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Gibbs quantum statistical mechanics II
– ideal gases

An ideal gas is treated as a system of noninteracting particles confined in a potential box
shown in Fig. 1.

Figure 1: One-dimensional potential box

Particle in a box

� Since the wave function vanishes in the regions of infinite potential, the wave function also
vanishes (due to the continuity condition) at x = −a and x = a, see Fig. 1. Consequently,
there are allowed only such wavelengths in the box that

nx
λ

2
= L, nx = 1, 2, . . . (1)

where L ≡ 2a, see Fig. 2

Figure 2: De Broglie waves in a box

� Keeping in mind that

λ =
h

px
=

2π~
px

, (2)

the x−component of particle’s momentum equals

px =
π~
L
nx, nx = 0, 1, 2, . . . (3)
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� As we deal with a three-dimensional box, the momentum is

p = (px, py, pz) =
π~
L

(nx, ny, nz), nx, ny, nz = 0, 1, 2, . . . (4)

and the particle’s energy equals

εp =
p2

2m
=

π2~2

2mL2
(n2

x + n2
y + n2

z). (5)

� Although the reasoning, which is leads to the energy levels (5), is attractively simple and
the final result agrees with that one obtained solving the Schrödinger equation, the formulas
(2, 3, 4) should be treated with a reservation, as p given by Eq. (4) is not, strictly speaking,
a momentum of a particle in a box1.

Fermions & bosons

� In nature all particles are either fermions or bosons.

� Fermions have half odd integer spin (1
2
~, 3

2
~, 5

2
~, . . . ) and obey the Pauli exclusion principle.

Consequently, fermions follow the Fermi-Dirac statistics.

� Bosons have integer spin (0, ~, 2~, . . . ) and do not obey the Pauli principle. Consequently,
bosons follow the Bose-Einstein statistics.

� The energy of a system of non-interacting particles is

U = εp1np1 + εp2np2 + . . . , (6)

where npi
is the number of particles with momentum pi and

npi
=

{
0, 1, 2 . . . for bosons,

0, 1 for fermions.
(7)

� If a fermion has the number Ndof of internal degrees of freedom, for example due to spin,
the maximal number of fermions with the momentum pi is not 1 but Ndof .

Partition function

� The partition function equals

QN(T, V ) ≡
∑
n

e−βEn , (8)

where the sum is over the energy eigenstates.

� Using Eq. (6), the partition function of ideal gas of N particles is

QN(T, V ) =
∑
np1

∑
np2

. . .︸ ︷︷ ︸
N=np1+np2+...

e−β(εp1np1+εp2np2+... ) (9)

=
∑
np1

∑
np2

. . . e−β(εp1np1+εp2np2+... )δ
np1+np2+...

N .

The sum should be performed in such a way that np1 + np2 + · · · = N which greatly
complicates the computational problem.

1I am grateful to Andrea Bevilacqua for calling my attention to the problem.
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Grand partition function

� The grand partition function Ξ equals

Ξ(T, V, µ) =
∞∑
N=0

zNQN(T, V ), (10)

where z ≡ eβµ.

� Using the expression (9), the grand partition function becomes

Ξ(T, V, µ) =
∞∑
N=0

∑
np1

∑
np2

. . . e−β
(
(εp1−µ)np1+(εp2−µ)np2+...

)
δ
np1+np2+...

N

=
∑
np1

∑
np2

. . . e−β
(
(εp1−µ)np1+(εp2−µ)np2+...

)
. (11)

The sum over N effectively removes the constraint np1 + np2 + · · · = N.

� The grand partition function factorizes as

Ξ(T, V, µ) =
∑
np1

e−β(εp1−µ)np1

∑
np2

e−β(εp2−µ)np2 . . . . (12)

� In case of fermions npi
= 0, 1 and∑

npi

e−β(εpi−µ)npi = 1 + e−β(εpi−µ). (13)

� In case of bosons, npi
= 0, 1, 2, . . . and∑

npi

e−β(εpi−µ)npi =
1

1− e−β(εpi−µ)
. (14)

� The results (13, 14) can be written as∑
npi

e−β(εpi−µ)npi = (1± e−β(εpi−µ))±1, (15)

where the upper sign is for fermions and lower one for bosons.

� Substituting the formula (15) into Eq. (12), the grand partition function is

Ξ(T, V, µ) =
∏
i

(1± e−β(εpi−µ))±1 = exp ln
[∏

i

(1± e−β(εpi−µ))±1
]

= exp
[
±
∑
i

ln(1± e−β(εpi−µ))
]
. (16)

� Particle’s momentum in a box is quantized but the distance between neighbor levels, which
is

∆px =
π~
L
, (17)

tends to zero when L→∞. Therefore, the sum over momenta in Eq. (16) can be replaced
by the integral over momentum when L→∞.
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� So, we write∑
i

f(pi) =
1

∆px∆py∆pz

∑
i

∆px∆py∆pzf(pi) =
( L
π~

)3∑
i

∆px∆py∆pzf(pi), (18)

where the formula (17) is used. With V = L3 the sum is∑
i

f(pi) = 23V
∑
i

∆px
2π~

∆py
2π~

∆pz
2π~

f(pi). (19)

� Now we change the sum into the integral as∑
i

∆px
2π~

∆py
2π~

∆pz
2π~

f(pi)→
∫

d3p

(2π~)3
f(p) (20)

and we get ∑
i

f(pi) = V

∫
d3p

(2π~)3
f(p), (21)

where the factor 23 is ignored or included in V .

� Let us note how differently the volume enters into the classical and quantum formulations
of statistical mechanics. In the classical case the volume results from the integration over
particle’s possible positions. In the quantum case the volume shows up via the momentum
quantization condition. There appears a subtle issue about a shape of the box. One
shows that the shape does not matter in the thermodynamical limit when V → ∞ and
N/V = const.

� Substituting the result (21) into Eq. (16), the grand partition function is

Ξ(T, V, µ) = exp
[
± V

∫
d3p

(2π~)3
ln(1± e−β(εp−µ))

]
(22)

or

Ξ(T, V, z) = exp
[
± V

∫
d3p

(2π~)3
ln(1± ze−βεp)

]
. (23)

Thermodynamical quantities

� The internal gas energy, average number of particles and pressure are given as

U = − ∂

∂β
ln Ξ(T, V, z) = V

∫
d3p

(2π~)3
εp

z−1eβεp ± 1
, (24)

〈N〉 = z
∂

∂z
ln Ξ(T, V, z) = V

∫
d3p

(2π~)3
1

z−1eβεp ± 1
, (25)

p =
kBT

V
ln Ξ(T, V, z) = ±kBT

∫
d3p

(2π~)3
ln(1± ze−βεp), (26)

where the upper signs are for fermions and the lower ones for bosons.

� How the internal degrees of freedom of gas constituents change the formulas?
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� When we have, say, gas of electrons of spin 1/2, there are two internal degrees of freedom:
spin up and spin down. The gas can be treated as a mixture of the two types of particles.
Since the partition function of the mixture is a product of partition functions of each com-
ponent, and the thermodynamic functions are determined by a logarithm of the partition
function, there appear extra factors of 2 in the formulas. The reasoning can be extended
to any number of internal degrees of freedom and for bosons as well. Therefore, Eqs. (24,
25, 26) can be rewritten as

U = − ∂

∂β
ln Ξ(T, V, z) = gV

∫
d3p

(2π~)3
εp

z−1eβεp ± 1
, (27)

〈N〉 = z
∂

∂z
ln Ξ(T, V, z) = gV

∫
d3p

(2π~)3
1

z−1eβεp ± 1
, (28)

p =
kBT

V
ln Ξ(T, V, z) = ±gkBT

∫
d3p

(2π~)3
ln(1± ze−βεp), (29)

where g is the number of internal degrees of freedom of gas constituents.

� Since the integrands in Eq. (27, 28, 29) depend only on p ≡ |p|, the angular integrals are
trivial and one gets

U =
gV

4π2~3m

∫ ∞
0

dp p4

z−1eβεp ± 1
, (30)

〈N〉 =
gV

2π2~3

∫ ∞
0

dp p2

z−1eβεp ± 1
, (31)

p = ±gkBT
2π2~3

∫ ∞
0

dp p2 ln(1± ze−βεp), (32)

where εp = p2

2m
. (The particle momentum p should not be confused with the pressure p.)

� Performing the partial integration in the formula (32), we find

p = ±gkBT
2π2~3

∫ ∞
0

dp p2 ln(1± ze−βεp) (33)

= ±gkBT
2π2~3

[p3
3

ln(1± ze−βεp)
∣∣∣∞
0
−
∫ ∞
0

dp
p3

3

d

dp
ln(1± ze−βεp)

]
=

g

6π2~3m

∫ ∞
0

dp p4

z−1eβεp ± 1
=

2

3

U

V
,

which gives

pV =
2

3
U. (34)

So, once we have U , we immediately get p.

� Using the known formulas

pV = 〈N〉kBT, U =
3

2
〈N〉kBT. (35)

one checks that the relation (34) is valid for a classical ideal gas.
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� Using the dimensionless variable

x ≡ p√
2mkBT

, (36)

the formulas (30) and (31) can be written as

ε ≡ U

V
=

√
2g(mkBT )3/2

π2~3
kBT

∫ ∞
0

dx x4

z−1ex2 ± 1
, (37)

ρ ≡ 〈N〉
V

=

√
2g(mkBT )3/2

π2~3

∫ ∞
0

dx x2

z−1ex2 ± 1
. (38)

Classical limit

� Let us see whether the formulas (37, 38) reproduce the classical results (35) when

ρ
( ~2

mkBT

)3/2
� 1. (39)

� For this purpose we compute the integrals (37, 38) when z−1 � 1. Then, we can ignore ±1
in the integrand’s denominators and

ε =

√
2g(mkBT )3/2

π2~3
kBTz

∫ ∞
0

dx x4e−x
2

, (40)

ρ =

√
2g(mkBT )3/2

π2~3
z

∫ ∞
0

dx x2e−x
2

. (41)

Using the elementary integrals∫ ∞
0

dx x2e−x
2

=

√
π

4
,

∫ ∞
0

dx x4e−x
2

=
3
√
π

8
, (42)

one finds

ε =
3

2
g
(mkBT

2π~2
)3/2

z kBT, (43)

ρ = g
(mkBT

2π~2
)3/2

z. (44)

� Eq. (44) shows that the condition z−1 � 1 is equivalent to the classical limit (39).

� Substituting the fugacity z given by Eq. (44) into the formula (43), one finds the energy
density as

ε =
3

2
ρ kBT. (45)

� Due to the relation (34) one also finds the equation of state of classical ideal gas.
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Figure 3: Fermi-Dirac distribution as T → 0

Degenerated Fermi gas

We discuss here a gas of fermions at such high density or low temperature that the condition
of classicality (39) is badly violated. Such a gas is called degenerated.

� Let us consider the integrals

ρ = g

∫
d3p

(2π~)3
1

eβ(εp−µ) + 1
, (46)

ε = g

∫
d3p

(2π~)3
εp

eβ(εp−µ) + 1
, (47)

in the limit β →∞.

� One observes, see Fig. 3, that

1

eβ(εp−µ) + 1

β→∞−→ Θ(εF − εp), (48)

where εF ≡ µ(T=0) that is the chemical potential at zero temperature which is traditionally
called the Fermi energy. Due to the step function the states with εp ≤ εF are fully occupied
and those with εp > εF completely empty.

� Substituting the step function (48) into the formulas (46, 47), one easily obtains

ρ = g

∫
d3p

(2π~)3
Θ(εF − εp) =

g

2π2~3

∫ pF

0

dp p2 =
gp3F

6π2~3
, (49)

ε = g

∫
d3p

(2π~)3
εpΘ(εF − εp) =

g

4π2~3m

∫ pF

0

dp p4 =
gp5F

20π2~3m
=

3

5
ρ εF , (50)

where pF jest is the Fermi momentum related to the Fermi energy as εF =
p2F
2m

.

� Using Eq. (49), one expresses the Fermi momentum through the particle density as

pF = ~
(6π2ρ

g

)1/3
. (51)

� The energy density and pressure (the latter is found from the relation (34)), are

ε =
35/3π4/3

21/35

~2

g2/3m
ρ5/3, p =

1

5

(6π2

g

)2/3~2
m
ρ5/3. (52)
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� One sees that in contrast to the classical ideal gas, the energy density and pressure do not
vanish as T → 0. Due to the Pauli principle only g fermions have vanishing momenta while
the remaining ones are in motion and contribute the gas energy and pressure.

� The above formulas have been derived for T = 0 but according to Eq. (48) the results hold
under the condition eβεF � 1 which is equivalent to

kBT � εF . (53)

Using Eq. (51) the condition (53) becomes

kBT �
~2ρ2/3

m
. (54)

The gas is degenerated when its temperature is sufficiently low or its density sufficiently
high.

� Due to the condition (54), we often deal with a degenerated gas at temperatures which are
relatively high. The is the case of conduction electrons in metals.

� After nuclear fuel is burnt out a star can become a white dwarf which is supported by
the electron degeneracy pressure against the gravitational collapse. At extremely high
densities the Fermi momentum, according to Eq. (51), becomes not only relativistic but
ultra-relativistic (pF � m) and electrons can be treated as massless. Then, εp = |p|c
and one easily shows that the pressure grows with the density not as ρ5/3 but as ρ4/3.
Subrahmanyan Chandrasekhar (1910 - 1995) showed in 1930 that because of the equation-
of-state softening the white dwarfs heavier than 1.44 of solar mass, which is now known
as the Chandrasekhar limit, are not stable as the electron degeneracy pressure cannot
counteract the gravitational collapse. Chandrasekhar actually foresaw an existence of black
holes.

Bose-Einstein condensate

We are going to discuss a gas of bosons at very low temperatures when a surprising quantum
phenomenon shows up.

� Let us consider the density of bosons

ρ = g

∫
d3p

(2π~)3
1

eβ(εp−µ) − 1
. (55)

� Since the density of particles with any momentum is nonnegative, the denominator of the
integrand must be nonnegative as well. This means that the chemical potential µ cannot be
positive. One observes that the density (55) grows as µ→ 0, and consequently the density
is maximal for µ = 0. It equals

ρc = g

∫
d3p

(2π~)3
1

eβεp − 1
=

g

2π2~3

∫ ∞
0

dp p2

e
p2

2mkBT − 1
, (56)

where the trivial angular integral is performed.
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� Introducing the dimensionless variable

x ≡ p√
2mkBT

(57)

and using the formula ∫ ∞
0

dx x2

ex2 − 1
=

√
π

4
ζ(3/2), (58)

where ζ(z) is the zeta Riemann function (ζ(3/2) ≈ 2.612), one finds

ρc = g
(mkBT

2π~2
)3/2

ζ(3/2). (59)

� What happens when the density is bigger than ρc?

� To clarify the problem we must return to Eq. (16) where the sum over momenta was replaced
by the integral. The particle number is

〈N〉 = z
∂

∂z
ln Ξ(T, V, z) = −z ∂

∂z

∑
i

ln(1− ze−βεpi ) =
∑
i

ze−βεpi

1− ze−βεpi
. (60)

The term corresponding to p = 0 equals

〈N0〉 =
z

1− z
. (61)

When µ→ 0 or z → 1, the number of bosons with zero momentum becomes infinite.

� The change of sum into the integral is a legitimate operation if every term of the sum
provides an infinitesimally small contribution to the sum. The term 〈N0〉 instead can be as
large as 〈N〉. So, it requires a special treatment: when ρ > ρc the term must be included
in the density (55). The term represents the Bose-Einstein condensate.

� The Bose-Einstein condensation occurs when ρ > ρc or when T < Tc where the critical
temperature corresponds to the critical density

Tc =
2π~2

mkB

( ρ

gζ(3/2)

)2/3
. (62)

� In the presence of the condensate µ = 0 or z = 1.

� The number of particles with zero momentum is

〈N0〉
〈N〉

=

{
0, for ρ < ρc,

1− ρc
ρ

for ρ > ρc.
(63)

or

〈N0〉
〈N〉

=

{
0, gdy T > Tc,

1−
(
T
Tc

)3/2
gdy T < Tc.

(64)

The dependences (63, 64) are shown in Fig. 4.

� We note that the Bose-Einstein condensate does not occur in two- and one-dimensional
systems. In such a case, the factor p2 in the integrand (56) is replaced by p or 1, the
integral is divergent as µ→ 0 and all bosons have thermal distribution of momentum.
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Figure 4: Relative number of particles in the condensate as a function of density and temperature

� Let us compute the gas energy density when T < Tc. Since µ = 0 and particles with zero
momentum do not contribute to the system’s energy we have

ε = g

∫
d3p

(2π~)3
εp

eβεp − 1
=

g

4π2~3m

∫ ∞
0

dp p4

e
p2

2mkBT − 1
=
g(2mkBT )5/2

4π2~3m

∫ ∞
0

dx x4

ex2 − 1
. (65)

Using the formula ∫ ∞
0

dx x4

ex2 − 1
=

3
√
π

8
ζ(5/2), (66)

where ζ(5/2) ≈ 1.342, the energy density is found to be

ε =
3

2
kBT g

(mkBT
2π~2

)3/2
ζ(5/2). (67)

� The heat capacity is

CV ≡
(∂U
∂T

)
V

=
15

4
kB g

(mkBT
2π~2

)3/2
ζ(5/2)V (68)

and it vanishes as T → 0 in agreement with the third principle of thermodynamics.

� The liquid helium 4He, which becomes superfluid below Tc = 2.18 K, is often given as an
example of the Bose-Einstein condensate. In the liquid helium, however, the atoms cannot
be treated as noninteracting.

� In 1995 Eric Cornell and Carl Wieman managed to confine atoms of rubidium in a magnetic
trap and cool the system down to T = 1.7 · 10−7 K. The Bose-Einstein condensate was
observed through a measurement of velocity distribution of atoms. Wolfgang Ketterle
performed a similar experiment with atoms of sodium at the same time. In both cases
the densities were low that the atoms were almost noninteracting and the effect could be
assigned to the Bose-Einstein statistics. Cornell, Wieman and Ketterle were awarded the
Nobel prize in 2001.
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Gas of thermal photons

Historically the problem emerged as a black body radiation and its solution by Max Planck
(1858 - 1947) initiated the quantum physics in 1900. The term photon was coined by chemist
Gilbert N. Lewis only in 1926.

Figure 5: Model of black body radiation

� The photons almost do not interact with each other but do interact with walls of the
container. If there is a hole in the container, as shown in Fig. 5, one observes a photon
spectrum known as the black body radiation.

� A photon has zero mass and its energy as function of its momentum p is εp = |p|c where c
is the speed of light.

� Since photons do not carry any charge their number is not fixed. The photon chemical
potential vanishes as the free energy is independent of the photon number.

� The energy density equals

ε = 2

∫
d3p

(2π~)3
εp

eβεp − 1
=

c

π2~3

∫ ∞
0

dp p3

eβcp − 1
=

(kBT )4

π2~3c3

∫ ∞
0

dx x3

ex − 1
, (69)

where two photon spin states (g = 2) are taken into account.

� Using the integral formula ∫ ∞
0

dx x3

ex − 1
=
π4

15
, (70)

the energy density is

ε =
π2

15~3c3
k4BT

4, (71)

which is known as the Stefana-Boltzmann law.

� The heat capacity equals

CV ≡
(∂U
∂T

)
V

=
4π2

15~3c3
V k4BT

3 (72)

and in agreement with the third principle of thermodynamics it vanishes as T → 0.

� It is worth noticing that CV shows unlimited growth as T → ∞. It reflects the fact that
the average number of photons and the number of degrees of freedom grow to infinity as
T →∞.
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� The photon pressure found from Eq. (32) equals

p = −kBT
π2~3

∫ ∞
0

dp p2 ln(1− e−βcp). (73)

Performing partial integration one finds

p =
1

3
ε, (74)

which holds for any massless particles both bosons and fermions.

� The radiation pressure plays a role in the stellar balance as first noted by the Polish physicist
Czes law Bia lobrzeski (1878 - 1953).

� Let us note that for a gas of non-relativistic (massive) particles Eq. (34) holds that is
p = 2

3
ε.

� Photon’s energy and momentum can be expressed through the angular frequency ω as ~ω/c
and ~ω, respectively. The energy density (69) then equals

ε =
~
π2c3

∫ ∞
0

dω ω3

eβ~ω − 1
, (75)

and the spectral distribution is

dε

dω
=

~
π2c3

ω3

eβ~ω − 1
, (76)

which is the famous Planck formula.

� In the long wavelength or small frequency limit we deal with classical electromagnetic waves.
Indeed, when ~ω � kBT , Eq. (76) gives the classical radiation spectrum

dε

dω
=
kBT

π2c3
ω2, (77)

where the Planck constant is absent.

� The Planck spectrum (76) is rather common in nature. In particular, the cosmic microwave
background (CMB) is well described by the Planck formula with T = 2.7 K.


