
Lecture II Statistical Mechanics 1

Gibbs classical statistical mechanics I

Introductory remarks

� Since matter is built of atoms, a description of macroscopic systems should be derived from
a mechanics of atoms.

� The number of atoms in a macroscopic system is of order of the Avogadro number NA ≈
6 · 1023. It greatly complicates and simplifies the problem at the same time.

� A macroscopic description of a gas should be obtained through characteristics of individual
atoms averaged over microscopically long interval of time τ .

� If r(t) ≡ {r1(t), r2(t), . . . rN(t)} and p(t) ≡ {p1(t),p2(t), . . .pN(t)} are positions and mo-
menta of all atoms of a gas, the aim of statistical mechanics is to get

〈A(t)〉 ≡ 1

τ

∫ t+τ

t

dt′A
(
r(t′),p(t′)

)
, (1)

where A
(
r(t),p(t)

)
is a gas characteristics.

� The ergodic hypothesis: all accessible microstates of a given system are equiprobable over
a long period of time. Consequently, the average of A over a long time equals the average
over ensemble of microscopic states of a system

1

τ

∫ t+τ

t

dt′A
(
r(t′),p(t′)

)
=

∫
d3Nr d3Np

(2π~)3N
ρ(r,p)A(r,p)∫

d3Nr d3Np
(2π~)3N

ρ(r,p)
, (2)

where d3Nr ≡ d3r1d
3r2 . . . d

3rN , d3Np
(2π~)3N

≡ d3p1
(2π~)3

d3p2
(2π~)3

. . . d
3pN

(2π~)3
; (r,p) is a microscopic state

of the system of a given, say, energy and volume; ρ(r,p) is a density of states. The Planck

constant ~ ≡ h
2π

is introduced to keep the phase-space element d3r d3p
(2π~)3

dimensionless.

� The ergodic hypothesis is a pillar of the statistical mechanics formulated by Josiah Willard
Gibbs (1839 - 1903) around 1875.

Microcanonical ensemble

� Microcanonical ensemble is a set of microscopic states of an isolated system. The states are
uniformly distributed in a phase space that is ρ(r,p) = const.. The actual value is meaning-
less, see Eq. (2), so we choose ρ(r,p) = 1. This is the postulate of equal a priori probabilities.

� The term ‘probability’ is somewhat misleading as we deal here with classical deterministic
system.

� The postulate of equal a priori probabilities should not be confused with the Liouville
theorem.

� The phase-space (dimensionless) volume:

ΓN(U, V ) ≡
∫
U≤H≤U+δU

d3Nr
d3Np

(2π~)3N
, (3)

where H(r,p) is the system Hamilton function.
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� ΓN(U, V ) can be written as

ΓN(U, V ) =

∫
exp

[
−(U −H)2

2(δU)2

]
d3Nr

d3Np

(2π~)3N
. (4)

� Since
1√

2π δU
exp

[
−(U −H)2

2(δU)2

]
δU→0→ δ(U −H), (5)

we have

ΓN(U, V ) ≡ δU

∫
d3Nr

d3Np

(2π~)3N
δ
(
U −H(r,p)

)
. (6)

The extra factor 1/
√

2π is ignored.

� The relation to thermodynamics is established through the relation

S(U, V ) ≡ kB ln ΓN(U, V ), (7)

where kB = 1.38 · 10−23 J
K

is the Boltzmann constant. [S] = J
K

.

� Below I show that the entropy (7) is like the entropy in thermodynamics that it is extensive
and consistent with the thermodynamical identity

1

T
=
(∂S
∂U

)
V
, (8)

which follows from dS = dQ/T = (dU + pdV )/T .

� To show that the entropy (7) is extensive I divide the system into two subsystems

N = Na +Nb, V = Va + Vb, H = Ha +Hb. (9)

Then,

ΓN(U, V ) =
1

δU

∫ U

0

dUa ΓNa(Ua, Va) ΓNb
(U − Ua, Vb). (10)

Substituting ΓN(U, V ) of the form (6) into Eq. (10), one gets Eq. (6) after taking the integral
over Ua.

� Let Ua = Ūa is the energy of the subsystem a when the integrand is maximal. Then, we
easily find the upper and the lower estimates of the integral (10) as

ΓNa(Ūa, Va) ΓNb
(Ūb, Vb) ≤ ΓN(U, V ) ≤ U

δU
ΓNa(Ūa, Va) ΓNb

(Ūb, Vb), (11)

where Ūb ≡ U − Ūa. Taking the logarithm of the equalities (11), one finds

Sa(Ūa, Va) + Sb(Ūb, Vb) ≤ S(U, V ) ≤ Sa(Ūa, Va) + Sb(Ūb, Vb) + kB ln
U

δU
. (12)

One observes that U/δU ∼ N and consequently, the the difference of the upper and lower
estimates is of the order kB lnN while S(U, V ) ≡ kB ln ΓN(U, V ) ∼ kBN because it is
6N−dimensional volume (it will be explicitly shown in case of ideal gas). Since N � lnN
for N � 1, we get the approximate equality

S(U, V ) = Sa(Ūa, Va) + Sb(Ūb, Vb), (13)

which shows an extensive character of the entropy defined by Eq. (7).



Lecture II Statistical Mechanics 3

Figure 1: Boltzmann’s grave in the Zentralfriedhof, Vienna

� Once Ua = Ūa is the energy of the subsystem a when the integrand (10) is maximal, we
have

∂

∂Ua
ΓNa(Ua, Va) ΓNb

(U − Ua, Vb)
∣∣∣∣
Ua=Ūa

= 0. (14)

Computing the derivative, the condition (14) reads

1

ΓNa(Ūa, Va)

∂ΓNa(Ūa, Va)

∂Ūa
=

1

ΓNb
(Ūb, Vb)

∂ΓNb
(Ūb, Vb)

∂Ūb
, (15)

or
∂S(Ūa, Va)

∂Ūa
=
∂S(Ūb, Vb)

∂Ūb
, (16)

which according to the identity (8) gives Ta = Tb. As expected, the two subsystems are in
a mutual equilibrium if they have the same temperature.
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Ideal gas

� Energy of ideal gas is by definition dominated by the kinetic energy and

H =
N∑
i=1

p2
i

2m
. (17)

� Substituting the Hamilton function (17) into the formula (6), one gets

ΓN(U, V ) = δUV N

∫
d3p1

(2π~)3

d3p2

(2π~)3
. . .

d3pN
(2π~)3

δ
(
U −

N∑
i=1

p2
i

2m

)
, (18)

where the trivial integrations over particles’ positions are performed. Each integration
provides the factor V .

� To get rid of the Dirac’s delta we perform the Laplace transform with respect of U

ΓN(β, V ) =

∫ ∞
0

dU e−βUΓN(U, V ), (19)

which gives

ΓN(β, V ) = δUV N

∫
d3p1

(2π~)3

d3p2

(2π~)3
. . .

d3pN
(2π~)3

exp
(
− β

N∑
i=1

p2
i

2m

)
. (20)

The momentum integrals factorize

ΓN(β, V ) = δU V N
[ ∫ ∞
−∞

dpx
2π~

exp
(
− β

2m
p2
x

)]3N

, (21)

and are easily computed as

ΓN(β, V ) = δU V N
[ m

2πβ~2

] 3N
2
, (22)

using ∫ ∞
−∞

dx e−a x
2

=

√
π

a
. (23)

� To perform the inverse Laplace transform I use the formula∫ ∞
0

dU e−βUUν =
Γ(ν + 1)

βν+1
, (24)

where 0 ≤ ν ∈ R and Γ(x) is the Gamma function. For integer arguments Γ(n) = (n− 1)!.
Using the formula (24) with ν = 3N

2
− 1, one gets

ΓN(U, V ) = δU V N
[ m

2π~2

] 3N
2 U

3N
2
−1

Γ
(

3N
2

) . (25)

� With the rough estimate Γ(x) ≈ xx for x� 1, we find

ΓN(U, V ) =
δU

U

[
V
( m

3π~2

U

N

)3/2]N
, (26)
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and

S(U, V ) = NkB ln
[
V
( m

3π~2

U

N

)3/2]
, (27)

where I neglected the term ln δU
U

which is of the order kB lnN . The argument of the
logarithm function is dimensionless as it should.

� Using the relation (8), one finds
1

T
=

3NkB
2U

, (28)

which gives the famous formula

U =
3

2
NkBT. (29)

� The ideal-gas pressure is found from the relation

p ≡ T
( ∂S
∂V

)
U
, (30)

which follows from dS = dQ/T = (dU + pdV )/T . The relation provides the well-known
equation of state

pV = NkBT. (31)

Gibbs paradox

� Let us perform a thought experiment. We divide the gas system into two parts

N = N1 +N2, V = V1 + V2, U = U1 + U2, (32)

such that
N

V
=
N1

V1

=
N2

V2

,
U

N
=
U1

N1

=
U2

N2

. (33)

� One expects that
S(U, V ) = S1(U1, V1) + S2(U2, V2), (34)

but using (27), the equality (34) does not hold because

N lnV 6= N1 lnV1 +N2 lnV2. (35)

(Check it choosing N1 = N2 = N/2 and V1 = V2 = V/2.)

� The problem we encountered is known as the Gibbs paradox – unexpected entropy growth
due to a gas mixing.

� The solution is to divide the phase-space volume (3) or (6) by N ! to avoid taking into
account repeatedly the microstates which merely differ by interchange of pairs of identi-
cal particles. Gibbs guessed the principle of indistinguishability of identical particles long
before the quantum mechanics was born.

� With the extra factor 1/N ! approximated as N−N in Eq. (6), one gets instead of the formula
(27) the expression

S(U, V ) = NkB ln
[V
N

( m

3π~2

U

N

)3/2]
, (36)

which satisfies the equality (34), if the conditions (32, 33) hold. The results on the energy
and pressure remain unchanged.

� There is a subtle issue how to prove Eq. (13) with ΓN divided by N !.
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Canonical ensemble

The microcanonical ensemble is applicable to isolated systems. When a system is in a thermal
contact with a thermostat and consequently its temperature but not energy is fixed, the canonical
ensemble is more relevant.

� We derive the density of microstates in the canonical ensemble of considering a small sub-
system (labeled with the index 1) of an isolated system. Then, the particle numbers and
Hamilton function are

N = N1 +N2, H = H1 +H2, (37)

and
N1 � N2, H1 � H2. (38)

� The observation of crucial importance is

ρ(r1,p1) ∼ ΓN2(U − U1). (39)

Since
S(U, V ) ≡ kB ln ΓN(U, V ), (40)

the relation (39) reads

ρ(r1,p1) ∼ exp
[ 1

kB
S2(U − U1, V2)

]
. (41)

Because U � U1, we expand S2(U − U1, V2) in the Taylor series

S2(U − U1, V2) = S2(U, V2)− ∂S2(U, V2)

∂U
U1, (42)

which gives

ρ(r1,p1) ∼ exp
[ 1

kB
S(U, V )

]
exp

[
− U1

kBT

]
, (43)

due to the identity
1

T
=
(∂S
∂U

)
V
. (44)

� The density of microstates in the canonical ensemble is chosen as

ρ(r,p) = exp
[
− H(r,p)

kBT

]
, (45)

where the indices 1 and 2 are suppressed.

� The partition function is defined as

QN(T, V ) ≡ 1

N !

∫
d3r

d3p

(2π~)3
exp

[
− H(r,p)

kBT

]
, (46)

where d3r ≡ d3r1d
3r2 . . . d

3rN , d3p
(2π~)3

≡ d3p1
(2π~)3

d3p2
(2π~)3

. . . d
3pN

(2π~)3
. The factor 1

N !
is introduced

following the Gibbs recipe. Up the the factor δU , the partition function is the Laplace
transform of the phase-space volume ΓN(U, V ).
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� The relation with thermodynamics is established by means of the formulas

U(T, V ) ≡ 〈H〉 ≡ 1

QN(V, T )

1

N !

∫
d3r

d3p

(2π~)3
H(r,p) exp

[
− H(r,p)

kBT

]
, (47)

F (T, V ) ≡ −kBT lnQN(T, V ). (48)

The first formula is evident. In case of the second one we show that (48) is consistent with
the thermodynamical identity

F = U − TS. (49)

Observing that Eq. (47) can be written as

U ≡ 〈H〉 = − ∂

∂β
lnQN , (50)

where β ≡ 1
kBT

, we get

U = −T 2
( ∂

∂T

(F
T

))
V

= F − T
(∂F
∂T

)
V
, (51)

where Eq. (48) has been used. Due to the identity

S = −
(∂F
∂T

)
V
, (52)

the equality (51) becomes equivalent to the relation (49).

Ideal gas

� The partition function is easily computed as

QN(T, V ) =
V N

N !

[ ∫ ∞
−∞

dpx
2π~

exp
(
− p2

x

2mkBT

)]3N

=
(V
N

)N(mkBT
2π~2

) 3N
2
, (53)

where N ! ≈ NN .

� According to Eq. (48), the free energy equals

F (T, V ) = −NkBT ln
[V
N

(mkBT
2π~2

) 3
2
]
. (54)

� By means of the relation (51), one finds

U =
3

2
NkBT. (55)

� The pressure is found via

p = −
(∂F
∂V

)
T
, (56)

and
pV = NkBT. (57)



Lecture II Statistical Mechanics 8

� The entropy provided by Eq. (52) is

S(T, V ) = NkB ln
[V
N

(mkBT
2π~2

) 3
2
]

+
3

2
NkB. (58)

Energy fluctuations

� While the system’s energy is fixed in the microcanonical ensemble, the energy can fluctuate
in the canonical ensemble but the temperature is fixed. How big are the energy fluctuations?
When the two ensembles are equivalent?

� The energy fluctuation δU is defined as

(δU)2 ≡ 〈(H− 〈H〉)2〉 = 〈H2〉 − 〈H〉2. (59)

� We already know that

〈H〉 = − ∂

∂β
lnQN = U, (60)

where β ≡ 1
kBT

, and one observes that

〈H2〉 =
1

QN

∂2QN

∂β2
, (61)

which gives

〈H2〉 =
∂2

∂β2
lnQN +

( ∂

∂β
lnQN

)2

. (62)

Since
∂2

∂β2
lnQN = −∂U

∂β
= kBT

2
(∂U
∂T

)
V

= kBT
2CV , (63)

where CV is the heat capacity at fixed volume we finally get

〈H2〉 − 〈H〉2 = kBT
2CV . (64)

� Let us estimate the quantities which enter Eq. (64). One sees that 〈H2〉 ∼ N2 and 〈H〉2 ∼
N2 but CV ∼ N . Consequently δU ∼

√
N . Since N2 � N �

√
N for N � 1, the energy

fluctuation is much smaller than the energy itself, as long as CV is finite. The canonical
ensemble is then equivalent to the microcanonical one.

� The heat capacity is sometimes infinite as in second order phase transitions. The two
ensembles are then no longer equivalent to each other.


