Lecture V Statistical Mechanics 1

Gibbs quantum statistical mechanics 1

Behavior of atoms and molecules is driven by quantum not classical mechanics. Therefore, a
system of many atoms or molecules should be described in terms of quantum mechanics.

Introductory remarks

e A classical description of gases breaks down when a typical de Broglie wavelength of gas
constituent Ag is no longer much smaller than a typical inter-constituent distance d. The
latter quantity is related to the gas density as d = p~ /% and the de Broglie wavelength
estimated for an ideal gas is
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Therefore, the gas can be treated as classical if
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otherwise quantum effects are important.

e Measurable quantities — observables — are represented in quantum mechanics by hermitian
operators which act in space of states. A goal of quantum statistical mechanics is to compute
expectation values of the observables of many-body systems. Having an observable O we
are interested in

(O) = (¢, 09), (3)

where 1) is the wave function of N particles and (v1, 1) denotes the scalar product of wave
functions v; and s.

e Since the system’s hamiltonian H is assumed to be time independent the wave function
can be written as
n
where ,, are the energy eigenfunctions

FISOTL = LnPn, (5)

and C), are complex coefficients which depend on time via e Using the expansion (4),
the expectation value (3) equals

<@> = Z CrCrn(on, @me) (6)

e As we already know, statistical mechanics deals with characteristics averaged over micro-
scopically long interval of time 7

_ 1 t+1 A 1 R t+T1 Do R o
(0) = ;/ dt'{O) = . Z(@nv O@?ﬂ)/ dt' C,Cr, = Z(Sﬁna Opm) CiCr (7)
t t

n,m n,m



Lecture V Statistical Mechanics 2

There is adopted the postulate of random phases

CxCp =0, if n#m. (8)
Thermal environment cancels out an effect of interference of different quantum states.

Due to the postulate of random phases the expectation value (7) equals

<@> = ZW(@M @@n) (9)

Quantum statistical ensemble is defined via the set of ¢,, with the coefficients |C,,|?.

Microcanonical ensemble

Microcanonical ensemble is a set of states of isolated system under consideration and all
states with the energy E, from the interval [U, U + §U] are equally probable (|C,|* = 1).

I (U, V) is the number of states ,, which obey U < E,, < U + 0U.

The entropy is defined as in the classical case that is
S(U,V)=kgInTn(U,V). (10)

At T = 0 the system is in its ground state and I'y (U, V') equals the ground-state degeneracy
N. Therefore,
S(T=0,V)=kglnN. (11)

According to the third principle of thermodynamics, the entropy vanishes at T' = 0 which
means S(T = 0,V) < kgN. To fulfill the principle N/ cannot be bigger than N* with
k<< N.

Canonical ensemble

Canonical ensemble is a set of states of a system which is in thermal contact with a heat
bath and

G2 ~ e P, (12)
where = kBLT
Partition functions is defined as
Qn(T, V) =) e (13)
The relation with thermodynamics is established by means of the relations
1
UT, V)= ———Y E,e P, 14
V)= vy 2= (14
F(T,V)=—-kgTInQn(T, V). (15)

where F' is the free energy, FF =U —T'S.
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Grand canonical ensemble

e Grand canonical ensemble is a set of states of a system which exchanges heat and particles
with its enviroment and

G2 ~ e PEn=N), (16)
where p is the chemical potential.
e The grand partition function is
E(T,V,p) = 2NQu(T, V), (17)
N=0

where z = ePH,

e The relation with thermodynamics is established by means of the relations

0 . -
U=~ ma(TV;2), (18)
(N) = 31 =(T,V,z) (19)
=z5-IE(T,V,2),
pV =kgTIn=Z(T,V,2). (20)

Einstein’s model of crystal
The crystal is treated as a system N independent quantum harmonic oscillators.

e The energy of a single oscillator is E,, = hw(n + %), where n =0, 1, 2, ....
e The energy of N oscillators is E,,, + E,, + ... E,, and

CEny
Qn(T, V) = Z Z Z o~ B(Eny+Eny+.Eny) _ Z o~BBn; Z o~BEny ... Z ¢~ BEny
n1=0n2=0 ny=0 n1=0 no=0 ny=0
o0 N o0 N Bhw N
_ —5hw(n+%)> _ ( Bl —Bruun> _ (L) 21
where the formula )
¢ = —— 22
; > (22)
is used.
e The crystal’s energy is
0 hw hw
— — L QT V) = N(— —) 2
U=—gghen(lnV) o1 ) (23)

where the second term corresponds to the so-called zero-point fluctuations.
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e The heat capacity equals

2_Bhw
Cv = (%)V - kB]\;2 ((;Chijf 1)2’ (24)
which can be approximated as
Nkg for kgT > hw,
v { NP o= for  kpT < hw. 29)

The heat capacity as a function of temperature is shown in Fig. 1.

e When 7" — 0 the heat capacity vanishes in agreement with the third principle of thermo-
dynamics.

e If the oscillations occur in three dimensions, N should be replaced by 3N.
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Figure 1: Heat capacity as a function of temperature



