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Unified Electro-Weak Theory
In 1960s Sidney Glashow, Abdus Salam and Steven Weinberg formulated a unified theory of electromagnetic

and weak interactions. The theory is now a part of the Standard Model which, as the whole model, is fully
confirmed experimentally.

Matter particles
• The left handed leptons and neutrinos are grouped in the doublets

Le ≡
(
νe
e

)
L

, Lµ ≡
(
νµ
µ

)
L

, Lτ ≡
(
ντ
τ

)
L

, (1)

while the right handed leptons are singlets

Re ≡ eR, Rµ ≡ µR, Rτ ≡ τR. (2)

• As discussed in detail in Lecture V, the left and right handed components of Dirac spinors are obtained as

ψL = PLψ, ψR = PRψ, (3)

where the projection operators PL and PR are defined in the following way

PL ≡
1
2(1+ γ5), PR ≡

1
2(1− γ5). (4)

• The doublets should be understood as pairs of left-handed spinors that is

Le ≡
(
νe
e

)
L

≡
(
PLψνe
PLψe

)
. (5)

• We will also need the Dirac conjugate spinor doublets like

Le ≡ (νe, e)L ≡ (ψνePR, ψePR). (6)

• Analogously to the lepton sector, one groups the left handed quarks in the doublets

Lu ≡
(
u

d′

)
, Lc ≡

(
c

s′

)
, Lt ≡

(
t

b′

)
, (7)

and the right hand u, c, t quarks in singlets

Ru ≡ uR, Rc ≡ cR, Rt ≡ tR. (8)

The ‘rotated’ quarks d′, s′, b′ are obtained from the quarks d, s, b by means of the Kobayashi-Maskawa
matrix which in case of two lightest flavors is the Cabbibo matrix(

d′

s′

)
=
(

cos θc sin θc
− sin θc cos θc

)(
d
s

)
=
(

cos θc d+ sin θc s
cos θc s− sin θc d

)
, (9)

where θc ≈ 13◦ is the Cabibbo angle.

Weak isospin and weak hypercharge
• In analogy to the isospin known from strong interactions, one introduces the weak isospin T . The left-

handed doublets have the isospin T = 1/2 while the right-handed singlets have T = 0. The isospin third
component of the upper members of the left-handed doublets (neutrinos and quarks u, c, t) is T3 = 1/2
while T3 = −1/2 for the lower members of the left-handed doublets (leptons and quarks d′, s′, t′).
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Table 1: Electric charges, third components of the weak isospin and hypercharges

Q T3 Y

neutrinos νe, νµ, ντ 0 1
2 −1

left-handed leptons eL, µL, τL −1 − 1
2 −1

right-handed leptons eR, µR, τR −1 0 −2

left-handed quarks uL, cL, tL 2
3

1
2

1
3

left-handed quarks d′L, s′L, b′L − 1
3 − 1

2
1
3

right-handed quarks uR, cR, tR 2
3 0 4

3

right-handed quarks d′R, s′R, b′R − 1
3 0 − 2

3

• The weak hypercharge Y is a quantum number relating the electric charge Q and the third component of
weak isospin T3 as

Y = 2(Q− T3). (10)

• The values of electric charges, third components of the weak isospin and hypercharges of leptons and quarks
are collected in the Table 1.

Gauge fields
• Our objective is to construct a theory which unifies the electromagnetic and weak interactions. Once QED

is the U(1) gauge theory, a presence of the U(1) symmetry in the unified theory is expected.

• Since the weak currents, which are known from the Fermi theory, are constructed out of the doublets (1)
and (7), it is natural to assume that the SU(2) symmetry is involved here.

• The gauge group of the unified theory is the inner product of SU(2) and U(1) groups. The SU(2) transfor-
mations act on the doublets of weak isospin while the U(1) transformations act on all spinors.

• The group is often denoted as SU(2)L to stress that the gauge transformations act on left-handed doublets.

• The SU(2) and U(1) gauge vector fields are denoted as Wµ
a with a = 1, 2, 3 and Bµ, respectively.

• The Lagrangian density of gauge fields is

Lgauge = 1
4W

µν
a Wa νµ + 1

4B
µνBνµ, (11)

where
Wµν
a = ∂µW ν

a − ∂νWµ
a + gεabcWµ

b W
ν
c , Bµν = ∂µBν − ∂νBµ. (12)

• The Lagrangian density (11) is invariant under the SU(2) and U(1) transformations of Wµ and Bµ, respec-
tively. The transformations read

Wµ → UWµU† − i

g
(∂µU)U†, Bµ → Bµ + ∂µΛ, (13)

where W and U are the matrices belonging to the fundamental representation of the SU(2) group.
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Figure 1: Coupling of charged bosons W±

Coupling of gauge fields to fermions
• We define two types of covariant derivatives:

Dµ
L ≡ ∂

µ − igWµ − i

2g
′Y Bµ, Dµ

R ≡ ∂
µ − i

2g
′Y Bµ. (14)

The field Wµ is written in the fundamental representation that is Wµ = τaWµ
a where τa with a = 1, 2, 3

are the generators of fundamental representation of SU(2) group.

• Since the gauge group is the inner product of two groups, there are two gauge couplings g and g′ which are
independent from each other.

• As we remember, τa = 1
2σ

a where σa are the Pauli matrices

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (15)

• The Lagrangian density which describes the interaction of fermions with gauge fields is

Lgauge−fermion =
∑
f

(
Lf iγµD

µ
LLf +Rf iγµD

µ
RRf

)
, (16)

where the sum is taken over all lepton and quark flavors.

• Let us write down the first term of the Lagrangian (16), using the explicit form of the Pauli matrices (15).
One finds

Lf iγµD
µ
LLf = Lf iγµ

(
∂µ − i

2g
(

0 1
1 0

)
− i

2g
(

0 −i
i 0

)
Wµ

2 −
i

2g
(

1 0
0 −1

)
Wµ

3 −
i

2g
′Y

(
1 0
0 1

)
Bµ
)
Lf

= Lf iγµ

(
∂µ − i

2g
(

0 Wµ
1 − iW

µ
2

Wµ
1 + iWµ

2 0

)
− i

2

(
gWµ

3 + g′Y Bµ 0
0 −gWµ

3 + g′Y Bµ

))
Lf . (17)

• The structure of the first term in Eq. (17) suggests to introduce the charged gauge bosons

Wµ
± = 1√

2
(
Wµ

1 ± iW
µ
2
)
, (18)

which are coupled to the ‘charged’ currents like ψeγµ(1 + γ5)ψν . The corresponding vertices of Feynman
diagrams are shown in Fig. 1.

• Now, we combine the last diagonal term in Eq. (17) with the interaction part of Rf iγµDµ
RRf and we get

Lf iγµ

(
− i2

(
gWµ

3 + g′Y Bµ 0
0 −gWµ

3 + g′Y Bµ

))
Lf +Rf iγµ

(
− i

2g
′Y Bµ

)
Rf

= gWµ
3 J

3
µ + 1

2g
′BµJYµ , (19)

where J3
µ and JYµ are the weak neutral and hypercharge currents which in case of a single lepton l and its

neutrino ν are

J3
µ = 1

2(νLγµνL − lLγµlL), (20)

JYµ = −νLγµνL − lLγµlL − 2lRγµlR. (21)

The notation is lL ≡ PLψl, lR ≡ PRψl, lL ≡ ψlPR, lR ≡ ψlPL etc.
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Figure 2: Elastic scattering of electron neutrinos and antineutrinos on electron

• On one observes that the electromagnetic current equals

Jem
µ ≡ −lγµl = 1

2J
Y
µ + J3

µ, (22)

where we have taken into account that the lepton electric charge is −1 and

ψγµψ = ψLγ
µψL + ψRγ

µψR. (23)

• Using the relation (22), the right-hand-side of the equality (19) becomes

gWµ
3 J

3
µ + 1

2g
′BµJYµ = gWµ

3 J
3
µ + g′Bµ(Jem

µ − J3
µ) = (gWµ

3 − g′Bµ)J3
µ + g′BµJem

µ . (24)

• The last term in Eq. (24) may suggest to identify g′Bµ with eAµ, where e is the elementary electric charge
and Aµ is the electromagnetic potential. However, it cannot be right as Eq. (24) also shows that g′Bµ
couples to the weak current νLγµνL which is electrically neutral. Therefore, we consider the ‘rotated’ fields(

Aµ

Zµ

)
=
(

cos θW sin θW
− sin θW cos θW

)(
Bµ

Wµ
3

)
=
(

cos θW Bµ + sin θW Wµ
3

cos θW Wµ
3 − sin θW Bµ

)
, (25)

where θW is called the Weinberg angle.

• Substituting Bµ = cos θW Aµ − sin θW Zµ and Wµ
3 = cos θW Zµ + sin θW Aµ into the expression (24), one

finds

(gWµ
3 − g′Bµ)J3

µ + g′BµJem
µ =

(
(g cos θW − g′ sin θW )Zµ − (g′ cos θW − g sin θW )Aµ

)
J3
µ

+ g′(cos θW Aµ − sin θW Zµ)Jem
µ . (26)

One sees that we have to demand g′ cos θW − g sin θW = 0 to cancel out the coupling of Aµ to J3
µ which

can be electrically neutral. Therefore, the Weinberg angle is given as

sin θW = g′√
g2 + g′2

, cos θW = g√
g2 + g′2

. (27)

• Now, we write the expression (26) as

(gWµ
3 − g′Bµ)J3

µ + g′BµJem
µ =

(
(g cos θW − g′ sin θW )J3

µ − g′ sin θW Jem
µ

)
Zµ + g′ cos θW AµJem

µ . (28)
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• The last term of the expression (28) shows that the electric elementary charge is

e = g′ cos θW = g sin θW = gg′√
g2 + g′2

. (29)

• As we remember, the charged bosons W±µ are coupled to the charged weak currents which include the vector
and axial-vector contributions. The coupling to the vector and axial-vector currents is the same. Eq. (28)
shows that this is not the case for the neutral boson Z. Since J3

µ contains the vector and axial-vector
contributions but Jem

µ only the vector one, the couplings to the vector and axial vector currents are

gV = (g cos θW − g′ sin θW )T3 − 2g′ sin θW , gA = (g cos θW − g′ sin θW )T3. (30)

• The weak neutral currents were discovered in 1973 through an analysis of the elastic scattering of electron
neutrinos and antineutrinos on electron. The Feynman diagrams of the two processes are shown in Fig. 2.

• The relations (30) were experimentally confirmed.

• The measured value of the Weinberg angle is approximately θW = 29◦.

Gauge invariance and masses of fermions
• The Lagrangian density (16) is invariant under the SU(2) transformations of the fields Wµ and Lf and

under the U(1) transformations of Bµ, Lf and Rf . The transformations read

Wµ → UWµU† − i

g
(∂µU)U†, Lf → ULf , (31)

Bµ → Bµ + ∂µΛ, Lf → e
i
2 g

′Y ΛLf , Rf → e
i
2 g

′Y ΛRf , (32)
where U are, as previously, the matrices belonging to the fundamental representation of the SU(2) group.

• We note that the fermions must be massless as the mass terms would violate the gauge invariance. The
point is that the mass term of the fermion Lagrangian can be written as

Lmass = −mψψ = −m (ψL + ψR)(ψL + ψR) = −m (ψLψL + ψLψR + ψRψL + ψRψR). (33)

Since ψLψL = ψPRPLψ = 0 and ψRψR = ψPLPRψ = 0, we have

Lmass = −mψψ = −m (ψLψR + ψRψL). (34)

Therefore, the mass term mixes up the left-handed and right-handed fermions, and consequently, it violates
the SU(2) gauge symmetry.

• As we will see later on, the masses of leptons and quarks can be generated by means of the Higgs mechanism.

• The gauge invariant theory defined by the sum of Lagrangians (11) and (16) describes massless fermions
interacting with four massless vector bosons. The theory is rather far from the known matter fermions
experiencing the weak interactions.

Higgs field
• The Lagrangian density of the Higgs field is chosen as

LHiggs =
(
Dµ
LΦ
)†
DLµΦ− µ2Φ†Φ− λ(Φ†Φ)2, (35)

where, as previously, Dµ
L ≡ ∂µ − igWµ − i

2g
′Y Bµ and Φ is the two-component scalar field

Φ =
(
φ+

φ0

)
. (36)

The fields φ+ and φ0 are complex and the subscripts refer to the electric charge. The hypercharge of both
φ+ and φ0 is Y = 1.



Lecture VII Introduction to Standard Model 6

• The Lagrangian density (35) is invariant under the SU(2) transformations of the fields Wµ and Φ and under
the U(1) transformations of Bµ, φ+ and Φ0. The transformations read

Wµ → UWµU† − i

g
(∂µU)U†, Φ→ UΦ, (37)

Bµ → Bµ + ∂µΛ, φ+ → ei
i
2 g

′Λφ+, φ0 → ei
i
2 g

′Λφ0. (38)

• Since the mass parameter µ2 and the coupling constant λ obey µ2 < 0 and λ > 0, the SU(2) symmetry is
spontaneously broken.

• We choose the field which minimizes the potential energy as

Φ0 = 1√
2

(
0
v

)
, v ≡

√
−µ

2

λ
. (39)

The coefficient 1/
√

2 is introduced to get the standard factor 1
2 in front of the kinetic term of the Higgs

field in the Lagrangian (53).

• Since the theory we construct has to preserve the electromagnetic U(1) symmetry, the ground state or
vacuum (39) must be symmetric. It is indeed the case as the field φ0 is chosen to be electrically neutral.

• As discussed in Lecture VI, we can define the real scalar field H(x) as

Φ = 1√
2

(
0

H − v

)
, (40)

which substituted into the Lagrangian (35) immediately gives

µ2Φ†Φ = µ2

2 (H − v)2, (41)

λ(Φ†Φ)2 = λ

4 (H − v)4. (42)

• The term
(
Dµ
LΦ
)†
DLµΦ is computed in the following way

(
Dµ
LΦ
)†
DLµΦ = 1

2(0, H − v)
( ←
∂µ +igWµ + i

2g
′Bµ
)(
∂µ − igWµ − i

2g
′Bµ

)( 0
H − v

)
(43)

= 1
2 (∂µH)(∂µH)− ig

2 (0, ∂µH)Wµ

(
0

H − v

)
− ig′

4 (0, ∂µH)Bµ
(

0
H − v

)

+ ig

2 (0, H − v)Wµ

(
0

∂µH

)
+ ig′

4 (0, H − v)Bµ
(

0
∂µH

)

+ g2

2 (0, H − v)WµW
µ

(
0

H − v

)
+ gg′

4 (0, H − v)WµB
µ

(
0

H − v

)

+ g′g

4 (0, H − v)BµWµ

(
0

H − v

)
+ g′2

8 (0, H − v)BµBµ
(

0
H − v

)
.

• One finds that the second and fourth terms in Eq. (43) cancel each other because

(0, ∂µH)Wµ

(
0

H − v

)
= 1

2(∂µH)(H − v)Wµ
a (0, 1)σa

(
0
1

)
= (0, H − v)Wµ

(
0

∂µH

)
. (44)

• The third and the fifth terms in Eq. (43) also cancel each other.
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• The sixth term in Eq. (43) is computed as

g2

2 (0, H − v)WµW
µ

(
0

H − v

)
= g2

8 (H − v)2WaµW
µ
b (0, 1)σaσb

(
0
1

)
. (45)

Using the explicit for of Pauli matrices (15), one finds that

g2

2 (0, H − v)WµW
µ

(
0

H − v

)
= g2

8 (H − v)2WaµW
µ
a . (46)

• The last term in Eq. (43) is

g2

8 (0, H − v)BµBµ
(

0
H − v

)
= g2

8 (H − v)2BµB
µ(0, 1)

(
0
1

)
= g2

8 (H − v)2BµB
µ. (47)

• The sum of the seventh and eighth terms from Eq. (43) equals

gg′

4 (0, H − v)(WµB
µ +BµW

µ)
(

0
H − v

)
= gg′

4 (H − v)2Wµ
a Bµ(0, 1)σa

(
0
1

)
= −gg

′

4 (H − v)2Wµ
3 Bµ. (48)

• So, the final result of the term
(
Dµ
LΦ
)†
DLµΦ is

(
Dµ
LΦ
)†
DLµΦ = 1

2 (∂µH)(∂µH) + g2

8 (H − v)2WaµW
µ
a + g′2

8 (H − v)2BµB
µ − gg′

4 (H − v)2Wµ
3 Bµ. (49)

• Let us now introduce the physical fields Wµ
±, Z

µ, Aµ. Since

WaµW
µ
a = 2Wµ

+W−µ +Wµ
3 W3µ,

Bµ = cos θW Aµ − sin θW Zµ,

Wµ
3 = cos θW Zµ + sin θW Aµ,

the expression (49) is rewritten as

(
Dµ
LΦ
)†
DLµΦ = 1

2 (∂µH)(∂µH) + g2

4 (H − v)2Wµ
+W−µ (50)

+ g2

8 (H − v)2Wµ
3 W3µ + g′2

8 (H − v)2BµB
µ − gg′

4 (H − v)2Wµ
3 Bµ

= 1
2 (∂µH)(∂µH) + g2

4 (H − v)2Wµ
+W−µ

+ 1
8(H − v)2

[(
g2 cos2 θW + g′2 sin2 θW + 2gg′ cos θW sin θW

)
ZµZµ

+
(
g2 sin2 θW + g′2 cos2 θW − 2gg′ cos θW sin θW

)
AµAµ

+ 2
(
g2 sin θW cos θW − g′2 sin θW cos θW − gg′(cos2 θW − sin2 θW )

)
ZµAµ

]
.

• Using the formulas (27), one finds that the coefficients in front of AµAµ and ZµAµ in Eq. (50) vanish, and
finally one obtains

(
Dµ
LΦ
)†
DLµΦ = 1

2 (∂µH)(∂µH) + g2

4 (H − v)2Wµ
+W−µ + 1

8(g2 + g′2)(H − v)2ZµZµ. (51)

• Combing the results (41), (42) and (50), the Higgs Lagrangian (35) becomes

LHiggs = 1
2 (∂µH)(∂µH)+ g2

4 (H−v)2Wµ
+W−µ+ 1

8(g2 +g′2)(H−v)2ZµZµ−
µ2

2 (H−v)2− λ4 (H−v)4, (52)
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which is finally rewritten as

LHiggs = 1
2 (∂µH)(∂µH)− 1

2m
2
HH

2 − λ

4 (H4 − 4vH3) (53)

− m2
WW

µ
+W−µ + g2

4 (H2 − 2vH)Wµ
+W−µ (54)

− 1
2m

2
ZZ

µZµ + 1
8(g2 + g′2)(H2 − 2vH)ZµZµ, (55)

where the masses are

m2
H = −2µ2, m2

W = 1
4g

2v2 = −g
2µ2

4λ , m2
Z = 1

4(g2 + g′2)v2 = − (g2 + g′2)µ2

4λ . (56)

• The experimentally obtained masses are

mH ≈ 125 GeV/c2, mW ≈ 80 GeV/c2, mZ ≈ 91 GeV/c2. (57)

• The first line of Eq. (53) gives the kinetic and mass terms of the Higgs field and its self interaction. The
second line provides the mass term of charged bosons W± and their interaction with the Higgs bosons. In
the third line we see the mass term of neutral bosons Z0 and their interaction with the Higgs bosons.

• One observes that
mW

mZ
= g2

g2 + g′2
= cos θW , (58)

which is the well-know prediction of the Standard Model.

Masses of fermions and Yukawa couplings
• Matter particles of the theory we construct step by step are still massless. As already mentioned, the

standard mass term of the fermion Lagrangian which is

Lmass = −mψψ = −m (ψLψR + ψRψL), (59)

mixes up the left-handed and right-handed fermions, and consequently, it violates the SU(2)L gauge sym-
metry.

• The masses of leptons and quarks can be introduced by means of the Higgs mechanism not violating the
SU(2)L gauge symmetry.

• One postulates the Yukawa coupling of leptons to the Higgs field Φ as

LYukawa = −
∑
l

Gl
[
Rl(Φ†Ll) + (LlΦ)Rl

]
, (60)

where Gl is the dimensionless coupling constant. The Lagrangian (61) is invariant under the SU(2)L and
U(1) transformation.

• Due to the spontaneous symmetry breakdown, the Higgs field can be parameterized by the formula (40)
which substituted in Eq. (61) gives

LYukawa =
∑
l

Gl√
2

(H − v)
[
lRlL + lLRl

]
=
∑
l

Gl√
2

(H − v)ψlψl (61)

=
∑
l

(
−mlψlψl + Gl√

2
Hψlψl

)
,

where the lepton mass is ml = Glv√
2 . We see that neutrinos remain massless because of the vanishing upper

component of the Higgs field (40).
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• A generation of quark masses is a more complex issue even so a general idea is similar to that of the lepton
case. First of all, quarks of all flavors (not only d, s, b) should acquire a mass. Therefore, the Higgs doublet
must be rearranged. A more severe complication is that the ‘rotated’ quarks, which enter the weak currents,
are not the mass eigenstates. Therefore, the Cabibbo-Kobayashi-Maskawa matrix, which mixes up quarks
d, s, b is involved in the Yukawa couplings of quarks to Higgs.

Electro-weak Lagrangian
• The complete electro-weak Lagrangian is

L = Lgauge+Higgs + Lleptons+Yukawa + Lquarks+Yukawa. (62)

• The Lagrangian of gauge and Higgs fields is

Lgauge+Higgs = 1
4F

µνFνµ (63)

+ 1
2W

µν
+ W−νµ +m2

WW
µ
+W−µ

+ 1
4Z

µνZνµ + 1
2m

2
ZZ

µZµ

+ 1
2 (∂µH)(∂µH)− 1

2m
2
HH

2

+ W+W−W+W− + W+W−γ + W+W−γγ

+ W+W−γZ0 + W+W−Z0 + W+W−Z0Z0

+ W+W−H + W+W−HH

+ Z0Z0H + Z0Z0HH

+ HHH + HHHH,

where the interaction terms are represented only symbolically and

Fµν ≡ ∂µAν − ∂νAµ, Wµν
± ≡ ∂µW ν

± − ∂νW
µ
±, Zµν ≡ ∂µZν − ∂νZµ. (64)

• The couplings among the gauge bosons Aµ, Wµ
± and Zµ appear when the fields Wµ

a and Bµ expressed
through the physical fields are substituted into the Lagrangian (11).

• The Lagrangian of lepton fields and their Yukawa couplings is

Lleptons+Yukawa =
∑

l=e,µ,τ
l(iγµ∂µ −ml)l +

∑
ν=νe,νµ,ντ

νiγµ∂µν (65)

+ l l γ + νl lW
+ + l νlW

− + l l Z + νl νl Z + + l l H H.

• The Lagrangian of quark fields and their Yukawa couplings is

Lleptons+Yukawa =
∑

q=u,d,c,s,t,b
q(iγµ∂µ −mq)q (66)

+ u d′W+ + c s′W+ + t b′W+

+ d
′
uW− + s′ cW− + b

′
tW−

+ q q γ + q q Z0 + q q H.


