (33).

• The transformation of the second term of the function (35) is performed as follows∫ i∞+c

−i∞+c

ds

2πi
est

L̃(s)
s+ γ

=
∫ ∞
0

dt′ L(t′)
∫ i∞+c

−i∞+c

ds

2πi
es(t−t

′)

s+ γ
(37)

=
∫ ∞
0

dt′ L(t′) Θ(t− t′) e−γ(t−t′) = e−γt
∫ t

0
dt′ eγt

′
L(t′),

where Θ(t) is the step function which equals unity for t ­ 0 and vanishes otherwise.

• The solution of the Langevin equation (28) finally equals

v(t) = v0e−γt + e−γt
∫ t

0
dt′ eγt

′
L(t′). (38)

• An important element of the Lagevin formalism is the averaging over statistical ensemble.
So, we consider not one but a whole ensemble of random walkers and we assume that the
averages over the ensemble satisfy the following equalities

〈L(t)〉 = 0, (39)

〈vi0Lj(t)〉 = 0, (40)

〈Li(t1)Lj(t2)〉 = Γδijδ(t1 − t2). (41)

The relation (39) tells us the average value of the Langevin force vanishes. According to the
second one (40) the initial velocity is independent of the Langevin force and consequently
the average of their product vanishes. The third relation (41) states that the Langevin forces
at different moments of time are independent from each other. The correlation, which is
characterized by the parameter Γ, occurs only when the forces are simultaneous.
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• Using the relations (39, 40, 41), we find that

〈v(t)〉 = v0e−γt. (42)

• Let us now compute the velocity correlation function that is 〈vi(t1) vj(t2)〉. Using the rela-
tions (39, 40, 41), one obtains

〈vi(t1) vj(t2)〉 = vi0v
j
0 e
−γ(t1+t2) + e−γ(t1+t2)

∫ t1

0
dt′
∫ t2

0
dt′′eγ(t

′+t′′)Γδijδ(t′ − t′′). (43)

• To take the integral over t′ and t′′ we must decide which time t1 or t2 is later. If t2 ­ t1, we
first integrate over t′′ and get rid of the delta function. Thus, we find

〈vi(t1) vj(t2)〉 =
(
vi0v

j
0 − δij

Γ
2γ

)
e−γ(t1+t2) + δij

Γ
2γ
e−γ(t2−t1). (44)

For t1 ­ t2, we have

〈vi(t1) vj(t2)〉 =
(
vi0v

j
0 − δij

Γ
2γ

)
e−γ(t1+t2) + δij

Γ
2γ
e−γ(t1−t2). (45)

• For any t1 and t2 the correlation function can be written as

〈vi(t1) vj(t2)〉 =
(
vi0v

j
0 − δij

Γ
2γ

)
e−γ(t1+t2) + δij

Γ
2γ
e−γ|t1−t2|. (46)

• The formula (46) tells us, in particular, that

〈v2(t)〉 =
(
v20 −

3Γ
2γ

)
e−2γt +

3Γ
2γ
. (47)

Therefore, after the time t � γ−1 the average value of the velocity square reaches its
equilibrium value equal

lim
t→∞
〈v2(t)〉 =

3Γ
2γ
. (48)

• If the liquid, where the Brownian walker is immersed, has the temperature T , the equili-
brium energy equals

m〈v2(t)〉
2

=
3
2
kBT. (49)

• Comparing the formulas (48) and (49) we find the relation among Γ and γ as

Γ =
2kBTγ
m

. (50)

This is a special case of the fluctuation-dissipation relations which connect the quantities
which control a rate of dissipation and equilibration of the system under study, in our
case this is the friction coefficient, and the quantities which characterize fluctuations in the
system which is Γ in case of the Brownian motion.

• Let us note that when v20 = 3kBT/m, the correlation becomes particularly simple

〈vi(t1) vj(t2)〉 = δij
kBT

m
e−γ|t1−t2|. (51)
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• If the velocity of the Brownian walker is known, its trajectory is

r(t) =
∫ t

0
dt′ v(t′), (52)

where we have chosen r(0) = 0.

• The average square of the walker’s displacement equals

〈r2(t)〉 =
∫ t

0
dt′
∫ t

0
dt′′ 〈v(t′) · v(t′′)〉. (53)

Using the correlation function (51), Eq. (53) gives

〈r2(t)〉 =
3kBT
m

∫ t

0
dt′
∫ t

0
dt′′ e−γ|t

′−t′′| (54)

=
3kBT
m

∫ t

0
dt′
( ∫ t′

0
dt′′ e−γ(t

′−t′′) +
∫ t

t′
dt′′ e−γ(t

′′−t′)
)

=
6kBT
mγ

(
t+

e−γt − 1
γ

)
.

• For times which are so long that t� γ−1, we find

〈r2(t)〉 =
6kBT
mγ

t. (55)

• Comparing the results (26) and (55), one expresses the diffusion constant D through the
friction coefficient γ as

D =
kBT

mγ
, (56)

which is another fluctuation-dissipation relation known as the Einstein relation.

T H E E N D


