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Gibbs quantum statistical mechanics I
Behavior of atoms and molecules is driven by quantum not classical mechanics. Therefore, a

system of many atoms or molecules should be described in terms of quantum mechanics.

Introductory remarks

• A classical description of gases breaks down when a typical de Broglie wavelength of gas
constituent λB is no longer much smaller than a typical inter-constituent distance d. The
latter quantity is related to the gas density as d = ρ−1/3 and the de Broglie wavelength
estimated for an ideal gas is

λB =
h

p
=

2π~√
2mE

=
2π~√

3mkBT
. (1)

Therefore, the gas can be treated as classical if

ρ
( 4π2~2

3mkBT

)3/2
� 1, (2)

otherwise quantum effects are important.

• Measurable quantities – observables – are represented in quantum mechanics by hermitian
operators which act in space of states. A goal of quantum statistical mechanics is to compute
expectation values of the observables of many-body systems. Having an observable Ô we
are interested in

〈Ô〉 ≡ (ψ, Ôψ), (3)

where ψ is the wave function of N particles and (ψ1, ψ2) denotes the scalar product of wave
functions ψ1 and ψ2.

• Since the system’s hamiltonian Ĥ is assumed to be time independent the wave function ψ
can be written as

ψ =
∑
n

Cnϕn. (4)

where ϕn are the energy eigenfunctions

Ĥϕn = Enϕn, (5)

and Cn are complex coefficients which depend on time via ei
Ent
~ . Using the expansion (4),

the expectation value (3) equals

〈Ô〉 =
∑
n,m

C∗nCm(ϕn, Ôϕm). (6)

• As we already know, statistical mechanics deals with characteristics averaged over micro-
scopically long interval of time τ

〈Ô〉 ≡ 1

τ

∫ t+τ

t

dt′〈Ô〉 =
1

τ

∑
n,m

(ϕn, Ôϕm)

∫ t+τ

t

dt′C∗nCm =
∑
n,m

(ϕn, Ôϕm)C∗nCm. (7)
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• There is adopted the postulate of random phases

C∗nCm = 0, if n 6= m. (8)

Thermal environment cancels out an effect of interference of different quantum states.

• Due to the postulate of random phases the expectation value (7) equals

〈Ô〉 =
∑
n

|Cn|2(ϕn, Ôϕn). (9)

• Quantum statistical ensemble is defined via the set of ϕn with the coefficients |Cn|2.

Microcanonical ensemble

• Microcanonical ensemble is a set of states of isolated system under consideration and all
states with the energy En from the interval [U,U + δU ] are equally probable (|Cn|2 = 1).

• ΓN(U, V ) is the number of states ϕn which obey U ≤ En ≤ U + δU .

• The entropy is defined as in the classical case that is

S(U, V ) ≡ kB ln ΓN(U, V ). (10)

• At T = 0 the system is in its ground state and ΓN(U, V ) equals the ground-state degeneracy
N . Therefore,

S(T = 0, V ) ≡ kB lnN . (11)

• According to the third principle of thermodynamics, the entropy vanishes at T = 0 which
means S(T = 0, V ) � kBN . To fulfill the principle N cannot be bigger than Nk with
k � N .

Canonical ensemble

• Canonical ensemble is a set of states of a system which is in thermal contact with a heat
bath and

|Cn|2 ∼ e−βEn , (12)

where β ≡ 1
kBT

.

• Partition functions is defined as

QN(T, V ) ≡
∑
n

e−βEn . (13)

• The relation with thermodynamics is established by means of the relations

U(T, V ) ≡ 1

QN(T, V )

∑
n

Ene
−βEn , (14)

F (T, V ) ≡ −kBT lnQN(T, V ). (15)

where F is the free energy, F = U − TS.
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Grand canonical ensemble

• Grand canonical ensemble is a set of states of a system which exchanges heat and particles
with its enviroment and

|Cn|2 ∼ e−β(En−µN), (16)

where µ is the chemical potential.

• The grand partition function is

Ξ(T, V, µ) =
∞∑
N=0

zNQN(T, V ), (17)

where z ≡ eβµ.

• The relation with thermodynamics is established by means of the relations

U = − ∂

∂β
ln Ξ(T, V, z), (18)

〈N〉 = z
∂

∂z
ln Ξ(T, V, z), (19)

pV = kBT ln Ξ(T, V, z). (20)

Einstein’s model of crystal

The crystal is treated as a system N independent quantum harmonic oscillators.

• The energy of a single oscillator is En = ~ω
(
n+ 1

2

)
, where n = 0, 1, 2, . . . .

• The energy of N oscillators is En1 + En2 + . . . EnN and

QN(T, V ) =
∞∑

n1=0

∞∑
n2=0

· · ·
∞∑

nN=0

e−β(En1+En2+...EnN ) =
∞∑

n1=0

e−βEn1
∞∑

n2=0

e−βEn2 · · ·
∞∑

nN=0

e−βEnN

=
( ∞∑
n=0

e−β~ω(n+
1
2
)
)N

=
(
e−

β~ω
2

∞∑
n=0

e−β~ωn
)N

=
( e

β~ω
2

eβ~ω − 1

)N
, (21)

where the formula ∑
n=0

qn =
1

1− q
(22)

is used.

• The crystal’s energy is

U = − ∂

∂β
lnQN(T, V ) = N

( ~ω
eβ~ω − 1

+
~ω
2

)
, (23)

where the second term corresponds to the so-called zero-point fluctuations.
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• The heat capacity equals

CV =
(∂U
∂T

)
V

=
N

kBT 2

(~ω)2eβ~ω

(eβ~ω − 1)2
, (24)

which can be approximated as

CV ≈

{
NkB for kBT � ~ω,

N(~ω)2
kBT 2 e−β~ω for kBT � ~ω.

(25)

The heat capacity as a function of temperature is shown in Fig. 1.

• When T → 0 the heat capacity vanishes in agreement with the third principle of thermo-
dynamics.

• If the oscillations occur in three dimensions, N should be replaced by 3N .

Figure 1: Heat capacity as a function of temperature


